
183 
 

Adapting Cyberinfrastructure to New Science: 
Tensions and Strategies 

Matthew J. Bietz 
University of California, Irvine 

Department of Informatics 
Irvine, CA 92697-3440 

+1 (949) 824-2901 

mbietz@uci.edu 

Charlotte P. Lee 
University of Washington 

Human Centered Design & Engineering 
Seattle, WA 98195 
+1 (206) 543-2567 

cplee@uw.edu 
 

  
ABSTRACT 
Scientific information infrastructures, or cyberinfrastructures, are 
expected to operate over long time scales, but this creates 
challenges for the design of those infrastructures. This paper 
reports on a qualitative study of cyberinfrastructure development 
in the emerging field of metagenomics to illustrate some of the 
issues that can arise when cyberinfrastructures are faced with new 
scientific communities, practices, and research questions. New 
science inevitably brings new forms of data, new analysis tools, 
and the need to recontextualize existing data. Cyberinfrastructures 
must be prepared to adapt to the new scientific context. In this 
study, developers employed three strategies for addressing new 
scientific requirements: work-arounds, extensions, and from-
scratch development. These strategies are informed by the tension 
between fitting the CI to the needs of a specific community and 
maintaining interoperability across systems. 

Categories and Subject Descriptors 
H.5.3. [Information Interfaces and Presentation]: Group and 
Organization Interfaces.  

General Terms 
Design, Management, Human Factors, Theory. 

Keywords 
Cyberinfrastructure, e-Science, metagenomics, sustainability, 
tailoring, interoperability. 

1. INTRODUCTION 
Cyberinfrastructures (CI) are large-scale information 
infrastructures based on advanced computational, networking and 
organizational capabilities to support distributed knowledge 
sharing and production. Cyberinfrastructures operate over 
relatively long time scales, but this creates certain challenges for 
the designers of these infrastructures. Often the CI is expected to 
persist through funding cycles, changes in technologies, the 
coming and going of people involved in the project, and larger 
social and policy changes [11,31]. One particularly difficult 
challenge is that as the infrastructure evolves, the user base may 

change. As users change their focus or new users arrive they 
present a new set of requirements and infrastructure needs. Here 
we use the emergent field of metagenomics research to illustrate 
some of the challenges that arise when scientists begin to use 
existing information infrastructures to answer new research 
questions. 

Metagenomics, sometimes called population genomics or 
environmental genomics, is a “new science” that allows scientists 
to study the genetic composition of populations of 
microorganisms to understand biological diversity, microbes’ 
functional roles, and microbial impacts on and adaptations to 
specific environments. Metagenomics is an interdisciplinary 
approach, using the analysis of genetic sequence data to answer 
questions in fields as diverse as environmental remediation, 
cancer research, drug discovery, marine microbiology, and power 
generation [28]. 

Metagenomics is enabled by new laboratory methods, advances in 
sequencing technologies, and cutting edge information 
infrastructures. In the past, geneticists and genomicists who 
wanted to study an organism’s DNA or RNA had to isolate 
individual organisms and grow them in the laboratory in order to 
extract enough genetic material for analysis. This material would 
be analyzed to produce a “sequence” of letters representing the 
chain of amino acids. This process was slow and expensive. And 
it has been estimated that less than 0.1% of the world’s 
microorganisms are amenable to culturing in the laboratory, 
severely limiting the species of organisms that microbiologists 
could study.  

New techniques and technologies have been developed that make 
it possible to bypass the culturing step while significantly 
lowering the cost of DNA sequencing. These changes give 
scientists access to a wealth of genetic information from 
organisms that previously could not be studied. Not only can 
scientists study new organisms, they can also ask new kinds of 
questions about them. Since it is possible to sequence DNA 
without culturing the organisms, it is also no longer necessary that 
all the DNA come from the same organism. Genetic information 
can be collected with the population of microbes as the unit of 
analysis. This new field of study is sometimes described as 
“beyond genomics,” or metagenomics. The complete set of 
genetic information collected from an environmental sample is a 
metagenome. 

