
Meanings and Boundaries of Scientific Software Sharing
Xing Huang1, Xianghua Ding1, Charlotte P. Lee2, Tun Lu1, Ning Gu1

1School of Computer Science
Fudan University

 Shanghai 201203, China
{xinghuang, dingx, lutun, ninggu}

@fudan.edu.cn

2Human Centered Design & Engineering
 University of Washington

 423 Sieg Hall, Seattle
 WA 98195, USA

cplee@uw.edu

ABSTRACT
In theory, software, like other digital artifacts, can be freely
copied and distributed. In practice, however, its effective
flow is conditioned on various technical and social factors.
In this paper, drawing on ethnographic work primarily with
a bio-informatics research team in China, we report on
meanings of scientific software sharing as embedded in
social practices of learning, apprenticeship, membership,
publication, and reputation. We illustrate that while free
flow is important, boundary management is equally
important for the effective travel of software to its
appropriate destinations. Our study highlights a number of
issues that are important to consider for effectively
supporting sharing and collaboration in science.

Author Keywords
Software sharing; scientific collaboration.

ACM Classification Keywords
H.5.m [Information Interfaces and Presentation]:
Miscellaneous; H.5.3 [Information Interfaces and
Presentation]: Group and Organization Interfaces -
Computer-supported cooperative work.

General Terms
Design; Human Factors.

INTRODUCTION
Sharing is central to contemporary science. In the open
science system famously characterized by Merton [31],
scientists openly publish their scientific findings and
knowledge, and are rewarded with academic credit. This is
in great contrast to previous eras when knowledge of nature
was considered to be sacred secrets (e.g. ancient alchemy)
[15]. Although contemporary research groups still self-
consciously conceal research results to compete for
recognition of discovery priority [19, 28], sharing is
generally positively perceived and actively encouraged [16,
50].

In CSCW in particular, fostered by the development of IT,
new research programs exploring the use of IT to provide
new sites for scientific sharing and collaboration are on a
rapid rise, under terms of “collaboratories”,
“cyberinfrastructure”, “eScience”, or others [20, 27, 34].
With its great potential to enable communication and the
move of information rapidly and relatively inexpensively
across time and space, there is a high expectation that IT
can substantially speed up and widen the access of
resources among scientists [27]. Three interrelated aspects
of sharing are typically explored: instrument sharing
focusing on the sharing and access of key or expensive
physical instruments remotely [26, 27, 32], data sharing
concerning making scientific data openly available for
verification and other investigations [6, 8, 48], and
knowledge sharing focusing more on the exchange of
talents, expertise and effort [10]. Studies of these projects
show that, for scientific sharing, while IT provides great
potential to overcome distance barriers, there are still many
other socio-cultural barriers, such as cross-institutional
barriers [10], disciplinary and institutional cultures [11, 44],
credit systems [7], and so on. These studies point to the
importance of understanding relevant social and cultural
practices to effectively support scientific sharing with IT.

While in these programs software as part of the
infrastructure for sharing has been extensively explored,
software as an object for sharing itself is largely
overlooked. However, understanding software sharing is of
great importance for scientific collaboration and innovation,
mainly for two reasons. First, software plays an
increasingly critical role in scientific research, including but
not limited to data storage, integration, analysis, processing,
representation, and others. Not only does it make work
easier, faster or more efficient, but also it changes the very
nature of doing research, such as in emerging new
interdisciplinary fields including bio-informatics. Second,
software is distinct from other aspects of sharing in
fundamental ways, and warrants separate study. As with
other digital artifacts and unlike the more physical
instruments, “software can be copied and distributed at
essentially no cost”, which provides unlimited potential for
sharing [22]. At the same time, software is defined as a set
of programs directing what to do and how to execute certain
tasks on a computer, which is essentially different from data
or knowledge. So it may play very different social roles in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW ’13, February 23–27, 2013, San Antonio, Texas, USA.
Copyright 2013 ACM 978-1-4503-1331-5/13/02...$15.00.

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

423

science, which can greatly influence how it is shared and
how we can support it.

In this paper, we report on an ethnographic study at a bio-
informatics research center in China, with an aim to deepen
the understanding of software sharing practices in science,
and inform the design of computing systems to better
support them. We define scientific software broadly as all
kinds of software that are used to support scientific
research. With scientific software sharing, then, we
concern ourselves with social practices related to the
creation, navigation, use, selection, and distribution of all
these sorts of software, and seek ways to better support
them. By focusing on this new emerging discipline, bio-
informatics, in which software plays a central not a
secondary role, as well as China as the particular context,
we hope to be able to highlight some of the issues that
might be obscured in more traditional or familiar sites, shed
light on scientific sharing, and derive design implications.

RELATED WORK
For software sharing in general, probably the most studied
topic is open source software. Extensive research attention
is paid to the contribution and motivation mechanisms
behind the development of open source software, including
how the social context and social networks influence the
project licensor’s decision [45], how the choice of license
influences people’s passion for contribution [12, 35, 38, 39],
and how meeting one’s own needs motivates people’s
participation [9]. Studies also show that factors such as the
readability of code and manual documents are important for
user acceptance [18]. Others describe work practices,
development processes, and community networking of open
source software communities [13, 40]. While open source
software plays a large part in scientific research, however,
how it is used or shared in science still has not been closely
examined.

For scientific software in particular, sharing has also been
of concern for a while, especially in software research.
Many found that scientific software is hard to maintain and
is limited for long-term use [1, 23, 36]. Some point out that
scientific software documentation is problematic, including
comments in the code, user guides, manuals, and so on [33,
37, 42]. Others attribute scientific software problems to
developers’ lack of software engineering training [24]. This
line of work suggests that although software can be copied
and distributed at essentially no cost, software quality
issues can prevent software from being widely applied.

