Micro Process Technology for Holistic Process Intensification
- From Ex-Ante Cost/Eco-Efficiency Considerations via Scaling Out to Novel Process Windows

22th March 2010 – CPAC Satellite Workshop, Rome

V. Hessel
hessel@imm-mainz.de

1 Institut für Mikrotechnik Mainz GmbH
Directorate Chemical Milli and Micro Process Technologies

2 Eindhoven University of Technology
Department of Chemical Engineering and Chemistry

3 Technische Universität Darmstadt
Technische Chemie / Cluster of Excellence Smart Interfaces
GATEWAYS STAND FOR OPENNESS AND ENTRANCE INTO NEW WORLDS

Miyajima Torii – Miyajima Island, next to Hiroshima

Torii is commonly found at the entrance or within a Shinto shrine, where it symbolically marks the transition from the sacred to the profane.
NEW HORIZONS – FUTURE FACTORY CONCEPTS

„Changing customer needs“
„Exploit the full potential of micro process technologies“
„Develop new production concepts, new start-up and shut-down strategies“
„More fast and flexible future production strategies“

NMP Large Scale EU Projects, started 2009-2010

„New, intensified process and plant concepts for speeding up market penetration, for enhancing the product life-cycle and improving sustainable production“
Volume: ~17 Mio €; funding: 11.0 Mio €, 30% industry
15 partners – Coordinator: IMM

- Sugar oxidation hydrogenation (Abo Akademi)
- Epoxidation (Mythen)
- Biodiesel production (Chemtex)
- Ammonia production (ITI Energy)
- Polymer chemistry reaction 1 (Evonik-Degussa)
- Polymer chemistry reaction 2 (Evonik-Degussa)
Process intensification: New processes & plants with step-change performance shift

Application of decision support and optimisation tools

Knowledge
Costs & Sustainability

“Early bird” – ex-ante
Simplified Life-Cycle and Cost Analysis (SCLA)

“Do not lock the stable door after the horse has bolted”

Degree of freedom
Apparatus & Processing

R & D Scale up Production

Stage of development

Freedom of choice, knowledge
SOME PI CRITERIA
- HIERARCHICALLY GROUPED

“Be holistic"

- Society / Environmental
- Company / Economy
- Plant / Process
- Reaction / Reactor

Footprint – Land use

Transport – use of local feedstock

Emissions

Toxicity

Cost (cap/op)

Depreciation

Safety – Plant operational time

Price (product)

Energy

Productivity

Flexibility

Selectivity

Reactivity

Footprint – Land use

Transport – use of local feedstock

Emissions

Toxicity

Cost (cap/op)

Depreciation

Safety – Plant operational time

Price (product)

Energy

Productivity

Flexibility

Selectivity

Reactivity

Footprint – Land use

Transport – use of local feedstock

Emissions

Toxicity

Cost (cap/op)

Depreciation

Safety – Plant operational time

Price (product)

Energy

Productivity

Flexibility

Selectivity

Reactivity

Footprint – Land use

Transport – use of local feedstock

Emissions

Toxicity

Cost (cap/op)

Depreciation

Safety – Plant operational time

Price (product)

Energy

Productivity

Flexibility

Selectivity

Reactivity

Footprint – Land use

Transport – use of local feedstock

Emissions

Toxicity

Cost (cap/op)

Depreciation

Safety – Plant operational time

Price (product)

Energy

Productivity

Flexibility

Selectivity

Reactivity

Footprint – Land use

Transport – use of local feedstock

Emissions

Toxicity

Cost (cap/op)

Depreciation

Safety – Plant operational time

Price (product)

Energy

Productivity

Flexibility

Selectivity

Reactivity

Footprint – Land use

Transport – use of local feedstock

Emissions

Toxicity

Cost (cap/op)

Depreciation

Safety – Plant operational time

Price (product)

Energy

Productivity

Flexibility

Selectivity

Reactivity

Footprint – Land use

Transport – use of local feedstock

Emissions

Toxicity

Cost (cap/op)

Depreciation

Safety – Plant operational time

Price (product)