Here we investigate the growth of metagenomics to explore some 
of the ways that the emergence of a new community of scientists 
with new research questions and new information needs can 
challenge existing information infrastructures. We draw on a 
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qualitative study of cyberinfrastructure development in 
metagenomics to detail three strategies that developers employ to 
adapt cyberinfrastructures to new science. We discuss how these 
strategies are informed by the tension between fitting the CI to the 
needs of a specific community and maintaining interoperability 
across systems. 

2. BACKGROUND 
2.1 Scientific Cyberinfrastructure 
With advances in computation, networking and communication 
technologies, there has been a move toward a new mode of 
collaborative and cooperative science. This science is often 
conducted in a distributed fashion, with large shared data sets, 
computationally-intensive analysis, and large numbers of 
contributing scientists. This new mode of science has been given 
various monikers including e-Science, collaboratories, virtual 
science, or Big Data science [2,13,17]. This new kind of science 
relies on cyberinfrastructure, “a new class of infrastructure based 
upon distributed computer, information and communication 
technology. If infrastructure is required for an industrial economy, 
then we could say that cyberinfrastructure is required for a 
knowledge economy” [3]. Cyberinfrastructures are more than just 
hardware and software—they also include the groups, 
organizations, and networks that comprise the “human 
infrastructure of cyberinfrastructure” [19]. Funding organizations 
around the world (like the US National Science Foundation) are 
making significant investments in cyberinfrastructure 
development, motivated in part by new opportunities to conduct 
research that will answer some of society’s most pressing 
environmental, health, and energy problems. 

With this investment in infrastructure, there is an increasing 
interest in what happens to cyberinfrastructures over time. The 
sustainability of cyberinfrastructures is a pressing concern, 
especially around issues of providing resources beyond short-term 
project lifecycles [22,33] and maintaining data, software, and 
other components of the scientific record [20,21,36]. Another 
aspect of sustainability, however, is understanding how 
cyberinfrastructures keep pace with changes in the science they 
support. In this paper we examine this aspect of 
cyberinfrastructure sustainability. 

2.2 CI for the Genetic Sciences 
Cyberinfrastructure plays a major role in the genetic sciences, 
where scientists have long recognized the importance of sharing 
genetic sequence data. The field has strong norms around data 
sharing, backed up by a commitment by journal publishers not to 
publish analyses of genetic data unless the data is submitted to 
publicly accessible databases [24]. GenBank, for example, has 
been collecting and distributing genetic sequence data since 1982 
[26]. GenBank is just one of several infrastructures that provide 
storage of genetic sequence data and facilities for analyzing and 
visualizing that data. 

These collections of shared data play a more important role in the 
genetic sciences than they might in other fields. The databases are, 
to a certain extent, a representation of the state of genetic 
knowledge [6]. Many analyses begin by comparing a new genetic 
sequence to the sequences in the database in order to, for example, 
find out if the sequence is new or to predict the expression of 
proteins based on similarity to known genes. The GenBank 
database provides one of the most comprehensive collections of 
submitted data, but other databases are also used. The RefSeq 
database, for example, is a curated collection of GenBank records 
that removes duplicate and low-quality entries. Other databases 

are created to collect particular kinds of organisms (e.g. 
pathogens), to serve particular communities, or to support 
specialized analyses. 

The data in these databases is submitted by the scientists who 
conduct the DNA sequencing and analysis. While the databases 
may have their own underlying architectures, data sharing among 
the scientists and databases is supported by a strong standard 
called FASTA, which specifies a uniform file format for 
representing sequences using individual letters to stand for amino 
acids [27]. Many of these systems also provide standard tools like 
the Basic Local Alignment Search Tool (BLAST) which allow 
scientists to compare new genetic sequences with those in the 
database [1].  

Even the least specialized of these infrastructures (e.g. GenBank, 
which collects all publicly available sequence data) were designed 
to support particular kinds of data and analysis. The database may 
assume a class of research questions and a fundamental unit of 
analysis (e.g. the gene rather than the whole genome). Certain 
data were included in the database while others were not. The 
database better supports particular modes of searching. Data are 
stored in formats that make some kinds of analysis easier than 
others. Once these systems are operational, they also have a 
certain inertia or resistance to change. It is difficult and expensive 
to change the structure of a database that now holds years if not 
decades of data. This paper addresses the question of how 
cyberinfrastructures adapt when a “new science” like 
metagenomics emerges with a new set of requirements.  