More recent research focuses on developing middleware,
adapters, and protocols to support “collaboration
transparency”, through which a single-user application can
be shared between more than two people [5, 47]. By
combining these sharing approaches with the development
of grid computing [17], web services [4] and cloud
computing [3], software can then be delivered by means of

services, in hopes of further fostering software sharing
across time and space.

Overall, scientific software sharing has mainly been
examined from a technical perspective and few have
focused on its social practices. The recent exception is
Howison and Herbsleb’s work on how incentives impact
software production [21, 22]. Similarly from a social
perspective, however, our work is distinct by looking into
details and meanings of software sharing with respect to
broader collective social practices, beyond software
production and the issues of incentives.

RESEARCH SITE, BACKGROUND AND METHOD
Our study is primarily based on a center for bio-informatics
technology in China. Bio-informatics is defined as the
application of computational techniques to understand and
organize the information associated with biological
macromolecules. Bio-informatics emerged in recent years
as the surge in biological data demanded computation to
handle it [30]. The center was established in 2002, and as a
non-profit organization, the mission of the center is to
promote the advancement of Life Sciences, Biotechnology
and the Biopharmaceutical industry by engaging in life
science database construction and bioinformatics software
development. The center is organized with a number of
research teams focusing on various topics including
functional genomics, system biology, translational medicine,
pathogen genomics and so on.

As with most research teams in China, the research center is
organized and managed in the form of Tidui (echelon, “梯
队”). A Tidui is usually composed of one senior faculty,
several junior faculty, and many graduate students. As the
team is often large (20 or more), its management also tends
to be hierarchical, in that new junior students are directly
mentored by senior students as their ShiXiong/ShiJie (师兄/
师姐，senior brother/sister apprentice) for everyday help,
all students are managed by junior faculty as their team
leaders, and all students/junior faculty are advised and
directed by the senior faculty. As a research center with no
graduate program, our site, though, is different from other
research teams in universities, in that there are no graduate
students officially affiliated with the center. However, as
the head of the center is also a professor affiliated with a
number of institutions and universities, his students from
these institutions and universities are also involved in
various projects at the center. So the center is a spatially
distributed group as most junior students still need to spend
time on their own campuses for coursework, and can only
be at the center occasionally.

For this study, we have mainly engaged with the team led
by Liu, a PI in the center. The team’s research area is
translational medicine, involving proteomics related
bioinformatics, transcriptional regulation and oncology
related bioinformatics. Their main focus and contribution is
on developing software for analysis, and is mainly based on

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

424

open data (which is important for the independence of the
discipline), except for collaborative projects with other
teams (e.g. a team from a hospital) who provide data and
they apply algorithms to analyze the data. We have been
collaborating with the team to develop an open platform to
support collaborative protein analysis by integrating related
software and communication tools, which partially
motivated our investigation on software sharing in science
in the first place.

In building the platform over the past two years, we
attended monthly meetings with the team, were often
invited to attend their seminars, occasionally engaged in
discussion meetings with other related teams, and often
worked together with the team to fix technical problems.
These were the main forms of our participant observation at
the center, and, in total, we spent 150 hours in the field and
collected 23 meeting memos. Through this process, we
noted many factors that have shaped how scientific
software circulates within and without the team.

Partially motivated by our observations, we conducted more
in-depth interviews to directly inquire how software is
shared in practice. We completed semi-structured
interviews with 15 informants in total. Interview times
ranged from 25 to 120 minutes, with 50 minutes the
average. In our interviews, we asked about the participants
recent research projects, and details of how scientific
software was produced, selected, used, and distributed with
regard to these projects. When possible, concrete cases and
examples were sought. Of the 15 informants, 13 were from
Liu’s team, and 2 were from their collaborator – the Tidui
led by Ceng from another research institute. Ceng’s team
focuses on wet lab experiments, original data production,
and some preliminary data analysis. Most of our informants
only write scripts such as R, Python and Perl to integrate
software for analysis, and only one informant (from Ceng’s
team) could be categorized as a professional end user
developer who writes programs in Java or C++, and his
main responsibility was to develop software for the rest of
the team to do research. Our informants’ positions were: 4
master students, 2 junior Ph.D. students, 4 senior Ph.D.
students, 1 graduated Ph.D. student (now a post-doc
abroad), 3 regular full time researchers, and 1 PI (Liu). All
interviews were conducted in Mandarin Chinese, and the
participants and interviewers were all native Chinese
speakers. Quotes used in this paper were later translated to
English.

We then applied a grounded theoretical approach for the
analysis of the data [46]. We started analysis while the data
was being collected. Through open and axial coding of the
data, themes started to emerge (while our participatory
observation greatly influenced our interview questions and
analysis, coding and analysis was primarily based on our
interview data). In this paper, we will use representative
individual quotes to illustrate our points. All of the names
used are pseudonyms.

TYPES OF SOFTWARE IN BIO-INFORMATICS
In bio-informatics, the development of software for the
management and processing of biological data forms the
main contribution of their research work. So unlike other
disciplines [22], software production plays a central, rather
than a secondary, role in their research. Specifically, from
our study, we identify four types of software involved in
their daily research work: published academic software,
open source software, homemade scripts, and commercial
software products. Published academic software refers to
software that is published in the form of a paper that
contains relevant rationales, methods, algorithms, and
information about the software. Paper publication indicates
novelty and significance of the software to the community,
and corresponding software is usually made publicly
available once published. Open source software, freely
available in the form of source code, can be used,
distributed and modified by anyone under an open-source
license, and is found to be heavily used in their research.
Homemade scripts, written to do particular data processing,
or to stream different steps of software work together, are
also commonly used but usually only written for personal
purposes, not intended for sharing. Commercial software
products are relatively the least used, since they are too
expensive for individuals to afford, and many times, there
are free alternatives available in terms of open source
software or published academic software (often as good and
are well recognized by the community). Of course, these
categories are not entirely exclusive, and occasionally, one
type can be transitioned into another. For example, some
homemade software, originally written for personal or
internal use, may later be published or contributed to an
open source software community. Overall, we found while
researchers heavily rely on open source and published
academic software, always write and use scripts in their
research, and occasionally use commercial software
products, their main contribution or output is the published
academic software. Next, we will elaborate in more details
of how and why software is circulated, and how a range of
boundaries are leveraged or contrived to regulate its flow.

