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1. Project Overview

e It can be challenging to evaluate the geo-
morphic impact of large outburst floods
because they are relatively rare events that
aren’t often observed directly, but we can inte-
grate numerical models and observations
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e We use a historical landslide-dam outburst
flood event in the eastern Himalaya to develop
an approach to investigate the geomorphic
impact of outburst floods, including prehistoric
megafloods in the region
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e Landsat-7 imagery (pictured right) taken shortly after the
event illustrates extensive scour and landsliding along the
channel just upstream of the Tsangpo Gorge

local tributaries

70 16

2. The Ylgong Rlver Landslude dam outburst flood § 3. GeoClaw: Initialization and tuning

from the field to advance our understanding [l SFENIEEHNEINS 880~ Aalis SR sitae d?ys PRRCPICIG 1 <0 KE=feu to characterize the outburst flood over its entire pathway
T before a spillway was constructed, re-

g * Landslide dam failed catastrophically e We first tested the performance of the model with various
in June after spillway completed, result- @ maximum grid resolutions and a range of values for the bed
|ng in the second largest outburst flood roughness parameter, Manning’s n (shown right)

Landsat-7 irnagry aqied ay 4, 2000

5. Simulated inundation matches observed patterns of deposition
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e We mapped and observed 12 slackwater deposits
in hydraulically sheltered areas such as terraces and

e Pictured right: large slackwater deposit near en-
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Simulated depth in Tsangpo Gorge ~75 km downstream with varying
grid-resolutions from 15m to 85m (left), and simulated depth in the
e A grid-resolution of 30 m was chosen for full simulations of the gorge with varying roughness values from n=0.03-0.04 (right)
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6. Conclusions

e GeoClaw accurately simulates observed hy-
draulic conditions at Tongmai Bridge with the
range of published credible dam heights/lake vol-
umes

e GeoClaw simulations indicate sustained
high-depths and bed shear-stresses in steep parts of
the channel where the flood triggered landslides

e Despite uncertanties GeoClaw simulations inundate
a majority of surveyed flood deposits using the
range of dam heights/lake volumes

e GeoClaw is a suitable tool to investigate the impact
of high-magnitude outburst floods on the landscape

7. Future Work

e More sophisticated dam breach scenarios will be
explored in the near future to examine the effect of
different rates of dam removal

e Simulations of the Bridge of the Gods flood (Co-
lumbia River, Washington USA) will be performed to
test the performance of GeoClaw with higher-reso-
lution topographic datasets as well as a base flow
component

e GeoClaw simulations will be used to investigate
ancient megaflood events sourced from the Yarlung
River in the eastern Himalaya
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