2.3 Metagenomics: A “New Science” 
Metagenomics is a new development within the general field of 
genetic sciences [28]. Metagenomics provides an interesting case 
study for understanding cyberinfrastructure development in part 
because of the field’s rapid growth. Indeed, the term was only 
coined in 1998 [16], and by mid-2005, nine major metagenomic 
sequencing projects had been completed [8]. Interest in these 
techniques is growing: for example, the Metagenomics 2008 
conference attracted more than 250 participants, and the NIH is 
funding a major project to study the human microbiome 
[http://commonfund.nih.gov/hmp/]. A PubMed search for 
“metagenom*” returned 732 papers published in 2010 [25].  

While certain aspects of metagenomics are radically different 
from earlier genetic and genomic approaches, there is also a level 
of continuity across the domains. Metagenomic analyses use the 
same sequence data that are used in other genetics-based fields, 
and tools like BLAST are still useful to compare new genetic 
sequences to sequences generated by other scientists. Much of the 
basic functionality provided by infrastructures like GenBank is 
equally useful for genetics, genomics, and metagenomics. For 
example, an important question in almost any metagenomic study 
is whether any of the new sequences have been previously 
identified. This requires that metagenomics researchers have 
access to as complete a set of genetic sequence data as possible, 
regardless of whether the original data came from genetic, 
genomic or metagenomic studies. 

The community of metagenomics researchers also has significant 
overlaps with the genomics and genetics communities. The people 
involved in this research—the potential users of a metagenomics 
cyberinfrastructure—frequently conduct genetic, genomic, and 
metagenomics analyses in the same laboratory, and sometimes 
within the same project. Infrastructures are closely linked to 
particular communities-of-practice [35], and it is not clear that 
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metagenomics represents an entirely new or distinct community of 
scientists. 

At the same time, metagenomics and its associated laboratory 
techniques bring a new set of data storage and analyses 
requirements to existing cyberinfrastructure. One of the 
consequences of new DNA sampling and sequencing technologies 
is that DNA sequencing has become relatively inexpensive. While 
sequencing costs were around $10 per base pair in 1990 [30], 
today researchers pay a few cents per thousand base pairs. The 
amount of DNA sequence data being produced is overwhelming, 
to the extent that data storage and computation requirements are 
outpacing Moore’s law [10].  

In addition to simply having more data, metagenomics also 
assumes a different unit of analysis. Rather than focusing on the 
gene or even whole genome of an organism, metagenomicists 
work at the level of a community or population of 
microorganisms. Many existing sequence databases cannot easily 
represent this level of relationships among data. 

This points to a fundamental tension in the development of 
infrastructures that Borgman called “tailoring vs. interoperability” 
[7]. On the one hand, cyberinfrastructures become more valuable 
when the design of the tools and databases have a good fit to the 
specific scientific questions being asked [6]. Metagenomics has 
unique requirements that are not met by existing genetic and 
genomic infrastructures, and the most useful systems will be those 
that are tailored to these requirements. On the other hand, 
metagenomics, both in content and practice, is not distinct from 
earlier genetic and genomic approaches, and interoperability 
across the fields is valuable. Finding the appropriate balance 
between these aspects is an ongoing challenge for the design of 
cyberinfrastructure. This paper examines how developers of 
cyberinfrastructures have addressed this challenge. 

3. METHODS 
This research reports on a three-year ethnographic study of the 
development of cyberinfrastructure to support metagenomics 
research. This study includes both an in-depth examination of one 
particular cyberinfrastructure development project, and a broad 
survey of information infrastructures serving metagenomics 
researchers. We have conducted forty-three interviews with 
metagenomics researchers, computer scientists, bioinformaticists, 
and others involved in the development of metagenomics 
cyberinfrastructures. We have also conducted over 100 hours of 
formal and informal observation, including attending development 
meetings, laboratory meetings, meetings of the Genomic 
Standards Consortium, workshops and conferences. Data were 
analyzed using a grounded theory approach [15]. As interview 
transcripts and field notes were generated they were open coded in 
Atlast.ti qualitative data analysis software [4,9]. Descriptive and 
analytic memos were written based on the coded data. Iterative 
coding and memoing continued as new data came in. 