MEANINGS OF SCIENTIFIC SOFTWARE SHARING
In our study, we believe two social entities are central to
characterize the meanings and mechanisms of scientific
software sharing: the local team, and the research
community. The local team (or Tidui) in China is the
“internal us”, in which resources are centrally managed and
coordinated. It is largely a people-oriented unit, where
members may not necessarily share the same space or the
same institution, but they all share the same leadership and
management. In our case study, for example, most of our
student informants were from different universities and
institutions, but were all advised by the same professor and
managed by the same team leader. Moreover, it is also a
basic unit where junior members learn and grow into
qualified and independent researchers, through “peripheral
participation” or apprenticeship [29]. The research

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

425

community, on the other hand, is more a topic-oriented
social configuration, where members are connected by
common interests, mutual engagement and a shared
repertoire [49]. In this section, we will explicate why and
how scientific software is shared with respect to these two
social entities: internally with the local team and externally
with the research community.

Apprentice and Membership: Sharing Internally with the
Local Team
Within the local team, characterized as a close-knit and
highly inter-dependent social entity where members
mutually help each other and are generally aware of what
each other is up to through regular group meetings and
project participation, software and related information are
generally well shared. Especially, homemade scripts and
work-in-progress academic software are mainly shared
within this unit and rarely travel beyond it. Particularly, the
meanings and mechanisms of software sharing are highly
related to apprenticeship and membership of this group.

Experience Sharing through Apprenticeship
As mentioned, one important component of a research team
is learning/training, mainly through apprenticeship. In our
case study, we found that it was common for new junior
members to be assigned with more senior members (usually
above the third year in their graduate program), or
Shixiong/Shijie in their words, for everyday help, advice,
and guidance. New junior members, by engaging in
marginal work and with the help of Shixiong/Shijie and
advisors, learn the tricks of the trade of doing research, and
obtain relevant research skills including program writing.
So learning, training and passing down experiences through
apprenticeships are inherent themes that define the identity
and culture of this group, which in turn, have greatly shaped
how ideas, information, resources and software circulate
within it.

First of all, by sharing their experiences, Shixiong/Shijies
work as important gatekeepers to help them navigate
through and choose from all the publicly available software
out there (e.g. open source software and published
academic software). In the field of bio-informatics, there is
a consensus that published or academic software should be
made publicly available for free. Throwing software out
there, however, does not directly lead to effective use of it.
As a matter of fact, with all of the published academic
software as well as other open source software made
available, it becomes a big challenge in terms of how to
choose and navigate through it, especially for new members.
Almost all informants reported that Shixiong/Shijies were
of critical help in this regard. Li described a typical case,
“oh, Shijie said… the Shijie who helps me… she said that
was a common method. So I tried it.” So by simply
following what Shixiong/Shijies use or what they
recommend, new members learn what is commonly used
and practiced in the community.

Further, Shixiong/Shijie’s experiences are also important
for them to build up programming skills. They help by
engaging in discussions, checking software codes, and
providing relevant resources. Hu commented that
discussion with his Shijie was helpful, “mainly in terms of
thoughts. She will tell you how to think about it, but for
details, in terms of how to write, you should do it yourself.”
Wu reported that his Shixiong’s hints such as a package’s
name were useful for him to locate relevant resources.
Others provided relevant documents and examples for new
members to learn, as Wu said, “he directly gave it to me…
all the documents corresponding to each package, and
there were examples and others, and I studied them
myself.” Of course, sometimes, it involved direct software
sharing, “I checked with my Shixiong, what functions or
what packages shall be used for drawing it this way, and he
said, ‘I would give you this script and it could solve the
problem’, so I just took it and used it.” As we can see here,
how software is shared in this context is clearly associated
with experience sharing between apprenticeship
relationships. And, with more and more open source and
academic software becoming publicly available, experience
sharing for software navigation might be more important
than the sharing and distribution of copies of software
themselves.

Interestingly, the motivation to learn also shapes their
decisions regarding whether to reuse others’ software or to
rewrite it on their own, especially for simple scripts. Script
writing is an integral component of learning and training for
junior members to grow into qualified bio-informatics
researchers. Consequently, sometimes, even if there were
scripts available to meet their requirements, the junior
members would still opt to write one themselves, as Lian
described, “The problem was too simple to use others’
scripts, and it was also a way for me to practice my script
writing skills, so I wrote it all by myself.” It reminds us that
in a culture where learning/training is an inherent
component, directly sharing a copy of software itself might
not always be desirable, but rather, sharing relevant
resources for learning and software making might be more
helpful.

Moreover, we note that sharing through apprenticeship is
mainly through the “request-and-give” social protocol. That
is, junior members request and their Shixiong/Shijies
respond with relevant information, as part of their
mentoring responsibilities. It is also important to note that
such a “request-and-give” social protocol is critical for
experience and software sharing in this context.
Considering an important component of knowing is
embedded in what we do, tacit, subconsciously held [41],
and not readily available for transferring to others, the
request-and-give protocol, then, provides an important
mechanism to turn the tacit knowing into explicit and
transferrable information.

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

426

Software Sharing as Part of Membership
While sharing through apprenticeship can be accounted as
part of responsibility, sharing among peers works more as
markers of membership. Dourish and Anderson, drawing on
social studies of secrecy, note, “the practices of keeping
and sharing secrets are ways in which affiliation and
membership are managed and demonstrated” [14]. By
analogy, in our study, we similarly found that the practices
of keeping and sharing software are ways in which
affiliation and membership are managed and demonstrated.