Energy

Productivity

Flexibility

Selectivity

Reactivity

Footprint – Land use

Transport – use of local feedstock

Emissions

Toxicity

Cost (cap/op)

Depreciation

Safety – Plant operational time

Price (product)

Energy

Productivity

Flexibility

Selectivity

Reactivity

Footprint – Land use

Transport – use of local feedstock

Emissions

Toxicity

Cost (cap/op)

Depreciation

Safety – Plant operational time

Price (product)

Energy

Productivity

Flexibility

Selectivity

Reactivity

Footprint – Land use

Transport – use of local feedstock

Emissions

Toxicity

Cost (cap/op)

Depreciation

Safety – Plant operational time

Price (product)

Energy

Productivity

Flexibility

Selectivity

Reactivity

Footprint – Land use

Transport – use of local feedstock

Emissions

Toxicity

Cost (cap/op)

Depreciation

Safety – Plant operational time

Price (product)

Energy

Productivity

Flexibility

Selectivity

Reactivity

Footprint – Land use

Transport – use of local feedstock

Emissions

Toxicity

Cost (cap/op)

Depreciation

Safety – Plant operational time

Price (product)

Energy

Productivity

Flexibility

Selectivity

Reactivity
BE HOLISTIC – HAND-IN-HAND DEVELOPMENT OF REACTOR DESIGN AND CHEMISTRY

March 2010

µ-Mixing

FASTNESS OF REACTIONS

µ-Heat exchange

Metal/halogen exchange, Grignard ketone addition

Low-T Grignard

Nitrations,

peptide couplings

10⁻² 10⁻¹ 1

10

100

1000

10,000

Process protocol times in organic textbooks

LONZA-class A (8%)

LONZA-class B (9%)

‘LONZA-class D’ (81%)

SN2 reactions

Many, many reactions

Intrinsic chemistry *

Effective chemistry

Conv-Mixing

Conv-Heat exchange

µ-Mixing

µ-Heat exchange

Intensified chemistry

Intrinsic chemistry *

Norbert P. Wijffels

MCPT: MASS & HEAT TRANSFER

Case Study 1: 2-Methylbenzimidazole Formation

Kinetic Study

\[
\text{NH}_2 \quad + \quad \text{COOH (excess)} \quad \xrightarrow{\text{neat (1 M)}} \quad \text{rt-200 °C} \quad \rightarrow \text{NH}
\]

Arrhenius Plot

- Activation energy: \(E_a = 73.43 \text{ kJ/mol} \)
- Pre-Exponential factor: \(A = 3.1 \times 10^8 \)

NOVEL PROCESS WINDOWS

- Heterogeneous catalytic routes
 - Routes bridged by intermediates
 - One flow ('pot') multi-step route
 - Direct one step synthesis

- Alternative heating (MW)
- Pressurized ex-reflux processes
- Ex-cryogenic processes

- New chemical transformations
 - Routes at much elevated temperature
 - Routes at much elevated pressure
 - Routes in the explosive or thermal runaway regime
 - Routes at much increased concentration or even solvent-free

- Process integration and simplification
- Mixing all at once
 - Catalyst-free
 - Reduced process expenditure

- Hazardous reactants
 - Thermal runaway regime
 - Ex regime

- Solvent-free
 - Solvent-less
 - Alternative solvents (IL, SCF)

German NPW Research Cluster: 7 projects

March 2010
Chemistry Under Extreme or Non-Classical Conditions

Edited by
Rudi van Eldik and Colin D. Hubbard

TABLE OF CONTENTS

10 Chemistry Under Extreme Conditions
Electrohydraulic Cavitation and Pulsed
M. R. Hoffmann, L. Hua, R. Höchemer, D. Willberg, P. Lang and A. Kratel

11 Microwave Dielectric Heating Effects
D. M. P. Mingos and A. G. Whittaker

12 Biomolecules Under Extreme Conditions
K. Heremans

Index

Editors' Preface vii
European Cooperation in the Field of Scientific and Technical Research (COST) xi