4. FINDINGS: NEW QUESTIONS FOR 
OLD INFRASTRUCTURES 
This study provides insight into the work of cyberinfrastructure 
development in the face of changing science. While there were 
numerous aspects of cyberinfrastructure that were affected 
(ranging from new funding sources to new ethical and privacy 
concerns), we focus on key aspects of how cyberinfrastructures 
dealt with data. This section details two problem areas with which 
CI developers in our study struggled. The first is that 
metagenomics uses new kinds of data (and associated tools) that 

must be supported in the cyberinfrastructure. The second has to do 
with how metagenomics sheds new light on legacy data. The final 
part of this section outlines different strategies that developers of 
metagenomics cyberinfrastructures have employed to adapt to the 
new science. 

4.1 New Data 
As discussed above, metagenomics researchers work with new 
kinds of data at new levels of analysis. Developers of 
metagenomics cyberinfrastructures struggled with how to provide 
the support needed for this new data. A CI development project 
leader told us: 

These technologies are further driven by metagenomics; 
radically driven. Those need new software tools to help 
manage the data. That’s the database challenge. 

It is a “challenge” for the designers of databases to create systems 
that can usefully store, organize, retrieve, and analyze 
metagenomics data.  

One of the reasons this is a problem for metagenomics developers 
is because the GenBank “Flat File Format” had become the de 
facto standard for storing and transferring sequence data. When 
genetic data are submitted to GenBank, the genetic sequence is 
represented by a series of letters using the FASTA format. 
However, the full record includes various other information, 
including the accession number and other administrative fields, 
citations of the original publication associated with this data, and 
a “feature table” that describes certain characteristics of the 
genetic sequence that was submitted. (A sample GenBank record 
can be seen at http://www.ncbi.nlm.nih.gov/Sitemap/
samplerecord.html). “Features” include information like the 
species name of the organism, the chromosome number for the 
sequence, and various information about identified genes and their 
function. This information was sufficient for the kinds of genetic 
research being conducted when GenBank was new. 

However, one of the key focus areas in metagenomics is the 
relationship between microbes and their environments. For 
example, there is great interest in simply characterizing how 
microbial populations differ around the world [32]. But there are 
also a set of questions about the microbes that exist in highly 
specialized environments, like acidic mine runoff [5] or the 
termite gut [38]. While the metagenomics data is still represented 
by the same FASTA format that a geneticist or genomicist might 
use, there are important differences as well. First, whereas the 
GenBank record assumes the sequence as the unit of analysis, 
metagenomic data typically involves many sequences representing 
the population of organisms. In other words, the metagenomicist 
wants to study not only the sequence itself, but also how the 
sequence is related to a number of other sequences from the same 
sample.  

Second, studying how the environment affects microbial life (and 
vice versa) requires scientists to collect contextual “metadata” that 
describe where the samples were found. One metagenomics 
researcher explained why metadata were important for his 
research: 

When I refer to metadata, I generally refer to ecological 
variables associated with the time that the samples that we 
use to produce that sequencing data were collected…. 
Metadata is vitally important for us in order to ascertain 
the ecology. Otherwise, it’s just a bunch of sequences and 
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you’re shooting in the dark because you’ve got nothing to 
tie it to the real world. 

Metadata allow the scientist to understand the environment from 
which the sample was collected. The metagenomicist might 
collect GPS coordinates, temperature, pH, time and date, etc., and 
attach these metadata to the sequence data. Most genetic and 
genomic databases use some version of the GenBank format, 
which was not designed to handle data this complex. This format 
makes it difficult to link sequences together in a way that 
represents a “population” of organisms, and it does not make 
provisions for environmental metadata. 

Along with this new data, scientists need new tools to search, 
analyze and visualize the data. For example, a common question 
in marine metagenomics involves understanding how ocean 
temperature affects the diversity of the local microbiome. Not 
only would this require temperature data, but also the ability to 
query it, include it in analyses, and create visualizations around it. 
This kind of question would be almost impossible to answer with 
the data structures and tools provided in cyberinfrastructures 
created for traditional genetics and genomics researchers. 