Sharing as part of membership is most clearly seen from the
sharing of homemade scripts within the team. Bai, when
asked whether he would give a piece of software to his
teammate, answered that being part of the same lab justified
this sharing, “I will give for sure. We are all from the same
lab after all. If someone emails me, I will give it to him for
sure.” Interestingly, he further stressed “There was nothing
so secret, and you don’t have any copyright”. It suggests to
us that, for simple homemade scripts, since they are not as
valuable (in terms of innovation and labor taken) as some
academic or commercial software, there is little obstacle to
constrain their flow. Yet, at the same time, it is exactly the
low value that confines its capability to travel too far. As a
result, sharing of homemade software is mainly contained
within the local team.

In our case study, we did not find any central place to store
and manage the homemade software, and sharing was also
mainly through the request-and-give social protocol within
the team. Yin mentioned a case, “later, another teammate
also came to me and asked for it. As he was doing similar
things, so he asked and I gave it to him.” When asked
whether software sharing was always very open in her lab,
she responded by explicitly pointing out that homemade
software was mainly shared through private requests, email
or verbal, “not like that, but if someone asks in private, I
will give. It is not like we have a public platform for it, not
like that.” Our data further suggests that many factors may
contribute to the non-use of an open and centralized place
for storing and sharing for this kind of software. First, most
of the software is written for personal use to address a
problem at hand, and it is unexpected that one day others
may also find it useful. Second, as it is mainly written for
personal purposes, it may not be so readable or
understandable for others to use the software [24]. So sense
of belonging is important for the sharing of homemade
software within a team, which is similar to open source
software [2]. However, unlike the production of open
source software, which is communal with centralized
management and coordination [38], the production of
scientific software is mainly base on distributed individual
effort.

For the request-and-give social protocol to work among
peers, awareness of what each other is doing is a key
component. As expected, regular group meeting is an
important means for them to learn what each other is doing.

Zan described, “We will present (our work) in our group
meetings. There are so many people in the lab, and
generally we know what each other is doing.” Qiangrui
revealed a typical situation for software sharing in his group,
“you will talk about your work and your progress in your
group meetings. And there will be people who may
encounter the same problem for sure. If you have solved the
problem, they will ask you how you solved it. And you will
say, oh, I wrote something. Then he would say ‘could you
share the code with me’, and I would give the code.” It
suggests that, for the effective circulation of homemade
software, using computing to enhance awareness of what
each other is doing can be valuable here, especially when
members are quite distributed, as in our case study.

Publications and Natural Software Selection: Sharing
Externally with the Research Community
For software with certain innovation and scientific
significance, it may appeal to wider audience, go beyond
the local environment, and become academic software open
to the external research community through publication. In
this section, we are mainly concerned with the circulation
of published academic software within the community.
Unlike the local team, the research community is largely a
practice-oriented social configuration. While members may
share common research interests and engage in similar
research activities, there is no official social affiliation
involved, and “practice is the source of coherence of a
community” [49]. As an academic community, it is also
dominated by a “reputation economy based on substantial
publications” [22]. Howison and Herbsleb, in their study of
the production of software, point out that “Software is a
secondary player in the world of scientific work” [21].
Fortunately, in bio-informatics, scientific software plays a
central, not a secondary, role, and substantial part of
scientific software is produced and shared exactly through
the reputation economy and the publication system. Authors
gain academic credit directly from publishing the software,
and software publications are well recognized as their
primary contributions. Once the software is published,
papers, citation mechanisms, reputation systems, as well as
the culture and norms of the research community start to
take their way to shape the evolution and circulation of
software. As such, it is impossible to talk about the
circulation of academic software without talking about the
mechanisms and functions of publications.

Sharing through Publications
The circulation of academic software aligns well with the
circulation of publication. In the bio-informatics community,
of our study especially, there is a consensus that once the
paper is published, relevant software should be made
publicly available in one way or the other. Now it is not the
issues of availability, but the issues of visibility,
documentation, awareness, navigation, evaluation, selection,
reputation and others that have become critical in shaping

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

427

the circulation of academic software, and all of these are
dependent on the publication mechanism.

Firstly, the paper reviewing and publication process helps
to normalize software and relevant documentation, and sets
a bar for the selection of software quality for the
community in the first place. All academic software is
associated with at least one paper, which contains relevant
rationales, methods, algorithms, and more, as part of the
norms for publication. Bai put it, “the essence of
documentation about a piece of software is in its published
paper”. In a sense, publications serve as a persistent shared
repertoire [49] of knowledge, information, references,
authorship, and others, and they can reach out to a wider
audience far beyond the space and time constraints. While
the lack of documentation is commonly complained as one
of the main factors constraining the widespread use of
scientific software [37, 42], the correlation between
software contribution and paper publication together with
the reviewing process seem to provide a way to relieve this
issue.

Further, visibility and awareness obtained through
publication is important for the wide distribution of
software. Our informants were fully aware of how
important publication was for their software circulation.
Huang described, “it (widespread use) is mainly dependent
on paper publication. If it cannot be published, others will
not use it.” It is especially helpful if it is published in high
quality journals, as Liu mentioned, “I never make specific
efforts to recommend it, except I attend conferences, and we
have lectures. But if we have good papers, that is if we
publish our software tools in the internationally well known
journals, it is a good recommendation in itself.” On the
other hand, almost all of our informants reported that they
were highly reliant on publications to learn about methods,
software, and relevant knowledge. When talking about
software selection, Ji said, “Usually, when the paper is
published, they will compare their own tools with other
previous tools. Usually, that will be part of the paper. So
you can take a look, and choose one that might be used
more often.” Some will particularly go for overview papers
for this purpose, as revealed by Hu, “if you want to do
phosphorylation, there will be overview papers about
phosphorylation for sure, and usually they will mention
(relevant software tools). You will know what are out there
after you read a few.” As people turn to the publication
mechanism for software awareness and selection,
publication and software circulation are clearly correlated.