1 Chemical Synthesis Using High temperature
J. J. Schneider 1

2 Effect of Pressure on Inorganic Reactions
C. D. Hubbard and R. van Eldik 53

3 Effect of Pressure on Organic Reactio High pressure
F.-G. Klärner, M. K. Diedrich and A. E. Wigger 103

4 Organic Synthesis at High Pressure
J. Jurczak and D. T. Gryko 163

5 Inorganic and Related Chemi Supercritical fluids
M. Polakoff, M. W. George and 189

6 Organic Chemistry in Supercritical Fluids
E. Dinjus, R. Fornika and M. Scholz 219

7 Industrial and Environmental Applications Ultrasound
H. Schmiede, N. Dahmen, J. Schön and G. Wieg 273

8 Ultrasound as a New Tool for Synthetic Chemists
T. J. Mason ad J. L. Luche 317

9 Applications of High Intensity Ultrasound in Polymer Chemistry G. J. Price 381
Background: High Temperature/Pressure Flow Chemistry in Steel Capillary Reactors

Reactor Combining HPLC and GC Parts

Chemistries
- Redox chemistry
- Radical reactions
- Ester pyrolysis
- Degradation of cellulose and chitin
- Supercritical conditions

Selected References (J. O. Metzger, 1978-1991)
Comparable yields were obtained for the continuous process, but with much shorter reaction times:

→ Reaction time reduction at best up to 2000 times; increase in space-time yield by factor 440

March 2010
PROCESS INTENSIFICATION: INCREASE IN SPACE-TIME YIELD BY HIGH-p,T PROCESSING

Batch (1 l)
2 h – 7200 s
20 kg/(m³ h)
1 t / a

4 t / a
64200 kg/(m³ h)
4 s
Flow chem (9 ml)

→ Reaction time reduction at best up to 2000 times; increase in space-time yield by factor 3200

Residence time (s)
- 140°C, (initial)
- 200°C, aq (initial)
- 200°C, aq
- 250°C, aq
- 200°C, IL BMIM-HCl

Elevated temperature

Yield (%)

- Total flow rate (ml/h)
- OH
- KHCO₃ (aq)

March 2010
GOOD MICROREACTORS STILL NEEDED
... FOR SCALE-OUT

Yield 2,4-DHBA [%]

- 1/16 in. capillary, 200 °C, 35 bar
- dedicated µ-reactor, 206-219 °C, 35 bar
- dedicated µ-reactor, 200 °C, 70 bar
- dedicated µ-reactor, 220 °C, 70 bar
- nondedicated µ-reactor, 220 °C, 35 bar

Residence time [s] (reciprocal)

- 15500
- 20300
- 34450
- 38250
- 225 g/h
- 200 g/h
- 175 g/h
- 90 g/h

STY [kg/m³h]

- 25-fold productivity
- gas formation, intermittent flow

Productivity

GOOD MICROREACTORS STILL NEEDED
... FOR SCALE-OUT
INCREASE IN REACTIVITY VS. SELECTIVITY

Capillary reactor, O.D. 1/8 inch 35 bar

Yield 2,4-DHBA and 2,6-DHBA [%]

Residence time [s] (reciprocal)

- 2,4-DHBA, 160°C
- 2,4-DHBA, 180°C
- 2,4-DHBA, 200°C
- 2,6-DHBA, 160°C
- 2,6-DHBA, 180°C
- 2,6-DHBA, 200°C
<table>
<thead>
<tr>
<th>Heating</th>
<th>Solvent</th>
<th>Aqueous</th>
<th>Ionic liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>CH-A-KS</td>
<td>CH-IL-KS</td>
<td></td>
</tr>
<tr>
<td>Microwave</td>
<td>M-A-KS</td>
<td>M-IL-KS</td>
<td></td>
</tr>
</tbody>
</table>

Faysal Benaskar (TUe)
Internship at IMM

HCO$_3^-$ donating ionic liquids
'Footprint' - distinct LCA (and costing) patterns; determining factors: here, energy and raw materials

REACTION TIME IS DETERMINING FACTOR NO. 1

Fast reaction processing has much better global warming potential
→ Efficient use of reactor capacities is prime issue for eco-efficient processing

Multi Criteria Decision Support

Multiobjective Optimisation (MO)