4.2 Recontextualizing Existing Data 
Metagenomicists bring new data to existing infrastructures, but 
they also want to ask their new questions about old data. Often to 
ask a new question requires putting the old data into the new 
metagenomic context. For example, even if contextual metadata 
were not stored in the database originally, there may be sources 
(like the publication record) that could be used to populate new 
fields in the database. However, reformatting data or 
retrospectively adding metadata are expensive tasks, especially 
when the work may need to be done again for the next group of 
scientists who pose a new question. 

Another issue arises in that new metagenomic data may change 
the interpretation of legacy data. For example, many analyses of 
genetic data (e.g. understanding evolutionary similarity, or 
predicting gene function) involve comparing new sequence data to 
the existing database. However, as new data are entered into the 
database, it is important to re-analyze the existing data against the 
new, larger set to improve the quality of the analyses. As 
metagenomic data is added at a phenomenal rate to these 
databases, the computational problems are becoming immense. 
One database developer told us about the difficulty of reanalyzing 
existing data: 

So you do need to go back from time to time and do all 
[the analyses] from scratch…. So the problem there is that 
we need to do periodic updates and periodic updates are 
every three months…. Now if new data is coming at an 
increasing pace, we are already at the point where even 
really big infrastructures and big computer clusters cannot 
really support all that. 

As the size of the database grows, it takes increasing 
computational capacity to simply reanalyze old data, let alone 
work on the new data.  

Beyond these issues of computational power, scientists are also 
refining and expanding theory. In genetics and genomics, for 
example, scientists are finding that some prior assumptions about 
how genes operate were mistaken (e.g., the role of “non-coding” 
regions of DNA), necessitating a reconsideration of old data and 
interpretations. This reconsideration often requires modifying 
existing tools and databases to fit the new theory. 

4.3 Infrastructure Adaptation 
Among the metagenomics cyberinfrastructures that were 
considered in this study, three different strategies emerged 
through which infrastructures were adapted to the new science. 
We call these strategies work-arounds, extensions, and from 
scratch. This section illustrates each of these approaches by 
examining how four different cyberinfrastructures serving the 
genetic sciences have dealt with new metagenomic data. 

One strategy that has been adopted has been to create work-
arounds for existing infrastructures to adapt them to new uses and 
questions. A work-around is an adaptation of practices or 
technologies within an infrastructure that meets the needs of a 
particular local context or subset of users, but is not fully 
sanctioned or supported at the infrastructural level. GenBank 
provides an example of a work-around to deal with contextual 
metadata for metagenomics data. As discussed above, GenBank 
does not provide much support for metadata about the 
environment from which a metagenome was collected. The 
Genomic Standards Consortium (GSC) has published a checklist 
of contextual metadata fields that should be specified for any 
metagenomics dataset [12]. However, the GenBank feature table 
does not have fields that match the metadata categories described 
by the GSC’s standards. Metagenomicists want GenBank to 
support contextual metadata, but it is not a simple matter to make 
changes to the GenBank architecture. The database has decades of 
genetic data in the current format. Countless scientists have 
written analysis tools that may break if GenBank changes. But 
beyond the technological constraints, GenBank is also 
organizationally constrained. GenBank is a member of the 
International Nucleotide Sequence Database Collaboration 
(INSDC), a collaborative partnership among GenBank, the DNA 
Data Bank of Japan, and the European Molecular Biology 
Laboratory. These three institutions have agreed to a common 
database format and maintain synchronized databases. Changing 
the feature tables requires an agreement by their International 
Advisory Committee that publishes the data definitions. At a 
recent meeting of the GSC, GenBank and EMBL representatives 
wanted to find a way to support contextual metadata but felt that 
getting fields added to the feature table could take years and might 
not be approved by the Advisory Committee. As an alternative, 
the developers created a work-around. 