Moreover, publications can also serve as communication
channels through which demands and supplies are
connected, and it may further drive the evolution of
software. Bao’s is a case in point. He published a paper on a
piece of software, and then received several requests for
more features, which motivated him to upgrade the
software in the end. He said, “others read your paper, and
emailed to us, asking whether we can do some predictions

for them, something they are working on. I got a few of
these emails, so I developed (a piece of software) for all. It
is publicly open to everyone.” This piece of work also
resulted in a publication. So publications are not merely a
shared repertoire, but also communication channels through
which people of similar concerns are connected.

Natural Software Selection
With more and more academic software made available,
how to select high quality software becomes an issue. After
all, not all published software is of equal quality. Actually,
we often heard our informants complaining how some
people only care about publishing the paper and never care
about maintaining the software once it is published, which
greatly limits the long term applicability of the software.
Further, as mentioned, although in the bio-informatics
community, most published software is theoretically
publicly available, however, whether it is practically
applicable or not is conditioned by many technical factors.
For example, the extensibility of software could be an issue.
Since it was mainly developed to address a specific
question, and only tested with limited data, it may not be
applicable or extensible to other situations [33, 43]. Besides,
user interactivity also plays a role. Often a GUI is provided
to make the software more user friendly, however, we
found its demand for user interactivity often meant less
usable for more skilled programing users. Bai reported he
preferred command interface over GUI, “because the one
with GUI can’t run on the server…because, the matter of
computation…it is only part of the whole work procedure. If
you write a whole work procedure in the script, you don’t
need to watch for it, otherwise, for example, if there is GUI,
it will stop and you need to click for it to continue, which is
too much trouble.” Other issues such as compatibility,
performance, and the lack of maintenance could also
influence its widespread use. So publication itself does not
ensure good maintenance, technical compatibility or wide
applicability, which are critical for the circulation of
software.

In this regard, citations together with paper publications
provide a natural software selection process through which
high quality and more sharable software can stand out.
Qiangrui described how citation worked as a natural
selection mechanism, “if you want to solve a problem, you
will check the literature. When you look at the literature,
you may see 5 or 6 software tools that can do the same
thing. You can try, and you will find which tool is good or
not good to use, in terms of usability, interface, analysis
capability, and so on. You can feel it. After you feel it, you
choose the good one to use, and you will cite corresponding
paper of that software in your paper. The tool… the more
people use, it will gain more reputation naturally. For
others that are not so good, it will be eliminated naturally.”
A high citation count is perceived to be highly correlated
with good quality software, as Liu put it, “usually we use
the best software in the field, the most used software, which

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

428

is the most cited in the literature.” When asked how he
knew which software was the most used, Bao answered,
“for example, like, how many times the (software) paper is
cited, things like that.” In a word, more citations mean it is
well tested by more people and is more stable, and our
informants reported that they almost always chose those
well cited and well recognized software to use, so that the
quality of the software can be ensured.

Besides, big names in the community also have great
impact on the selection process. Zan described, “We use
what Danius (magnates) use or what good papers use. In
the field of biology, those very big projects, like the
thousand people gene program…what sequence software
they use…and we will keep consistence with them. If the
paper is written this way, there will be less chance for them
to argue, otherwise, it may be troublesome, if you do it your
own way.” It is interesting to note in this case, that the
function of reputation is not only to find the high quality
software, but also to reduce unnecessary trouble or
argument. Lian mentioned that the reputation of other
elements, such as corresponding databases or journals or
developers, were also important here, “For this online
software, there is a very good database connected to it,
quite authoritative. If you do things with it, it will be more
authoritative.” As such, academic software is also part of
the reputation economy of academia. Indeed, the circulation
of software is very much like the circulation of papers, and
only the best will stand out and have wide impact.

BOUNDARIES AND SCIENTIFIC SOFTWARE SHARING
In the last section, we discuss how software and related
information are freely shared within the local team and the
research community, and how meanings and mechanisms of
sharing are embedded in respective social practices.
However, software sharing is not always and everywhere
free, but rather, many times there are obstacles involved to
prevent it from widespread circulation, especially for work-
in-progress and commercial software. Issues of boundaries
are related to scientific software sharing mainly in two
senses. First, software sharing involves tensions between
sharing and control, to protect Intellectual Property but also
to prevent immature software from wide distribution, and
boundary management is a means to resolve it. It is the
boundary at which determinations are made about whether
to give the software (or the right to use the software) or not
and how. Second, there are existent boundaries that regulate
the free flow of software, including social boundaries (e.g.
between different teams) and technical boundaries (e.g.
between different networks). Now we will turn to issues of
boundary as an aspect of software sharing, and explicate
how tensions arise and how boundaries are managed
through contrived means or along existent social or
technical ones.

Tension and Boundary Management
Our data shows, tensions between sharing and the
simultaneous need to control often arise in the sharing of
scientific software, and strategic boundary management is
key for its resolution.

Firstly, tension arises when software is still in its production.
On one hand, as we know, to make software truly useful, it
is important to involve users in the software making
processes, the classic participatory design approach [25].
On the other hand, since it is still in production, its wide
circulation should be limited. In our case study, we found
several successful software tools were directly resulted
from involving end users in the production process. For
example, one of Huang’s published software tools,
BuildSummary, was clearly driven by the research needs
from his own lab. According to his teammate Qiangrui, this
software tool took 10 years to evolve. Over this period, new
requirements were continuously fed into its production
before it was ready for publication. PFind, a protein
identification software tool that was developed by a
computing institute in China, was also resulted from its
close user involvement from the very beginning. Each year,
they sent developers or even had them work at the users’
site (including Liu’s and Ceng’s teams) for one or two
months to collect requirements and address issues
encountered. After being developed over 10 years, PFind
has finally become powerful enough for commercialization
right before this writing.