March 2010
‘Lukewarm’ ex-cryogenico processes –
MOFFAT-SWERN OXIDATION

\[
\begin{align*}
\text{SO} + (\text{CF}_3\text{CO}_2)_2\text{O} & \rightarrow \text{S}^+\text{OCOCF}_3 \\
\text{R'}\text{R} & \rightarrow \text{R'}\text{R} \\
\text{S} & + \text{R'}\text{R} \rightarrow \text{R'}\text{R} \\
\text{base} & \rightarrow \text{R'}\text{R} \\
\end{align*}
\]

1st Step
2nd Step
3rd Step

- Batch: very low temperatures (<-50°C)
- Microreactor: temperatures between -20 and 20°C
- Microreactor yields >> batch yields (e.g. 95% opposed to 20%) at very short residence times of 0.01 s

Mannosylation of diisopropylidene galactose with mannosyl trichloroacetimidate

- **Batch:** good yields at -60°C and 213 s
- **Microreactor:** same yield at -35°C and 25.7 s

‘Scalding hot’ pressurized ex-reflux processes – BROMINATIONS

- High temperature: core-substitution
- 0°C: 20% side-chain bromination
- 190°C: side-chain bromination
- Higher conversion (40% to 95%) with temperature and pressure

COPPER-FREE SONOGASHIRA COUPLING

- Green process: water-mediated, without organic solvents
- Copper-free process without specific ligands for Pd catalyst
- Nearly quantitative yield at 0.1–4.0 s, 250°C and 16 MPa
- Even at 0.035 s: yield was >96% yield, but decreased to 1.5% at 0.012 s

NEWMAN-KUART REARRANGEMENT

O-(2-nitrophenyl)-N,N-dimethylthiocarbamate to S-(2-nitrophenyl)-N,N-dimethylthiocarbamothioate

- Scale-up prohibited in multi-purpose plants > 140°C
- Safe operation in microreactors > 200°C
- Yield near 100% at 170°C > yield by laboratory equipment (90%)

Continuous Flow Newman-Kwart Rearrangement

Kinetic Analysis (HPLC)

- Alternative solvents
- Elevated temperature

Flow processing:
- 100-330 °C, 60-80 bar
- 1 mL min⁻¹ flow rate
- 4 mL coil
- Residence time 4 min
Reduction with TTMSS, tris(trimethylsilyl)silane of various alcohol-derived thiocarbonyl derivatives in superheated toluene at 130°C with 5 min.

- Reduction of deoxy sugars at excellent yield (>90%)
- No toxic or chlorinated solvents such as CCl₄
- Process simplicity as compared to literature procedure
- Enhanced reactivity and changes in stereochemistry / cis/trans selectivities

Full conversion and 82% yield within 8 min at 270 °C and 70 bar as opposed to reaction times of several days in conventional equipment

CORE AND SIDE-CHAIN BROMINATIONS WITH ELEMENTAL BROMINE

meta-nitrotoluene toluene thiophene

reaction speed

formation of gaseous hydrogen bromide

Br₂ [ml/h] / Educt [ml/min]:

18.6 / 42.8 24.5 / 49.8 18.4 / 28.4

Solvent-free
THIOPHENE BROMINATION

Solvent-free

- Figure of merit: optimum for formation of 2,5-dibromothiophene
- Therefore processing at molar ratios of 2

2-BrT
2,5-DiBrT
2,3,5-TriBrT
2,3,4,5-TetraBrT

T = 0°C
Pure bromine
• Large heat releases – in batch addition of reactants drop per drop over 24h – micro-reactor operation needs only some minutes (1.6 – 29 min)

• Large increases in space-time yield by micro-flow processing (8 – 652 x, based on g /ml h\(^{-1}\))

Alternative solvents

BECKMANN REARRANGEMENT
– NYLON 6 INTERMEDIATE

Process simplification: elimination of need for acid at increased reaction speed

ESTERIFICATIONS IN SUPERCritical ALCOHOLS

Esterification

\[
\text{Ph} \quad \text{O} \quad \text{Et} \xrightarrow{\text{scMeOH}} \quad \text{Ph} \quad \text{O} \quad \text{Me}
\]