This work-around adapts an existing free-text comment field to 
hold important metadata in a “structured comment” that uses text 
formatting to mimic a table of fields and data [14]. While the 
metadata are not given their own fields in the database, this work-
around provides the benefit that it can be used immediately 
without disrupting the existing infrastructure. Metagenomics 
researchers who have contextual metadata can store it in GenBank 
records without affecting how other geneticists or genomicists use 
the system. On the other hand, because work-arounds are not 
supported within the infrastructure, they can be difficult to use, 
lack standardization, and do not provide full integration of the 
new science. Here, for example, while the metadata will be stored, 
they will not be indexed or as searchable as they might otherwise 
be, and they will not be subjected to GenBank’s error checking 
and validation processes. However, work-arounds can be useful 
interim steps toward the kind of infrastructural adaptations 
discussed next. 

A second approach involves extending existing infrastructures to 
support metagenomic data. Like work-arounds, extensions to 
infrastructure involve the addition of new capabilities without 
significant alteration to existing capabilities. However, extensions 
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are supported at the infrastructural level, and allow new uses of 
the infrastructure without disrupting current users. Two 
cyberinfrastructures, IMG [23] and The SEED [29], have 
extended their systems to include new metagenomics tools and 
support for metagenomics data. IMG and The SEED were both 
originally designed to store and analyze genomic data. For 
example, The SEED provided an analysis facility called Rapid 
Annotation using Subsystem Technology (RAST) that identifies 
and characterizes the various subunits of a genomic sequence. In 
both cases, developers have extended these systems to support the 
new requirements of metagenomics data and analysis. IMG and 
RAST are still targeted at genomic analysis, but both systems now 
have separate interfaces for newer metagenomic tools (called 
IMG/M and MG-RAST). Even though these are new capabilities, 
the metagenomics tools are built on the same underlying 
technologies as the genomic systems. Extending infrastructures in 
this way requires significantly more effort than work-arounds, as 
it usually involves both some reconfiguration of the existing 
infrastructure and creating new capabilities. Even though 
extensions are supported within the infrastructure, there may still 
be difficulties in reconciling the new science with legacy systems. 
However, in these cases, extending the infrastructures allowed the 
developers to realize efficiencies by building on an installed base, 
and they were able to provide new capabilities without disrupting 
the existing system. Both IMG and The SEED are smaller 
infrastructures than GenBank and have less technological and 
organizational inertia from their legacy systems. As a result, they 
are able to officially incorporate and support the new science 
through extending their infrastructures. 

A third approach, taken by projects like the Community 
Cyberinfrastructure for Advanced Microbial Ecology Research 
and Analysis (CAMERA) [34], creates new infrastructure from 
scratch specifically to support the new science. CAMERA is a 
cyberinfrastructure project begun in 2006 and intended to provide 
resources for high-volume data storage and analysis in 
metagenomics. CAMERA was commissioned by the Gordon and 
Betty Moore Foundation in response to scientists’ concerns that 
“the existing databases are simply not capable of providing us 
with the ability to do what we need to do with these data” 
(CAMERA developer). While CAMERA incorporated some 
existing tools, the whole system (database, analysis platform, and 
human infrastructure) was a newly created infrastructure. 
Developing infrastructure from scratch means creating a new 
configuration of people and technologies to support the new 
science. This approach allows the developers to tailor the systems 
to the community’s specific needs without having to worry about 
maintaining legacy systems or supporting other communities. For 
example, support for contextual metadata was a key requirement 
for the database structure from the beginning rather than being 
added in as an extension or work-around. This can also be a very 
expensive option in terms of both time and money, and can make 
it more difficult to use legacy data and tools. Having a separate 
infrastructure for a new science may also reinforce a separation 
between scientific communities that may benefit from greater 
interaction. However, from-scratch development may ultimately 
provide a better fit to the demands of the new science. 

5. DISCUSSION 
Cyberinfrastructures that serve metagenomics are facing 
challenges including new kinds of data and the need to 
recontextualize legacy data. Developers have addressed these 
challenges by creating work-arounds, extending existing 
cyberinfrastructures, or creating new infrastructures from scratch. 

This section turns to a discussion of two sets of concerns around 
the development and maintenance of cyberinfrastructures. First, 
we consider the issue of preparing for scientific change. Then we 
return to a discussion of finding a balance between tailoring and 
interoperability. 