However, while reaching out and involving users are
important for software evolution, its distribution should be
limited since it is still a work in progress. We found a range
of means was employed to balance this tension and manage
the boundary. For example, Huang chose different media to
share based on whether the software was mature or not, “If
it is not mature enough, or if it is only for mutual (idea)
exchange, I will send it over email. And if it is sufficiently
mature, they can download it online.” The limited end-to-
end email exchange, rather than the online web, was then
chosen as a more appropriate means to share at its early
stage. Similarly, for PFind in production, the boundary was
strategically managed by socio-technical means. Liu
reported a case. She once brought 20 hard copies of PFind
to an international conference for academic exchange. The
form of hard copy became a way to limit its distribution
while at the same time encouraged some to try it, as Liu put
it, “yeah, for example, I took 20 copies with me… That is a
limitation. It is not like you can download it for free.”
Moreover, the copy recipients were also asked to contact
the authors for license if they wanted to try it, “At that point,
it was mainly to encourage people to try it, and we told
them, they should contact us and they can only use it after
we assign a license code.” Segal mentioned, scientific
software development is iterative [42], and user
participation is important over the process. But for
scientific research, little mistake may cause great impact on

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

429

results, and boundary management is critical here when
software is still in production.

Secondly, there is an inherent tension for the circulation of
commercial software. For commercial software to be
financially successful, broad visibility is important. And yet,
to protect its economic interests, its availability shall be
well controlled. As a matter of fact, as software can be
freely copied and distributed, it makes the management of
this boundary trickier. As mentioned, for academic software,
publication was an important means to increase visibility.
For commercial software, visibility is mainly achieved
through active software promotion. Liu observed that
software promotion was fairly common at conferences or
other venues. For example, she reported, in good
international conferences, such as the 3rd Asian Forum on
Proteomics, a lot of people would introduce their software
in detail so that more people would know the software and
use it, even for software that was well known already and
where people had already been using it. She also revealed
that it was common for salespeople to come to their center
and provide free courses and training sessions on their
software, in a hope that they would buy it. Other promotion
strategies include distributing copies at conferences with
limited functions or with several months of probation, or
sending copies to famous researchers, etc.

At the same time, for commercial purposes, the availability
of software also needs to be carefully controlled. One
common strategy reported by our informants is that
software is provided for free first as an incentive to try, and
then they will charge for upgrading it later. Liu described,
“We’ve been using it, and after we’ve used it for a while, all
of sudden, they start to charge for fees. If you would
continue to use it, you may buy it.” For PFind, the boundary
is managed by binding the software to a hardware based
license code. Qiangrui said, “They gave a license to us, and
it was a machine code. That is, if you want to use it on your
computer, they will send you a copy of software, and it will
read your machine’s code, which will then be returned to
them to form a serial code, something like that. After you
get that code, you can start to use it on your computer.”
Interestingly, it is exactly because software can be freely
copied that extra effort is contrived to manage its
distribution. It sounds like a contradiction, but considering
the extra work and cost commercial software takes to offer
high-quality services (e.g. performance, stability, usability,
etc.), the contrived boundary starts to make sense.

Thirdly, there may be tension concerning the control of
unwanted use of software. Software, unlike hardware and
others, is more readily open for secondary development, so
ownership of a copy often means a range of things they can
do on top of it, especially for skilled programming users.
Some of these might not be intended or desirable by the
original developers. Social agreement is one means to
address this tension. Liu reported a case where she got a
piece of software from one of her collaborators abroad, and

they signed a contract to keep it from unintended use, “(the
contract terms include), for example, it can only be used for
academic purposes, and we don’t have the right to transfer
the copy to others. That is, we can only use it ourselves.
Because, it is like a mirror site, if you want to use it
yourself, you can use it on his website, but you will have
limited functions. That is you can only search, something
like that. But if I install the database locally, I can make
improvement on it, or, you can even localize it into
Chinese.” It is similar to license use in open source
software to define the users’ rights to modify and
redistribute the software’s source code. With the use of
social agreement, it is hoped that the original intention, e.g.
for academic use only, can go unchanged over software
distribution.

Existent Socio-Technical Boundaries
As illustrated, since software can be copied for free, many
times, extra effort is needed to limit its wide spread use and
balance the tension between sharing and controlling. Yet,
other times, when there is a range of existent social and
technical boundaries already there to regulate its movement
and use, it is crossing these boundaries that demands extra
work. In this respect, existent social or technical boundaries
are conditioning, and manifested through software sharing.

Social boundaries between different teams play certain
roles here. We’ve mentioned how homemade software was
openly shared within the close-knit and interdependent
research team. However, if it is across teams, things
become a lot different. For instance, Huang’s awareness of
how his software was used and his responsibility for its use
was largely confined to his team, “we’ve been using it
internally, and I don’t quite know about other teams.” We
also noted that extra resources (e.g. social capital, social
negotiation, and financial charge, academic credit) were
needed for software to travel across teams, especially for
homemade and unpublished software. Bai, for instance,
when asked whether they were allowed to use Huang’s
software (they were from the different teams) suggested
social capital was important, “we are (allowed), because he
is a former student of our director.” Other times, social
negotiation were required, as Liu described explicitly,
“yeah, in theory, it is fine, but he belongs to another lab
after all, so if we want to use his software tool, we need to
go ask for his permission, and he might need to get
permission from his lab director.” She further suggested
that the negotiation process was important as a way to
express respect to the boundary, “usually, if you go ask him,
he is nice and is willing to give, but a negotiation process is
needed after all.” It suggests that, what matters here is the
negotiation itself and the attitude of respect to the boundary
expressed through asking.