350°C, 180 bar

18 min

Transesterification

\[
\text{Ph} \quad \text{O} \quad \text{H} \xrightarrow{\text{scEtOH}} \quad \text{Ph} \quad \text{O} \quad \text{Et}
\]

330°C, 180 bar

12 min

Process simplification: no catalyst used – high ionic product of SCFs

T_c = 239°C; p_c = 81 bar.
Dedicated fluorinations with diethyl-amino-sulfur trifluoride (DAST), (1-chloro-methyl-4-fluoro-1,4-diazo-niabicyclo-[2.2.2]octane), bis(tetra-fluoroborate) (Selectfluor®), and trimethylsilyl trifluoromethane (TMS-CF3, Ruppert’s reagent)

- **DAST**: volatile, reacts violently with water and readily undergoes dismutation to SF₄ and (Et₂N)₂SF₂
- Nucleophilic fluorination, electrophilic fluorination and trifluoromethylation
- Purities >95% & yields up to 95%, eliminating purification
- Superheated processing with rate acceleration

• Al-catalyst highly pyrophoric and difficult to handle in larger volumes
• Aluminium–amide intermediate is unstable at elevated temperatures
• Batch: 16 h; combined microwave and microreactor operation at 2 min
• Applied for the synthesis of rimonabant and efaproxiral at 49% yield
• Rimonabant is anti-obesity drug & central cannabinoid receptor antagonist

• Nitration of phenol: catalyzed by nitrous acid and not by the nitronium ion
• Autocatalytic behaviour

Even at small batch scale (1 l) thermal runaway with 55 K increase
• Hot-spot in microreactor only 5 K
• Micro processing with largely increased purities (batch: up to 25%, micro-flow: up to 79%), and higher yields (batch: up to 32%, micro flow: up to 77%)
• Micro processing at concentrated conditions, almost solvent-free and without H₂SO₄ or CH₃CO₂H

IMPROVEMENT OF PRODUCT QUALITY - IONIC LIQUID SYNTHESIS

Conventional, discontinuous manufacture
- Unsufficient heat transfer in vessel -> undesired temperature increase -> product coloration, slowing down of processing
- Large volumina of hazardous reactants

Continuous microreactor processing
- Much improved heat transfer -> faster process, no coloration
- Reduction of reactor volume (= safety gains)
Initial lab rig
Micromixer/tube set-up

- Continuous processing
- Reduction of reaction time down to minutes

Optimised reactor parameters
The reactor set-up has been implemented in the demonstration facility erected at and by RWTH Aachen.

Continuous 36 h operation performed successfully.
Zunächst war der 20 kg/d Reaktor des IMM integriert, später wurde dieser und der folgende RWTH-Reaktor durch den 100 kg/d Gesamtreaktoraufbau des IMM ersetzt.
SCALE-OUT CONCEPTS FOR FALLING FILM MICROREACTORS

DO SCALED-OUT FFMRs BEHAVE THE SAME?
TEST BY CO₂ ABSORPTION IN ALKALINE SOLUTION

Operation conditions: 1 M NaOH 0.5 – 1.6 (5 – 16) ml/min; CO₂: 6.22 (62.2) ml/min diluted with N₂ 35 (350) ml/min; co-current operation mode

- Performance kept from FFMR-LARGE to STACK-1x-FFMR-LARGE
- Basic reactor design thereby proved
PILOT FALLING FILM MICROREACTORS IN PILOT PLANTS AT EVONIK-DEGUSSA

BMBF-Projekt µ.Pro.Chem

Falling film microreactor of IMM for pilot scale

Ozone generator

Ozone decomposition unit
ACHIEVED: THROUGHPUT INCREASE BY FACTOR 100x; FACTOR 1000 UNDERWAY

Validated numbering-up concept

Outlook: first steps towards even larger scale reactors have been done

March 2010
• Be holistic – complete process development view

• Exploit fast kinetics – chemistry is not slow, but is slow made

• Process intensification - new processing – evaluation tools

• Flow chemistry: micro and milli processing tools in cascaded manner

• Scaling-out: numbering-up at micro and smart scaling-up at milli level

• Production flow chemistry is there – future factories need to be developed