5.1 Preparing for Scientific Change 
While this paper has only dealt with the specific example of 
metagenomics, all scientific domains can be expected to change 
over time [18]. As such, cyberinfrastructures should be prepared 
to deal with new and changing requirements from their user 
communities. If we accept the history told by some metagenomics 
researchers, metagenomics is a “logical progression” from 
genetics and genomics, and these future needs could have been 
predicted. 

The concept was simple: Take seawater and capture all 
the microorganisms swimming in it on filters with 
microscopic pores, isolate the DNA from all the captured 
organisms simultaneously.... Rather than focusing on the 
hunt for one particular type of life, we would obtain a 
snapshot of the microbial diversity in a single drop of 
seawater-a genome of the ocean itself. This was, to me, a 
straightforward extension of work that had started with 
the EST method and led to the whole-genome shotgun 
approach, then the first genome of an organism in history, 
and then of course to the human genome. [37, emphasis 
added] 

Here, one of the pioneers of metagenomics writes about the new 
science as if it were simply the next step in the march of progress. 
While this version of the origin of metagenomics creates a 
compelling narrative, it does not recognize two important aspects 
of these scientific changes.  

First, as science has “progressed” through these phases, it has not 
left old questions behind. There are still scientists who are 
studying the functions of individual genes, and there are still 
scientists who are studying the genomes of individual organisms. 
Metagenomics has not supplanted these fields. In fact, it is 
essential for metagenomicists that research continues in genetics 
and genomics: 

It would help us tremendously in doing metagenomics if 
we had a wide range of reference genomes.... The NIH is 
funding 400 complete genomes of microbes that live in 
humans. And again, these are to give us standards and to 
allow us to interpret metagenomic data more rigorously. 
So first of all, as far as I’m concerned, we’ve only begun 
to sequence. We need to sequence - whole genome studies 
need to go on to expand the opportunities in studying 
evolution and getting many specific genes and models for 
human disease and for understanding biology. 

Metagenomics actually makes genetic and genomic studies more 
important, not less. Additionally, new metagenomic techniques 
are also changing the way geneticists and genomicists do their 
work. For example, shotgun sequencing not only allows for the 
sequencing of populations of microorganisms, it also makes it 
possible to sequence genomes from organisms that could not be 
cultured in a laboratory. Maintaining cyberinfrastructure’s 
relevance is more than simply a matter of following a scientific 
trend. In this case, metagenomics adds new requirements without 
taking any away. This suggests a larger scope for 
cyberinfrastructure, and consequentially the need to find 
additional resources to support the additional breadth. 
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Second, while the quotation above suggests that metagenomics is 
a “straightforward extension” of earlier science, the progression 
from genetics through genomics to metagenomics is logical only 
in retrospect. The development of metagenomics was by no means 
a foregone conclusion, and scientists found that they had to work 
hard to convince their peers that these techniques were valid. One 
scientist explained that peer reviewers from genetics and 
genomics were critical of her early metagenomics articles: 

Not only has there been this distrust between the two 
fields, the genomics and the traditional fields—I think it’s 
becoming more acceptable—but now metagenomics has 
come in too. So we’re not just talking about sequencing 
entire genomes, we’re talking about populations of 
genomes and defining what’s there based solely on 
sequence similarities to those genomes. So what I’ve - I’m 
taking a huge leap here. I’m saying I have these 50,000 
sequences. They’re very distantly related to these 
sequences from [other] genomes. I know nothing about 
their physiology. I don’t know what they infect. I don’t 
know their reproductive lifecycle. I don’t know anything 
about them. I’m just giving them a name based on the 
history of those sequences. So I think I’m taking an even 
farther leap.... And I think we try not to tread too heavily 
upon people’s toes. We don’t want people to think we’re 
trying to take over their fields and that these approaches 
are the end all to the field. 

Traditional approaches to identifying microbes rely on direct 
examination of microbes’ physiology, pathogenesis, and 
reproduction. The adoption of metagenomic techniques was 
controversial, and this scientist found that using only 
metagenomic techniques was not readily accepted by peer 
reviewers. This new way of looking at microbial populations was 
not predicted by early geneticists and genomicists, the science is 
not without its detractors, and it is not entirely clear how these 
techniques will unfold into the future. 