The purchase and shared use of commercial software are
further shaped by and manifest the existence of social
boundaries. In our study, the purchase decision of
commercial software was always made at the team level,

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

430

never individual. On one hand, the cost of commercial
software was too high for individuals to afford. On the
other hand, as one informant pointed out, even if they paid
for commercial software, it could not guarantee to solve the
problem, as research was essentially explorative after all.
So it was rare for individuals to purchase software, and all
reported that they would try the best to find free software
when possible. Once the commercial software was
purchased, its use was usually freely shared within the team,
as Bai put it, “usually if it is lab owned software, all
members of the lab can use.” Others outside the team but in
the same institution could use it, but they were of secondary
priority in terms of its use and were usually not allowed to
control it. Liu described main and marginal roles of
different teams, “After it was purchased, it was mainly our
team who used it. Other teams could if they wanted…but it
was mainly our team who used it, and that would be fine.”
Essentially, the difference between ownership and use of
software marks the boundary between inside and outside
the team.

Interestingly, when the software is super-expensive, or
requires certain expertise to use, the boundary becomes
more visible. Qiangrui described, “If it is within our own
institute, just let them use. Unless the software is very very
expensive, and then we might charge (for fees to use it).”
We did encounter cases that the software was expensive,
and it took special expertise to use it. In that case, others
could only use the software through services provided by
the team, as described by Qiangrui, “we help them identify
protein with our techniques, and we go through the whole
procedure by ourselves, without their involvement, so they
are not able to access the software directly.” They also
charged certain fees based on how much time it took to use
the software to do analysis, “yeah, yeah, if it takes longer to
output the data, the fee will be higher, and in contrast, if it
is some simple identification work, it will be lower.” Other
times, it took academic collaborations or academic credit to
use software across the boundary, “usually it is because
when there are many samples to work on. Considering the
funding constraints, then they will (choose this approach).
It is a kind of compromise. That is, I don’t need to pay that
much by letting them co-author our paper.” It also suggests
that the effect of social boundaries on software sharing
depends on expertise required and effort needed to use the
software.

Besides social boundaries, software sharing may also be
regulated and managed along technical boundaries. For
example, the intranet provides a natural boundary for
managing and controlling the use of commercial software.
The use of EndNote is a case in point, as described by
Qiangrui, “Because almost everyone will use it, our institute
purchased it, and you could download it for free within the
whole institute’s IP addresses. That is, our institute has
paid for the copyright. It is restricted by the IP address, and
you can’t use it beyond it.” Interestingly, sometimes, the

scope of an intranet itself can be leveraged to manage the
sharing tension for work-in-progress software, as shown in
Bao’s case, “It is only used in the intranet for testing, and it
becomes public when it is published.” Therefore, these
boundaries are not there simply to negatively constrain the
spread of software, but to positively resolve various
tensions involved in software sharing.

DISCUSSION
In this paper, we have shown how scientific software
sharing is conditioned by a range of technical and social
factors, similar to the sharing of other scientific resources.
Particularly, we illustrate how different types of software
are shared within different social arrangements, according
to different circulation mechanisms, associated with
different social meanings, and subject to different boundary
regulations. Specifically, homemade scripts and work-in-
progress software are mainly circulated within one’s own or
related teams, shared based on membership, through
personal requests or exchanges, and regulated largely along
the internal and external boundary. Published academic
software is made publicly available and is circulated
mainly within the research community, relying on paper
publication and citation mechanisms for its awareness and
selection, and calling for peripheral participation practices
for new members to acquire effective access to it.
Commercial software products are developed, released and
purchased mainly at the level of institution or team, where
social-technical boundaries are leveraged and contrived to
regulate its flow. Open source software comprises a great
portion of scientific software, and its circulation is subject
to the norms of open source software licenses. Its use in
science also relies on peripheral participation practices for
new members to navigate through it effectively. As such,
the sharing of software is conditioned upon the interaction
between the characteristics of software and its
corresponding social configurations.

Software can be conceptualized as being in between digital
data and physical instruments. As with digital data, it can be
easily copied and distributed through IT infrastructures, and
as with physical instruments, its key lies in the execution of
certain tasks. To a certain extent, software, as a set of
computer programs, essentially is an instrumental tool in
the digital form. Of course, data, instruments and software
are not separate, but many times are interrelated. Data is
usually collected by instruments, and stored and managed
with software. As a matter of fact, when our informants
talked about software, often they meant database. The
database may not be the direct subject of their scientific
analysis, but forms an important means for the analysis of
other data. Also, software can be part of the physical
instrument, and subject to physical constraints for being
moved.

However, it is the different situations and the different roles
software plays in science that fundamentally transforms
what is critical for the effective flow of software. Previous

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

431

studies of scientific sharing revealed that scientists carefully
maintain good control of their resources and are reluctant to
share so that they can exchange for some other benefits,
such as authorship, funding and others [8]. However, the
issues of concealment and reluctance did not appear very
salient for software sharing in our study. Arguably, two
factors contribute to this difference. One, since a wide
range of open source software and published academic
software is already widely available, it is hardly a case that
people gain greater priority than others by simply
possessing a piece of software. Two, while critical,
software might not be as central or as uniquely valuable as
the data for scientific discovery, especially when the tools
are not directly producing data. Consequently, the critical
issue of software sharing transitions from issues of simply
making the resource available to issues of awareness,
selection and navigation. Just as when more and more
information is available online, what becomes problematic
is not the availability of information itself, but how to
locate, navigate through, and select relevant and high
quality information. In our study, we found awareness
gained internally through group interactions as well as
externally through publications, paper reviewing, citation,
and experience sharing have all become important means
for software location, selection and navigation. While
awareness, selection or navigation issues are also relevant
to the sharing of other digital resources such as data, they
appear to be more pronounced in software sharing, mainly
because the bar for software production is much lower than
that of data production. While only scientists or related staff
in the domain can produce data or operate the instrument,
far more people can use their computers to produce
software, which makes issues of quality control, software
selection, awareness, or navigation more salient.

