Biodiesel from Crude Corn Oil (CCOE)

Dr. Louis A. Kapicak
Senior Research Scientist
Product and Process R&D
Lou.kapicak@matricresearch.com
800-611-2296 x-853

Chemical and Environmental Technologies
Health and Life Sciences
Advanced Engineering Systems

www.matricresearch.com
Current US Raw Material Costs

- RBD Soy Oil: $3.04/gal
 - Transesterification only

- Crude Soy Oil: $2.81/gal
 - Pretreatment, Transesterification

- Crude Corn Oil (CCOE): $2.05/gal
 - Esterification, (Pretreatment), Transesterification

- Yellow Grease: $1.97/gal
 - Esterification, (Pretreatment), Transesterification
Continuous Biodiesel Production Using Crude Corn Oil from Ethanol Plants (CCOE)

- **Esterification**
 - Two Stage Esterification
 - Residual FFA < 1%
- **Pretreatment (Optional)**
 - Removal of residual FFA/other impurities
- **Transesterification**
 - Multi-staged + intermediate decantation
- **Refining/CSFT Remediation**
 - Glycerin/soap/methanol removal & recovery
 - Removal of unique “cold flow culprits”
 - Increasingly tougher ASTM CSFT specifications
ASTM CSFT Specifications

- Test: Filter 300 ml pre-chilled (16 hrs.@ 4.5°C) B-100 through a 0.7µ filter at 21-25 in. Hg within a specified time, after warming the sample back to room temperature within a two hour period

- Of questionable value for predicting cold temperature performance

- Winter filtration time specification..................<200 Seconds

- Non-winter filtration time specification..............<360 seconds
Numerous Known “Cold Flow Culprits”

- Steryl glucosides in soy & canola (rapeseed) oils
 - High melting point solids
 - Aggregate with additional time and/or cooling

- Saturated monoglycerides, especially at higher BG values
 - Monopalmitate and Monostearin crystallize at low temperature
 - Readily re-dissolve at warmer temperature

- Residual soap, especially when very dry
 - Usually an outcome of incomplete washing & drying
 - Often found associated with glycerin

- General category often referred to as “Waxes”
What are “Waxes?”

- True vegetable waxes - Hydrophobic esters of high MW acids and alcohols
 - Located in skins of seed and their purpose is to repel water
 - Usually removed during food oil purification (winterization)
 - If present, would not survive transesterification reaction conditions
 - Are NOT a recognized CSFT problem

- “Wax” in CCOE is very different and very troublesome in B-100
 - Present in CCOE as supplied from the Ethanol plants
 - Concentrated in the “sludge” that separates from CCOE upon standing/cooling
 - Still soluble enough in pure CCOE to cause CSFT problem in resulting biodiesel
 - Remains chemically unchanged in the biodiesel process
 - Survives acidic esterification and basic transesterification
 - Very soluble in warm biodiesel
 - Plugs filters rapidly and completely when B-100 is cooled
 - As little as 25-35 ppm causes CSFT failure
What is this CCOE Wax?

- Readily soluble in hexanes/heptane; insoluble in polar solvents (MeOH, acetone)
 - Suggests material itself is very non-polar

- Melts over a range of temperatures (60-100°C)
 - Suggests a mixture of compounds

- GC confirms a “family” of similar compounds.

- GC retention times suggest molecular weights in 700-1000 amu range

- Unreactive to acidic and basic conditions

- Infrared also suggests material is very “hydrocarbon-like”
 - No functional groups detected besides C-H and “skeletal” vibrations
GC Scan of “Corn Wax”

Standard Biodiesel GC Program per ASTM D6584
IR Scan of “Corn Wax”

Re-crystallized multiple times from ethanol

<table>
<thead>
<tr>
<th>Peak finding results for: Corn Wax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency: 467.54 - 3979.74, threshold: 94.237-98.211, sensitivity: 50.00</td>
</tr>
<tr>
<td>Peak finding result table:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak#</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>2915.22</td>
<td>2847.43</td>
<td>1733.37</td>
<td>1472.39</td>
<td>1462.18</td>
<td>1317.09</td>
<td>1172.56</td>
<td>955.83</td>
</tr>
<tr>
<td>Height</td>
<td>49.764</td>
<td>53.930</td>
<td>86.392</td>
<td>84.921</td>
<td>82.239</td>
<td>94.521</td>
<td>76.649</td>
<td>93.462</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak#</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>729.69</td>
<td>719.35</td>
</tr>
<tr>
<td>Height</td>
<td>79.189</td>
<td>76.026</td>
</tr>
</tbody>
</table>

% Transmittance

- 1733.37
- 1462.189
- 1172.56
- 955.83
- 729.59
Are these Phytosterol Derivatives?

- Free phytosterols present in Corn Oil at ~ 1.2wt %
 - Campesterol..........................2691ppm
 - Stigmasterol...........................702ppm
 - beta-sitosterol.........................7722ppm
 - \(\Delta^5 \)-avenesterol...............468ppm
 - \(\Delta^7 \)-Stigmasterol..............117ppm

- Traditional refining of corn oil known to convert sterols into steradienes (dehydration) and disteryl ethers (etherification)
 - Occurs during acidic bleaching process
CCOE Waxes Could Be a Family of Disteryl Ethers

“Influence of processing on minor components of vegetable oils,”
Prof. Roland Verhé, University of Ghent
Free Sterols to Disteryl Ethers

Test: Mixture of commercial sterols was dissolved in “pure” biodiesel and heated to 80°C for one hour with benzene sulfonic acid present.

Result: Some of the sterols reacted to produce several of the peaks found in the GC of “corn wax”.

Conclusion: “Waxes” in CCOE and Biodiesel made from it appear to be a family of disteryl ethers, most likely formed during high temperatures at acid pH in the evaporation train of the ethanol plant.
Work performed by MATRIC on behalf of

BEST Energies, Inc.

www.bestenergies.com