These observations highlight significant challenges for the 
development and maintenance of cyberinfrastructure. As science 
changes over time, scientists will need different things from 
cyberinfrastructures. While some research questions will persist, 
others will change and new research questions will be asked. A 
new science like metagenomics brings new questions and new 
communities of scholars with different ways of understanding the 
world. The requirements for information infrastructures develop 
and change as the science and communities change. Just as it is 
impossible to predict with any certainty how a scientific field will 
develop, it is equally impossible to predict all future information 
infrastructure requirements. As such, sustainability will be less a 
function of how well cyberinfrastructures anticipate future needs, 
and more a function of how well they can adapt to new science. 

5.2 Tailoring vs. Interoperability 
As discussed in §2.3, there is a fundamental tension between 
tailoring an infrastructure to a specific community and ensuring 
interoperability across multiple systems [7]. Genomic 
cyberinfrastructures have adapted to new metagenomics science 
through work-arounds, extensions, and from-scratch development. 
In the examples presented here, the strategy chosen for each 
cyberinfrastructure reflects the weights given to each end of this 
tension. In other words, maintaining the interoperability of the 
cyberinfrastructure requires a certain inertia or resistance to 
change. Maintaining a good fit between the needs of the scientist 
users and the capabilities of the infrastructure, however, 

necessitates making changes to keep up with the shifting nature of 
the science.  

The four cyberinfrastructures discussed above have each 
prioritized interoperability and tailoring in different ways. 
GenBank clearly favors interoperability. It has a significant 
history that includes large amounts of collected data, a huge user 
base, and strong organizational commitments. It’s mission 
prioritizes breadth of data collection over the fit to specific 
scientific communities. The GenBank format has become a 
standard for data representation in the genetic sciences. For 
GenBank, the risk of potentially disrupting current practices and 
arrangements is greater than the benefit of incorporating the new 
scientific needs. In this case, the work-around, which minimizes 
the potential for disruption, is the appropriate strategy. 

CAMERA emerges from the opposite end of the tension. This 
from-scratch project came about because a community of 
scientists wanted tools that specifically fit their needs. The price 
of this fit was not just the monetary expense but also, at least at 
first, having to deal with an infrastructure that was not as robust, 
changed frequently, and required learning the new systems. 

IMG and The SEED have chosen to more equally balance 
tailoring and interoperability by extending their 
cyberinfrastructures. Because they maintain interoperability in the 
capabilities and connection to their legacy systems, they may not 
be able to provide the close fit to the new science that comes with 
from-scratch development. On the other hand, by incorporating 
the new requirements into the infrastructure to a greater degree 
than work-arounds, extending the infrastructure provides 
relatively good fit to the new science. 

None of these strategies is inherently better than the others. 
Instead, it is important to consider which strategy is most 
appropriate for the given situation. This decision must be based on 
consideration of a number of factors including the history of the 
current infrastructure; the importance of maintaining links to 
legacy data, tools, and systems; the cost of potentially disrupting 
current users of the infrastructure by making changes; and the 
flexibility of both the technological and human infrastructures. 

6. CONCLUSION 
Scientific information infrastructures that persist over long time 
scales must respond to the emergence of new science. New 
science brings with it a new set of research questions, data, tools, 
scientific communities, and ways of understanding legacy data. 
The introduction of metagenomic approaches in molecular 
biology highlights the dynamic nature of both the human and 
technological aspects of cyberinfrastructure. Developers must 
manage the evolution of cyberinfrastructures in response to 
changing user needs and requirements. Work-arounds provide a 
way for cyberinfrastructures to minimally adapt to new science 
without risking the coherence or interoperability of the 
infrastructure. From-scratch development can provide a more 
tailored system, but often at risk of disrupting existing practices 
and systems. Extending existing cyberinfrastructures provides a 
way to more evenly balance new requirements with existing uses. 
Over time new scientific communities and practices will develop. 
These strategies provide ways for cyberinfrastructures to adapt to 
the changing scientific context. 
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