Nonetheless, not all software in science can move freely
without resistance. Issues of resistance and strategies for
boundary management are still quite relevant, especially for
work-in-progress software or commercial software. In our
study, we uncover various tensions between sharing and
controlling, and people even intentionally contrive socio-
technical means to set boundaries and resistance to its flow.
We believe it is the inherent value associated with software
that makes the resistance and boundaries necessary.
Although it can be freely copied, essentially, software is not
value free, as its production involves labor, profession and
innovation. The value may be realized through reputation
economy or financial economy, and boundaries are
essential for these systems to work. Here, what makes
software different from data is probably that it takes longer
to be produced and mature. As shown in our study, many
times, the software is continuously being improved over
time, and users’ involvement and feedback is crucial in this
process, which makes the tension between sharing and
controlling even more salient. Yet for digital resources,
such as software and data that are less bound with physical
instruments, managing boundaries becomes more difficult

and complex. In our study, we show that not only are
existing technical and social boundaries leveraged to resist
the free flow of commercial software products or work-in-
progress academic software, but also people strategically
contrive socio-technical mechanisms to manage its flow
such as binding the use of software to physical machines by
generating machine related code, choosing different media
for sharing (physical copy, email or web), and so on.

CONCLUSIONS AND IMPLICATIONS
By focusing on software as an object of sharing, not as part
of the infrastructure or site for sharing, we do not limit
ourselves to sharing issues of crossing distances, disciplines,
and organizations as did most studies of collaboratories [11,
44]. But rather we were able to take a close look at social
practices of scientific software sharing both locally and
remotely. In particular, with an bio-informatics team in
China, we uncover different meanings and mechanisms of
sharing within different social contexts – learning,
apprenticeship and membership at the local, and papers,
citations, and reputation at the communal, as well as a set of
boundaries, existent or contrived, regulating the travel of
software.

In particular, we draw a number of conclusions and
implications based on the study, and hope to incorporate
them into our future work in designing computing platforms
to support relevant practices.

First, not only software itself but also the special situation
of software, including the existence of open source software,
the role it plays in the field (e.g. a central role in bio-
informatics), as well as the local culture (e.g. Tidui in
China), plays important roles in shaping how software is
used and circulated and what is critical for its use and
circulation.

Second, we uncover how mechanisms and meanings of
scientific software sharing are embedded within different
collective social practices, such as learning, apprenticeship
and so on, which shall be carefully considered when
designing relevant computing support for scientific practice.
For example, considering learning is an important theme
within a team, sharing source code directly might not
always be desirable, and enhancing interactive learning
experiences might be more important.

Third, as with more and more software made publicly
available, and especially considering the more universal
production and ubiquitous nature of software, we argue that
what is important is not simply making more software
available, but addressing issues of navigation, selection and
awareness. For example, enhancing awareness of what each
researcher or research group has done at the local scale
could be highly valuable here.

Four, in a related vein, we argue that experience sharing is
important for addressing issues of software selection and
navigation, and that the request-and-give social protocol is

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

432

an appropriate means to turn tacit experience into sharable
information. It suggests that computing enhancement to the
sharing of experiences through the request-and-give
protocol, rather than the sharing of software itself, might
make a better fit for the corresponding social practices.

Finally, instead of forcing the sharing or the moving of
software, respecting corresponding boundaries and seeking
ways to support related social negotiation processes are also
important, especially for work-in-progress software or
commercial software products. After all, although software
can be copied and distributed for free, it is essentially not
“value free”. Its value can be realized through either a
reputation economy or financial economy, and boundaries
are essential for these systems to work.

ACKNOWLEDGMENTS
We would like to thank our informants for their support,
and Drew Paine for his editorial assistance. The work is
supported by the National Natural Science Foundation of
China (NSFC) under Grants No. 61272533 & No.
61233016, and the Shanghai Science & Technology
Committee Key Fundamental Research Project under Grant
No. 11JC1400800.

REFERENCE
 1. Akhlaq, U. Impact of Software Comprehension in

Software Maintenance and Evolution, Blekinge Institute
of Technology, 2010.

 2. Androutsellis-Theotokis, S. Open Source Software: A
Survey from 10,000 Feet. Foundations and Trends in
Technology, Information and Operations Management,
4, 3-4 (2010), 187-347.

 3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.
and Stoica, I. A view of cloud computing.
Communications of the ACM, 53, 4 (2010), 50-58.

 4. Atkinson, M., DeRoure, D., Dunlop, A., Fox, G.,
Henderson, P., Hey, T., Paton, N., Newhouse, S.,
Parastatidis, S. and Trefethen, A. Web Service Grids: an
evolutionary approach. Concurrency and Computation:
Practice and Experience, 17, 2‐4 (2005), 377-389.

 5. Begole, J., Rosson, M.B. and Shaffer, C.A. Flexible
collaboration transparency: supporting worker
independence in replicated application-sharing systems.
TOCHI, 6, 2 (1999), 95-132.

 6. Bietz, M.J. and Lee, C.P. Collaboration in metagenomics:
Sequence databases and the organization of scientific
work. ECSCW 2009, (2009), 243-262.

 7. Birnholtz, J.P. What does it mean to be an author? The
intersection of credit, contribution, and collaboration in
science. Journal of the American Society for
Information Science and Technology, 57, 13 (2006),
1758-1770.

 8. Birnholtz, J.P. and Bietz, M.J. Data at work: supporting
sharing in science and engineering. In Proc. GROUP'03,

 9. Bonaccorsi, A. and Rossi, C. Comparing motivations of
individual programmers and firms to take part in the
open source movement: From community to business.
Knowledge, Technology & Policy, 18, 4 (2006), 40-64.

10. Bos, N., Zimmerman, A., Olson, J., Yew, J., Yerkie, J.,
Dahl, E. and Olson, G. From shared databases to
communities of practice: A taxonomy of collaboratories.
Journal of Computer‐Mediated Communication, 12, 2
(2007), 652-672.

11. Carlson, S. and Anderson, B. What Are Data? The
Many Kinds of Data and Their Implications for Data Re
‐Use. Journal of Computer‐Mediated
Communication, 12, 2 (2007), 635-651.

12. Colazo, J. and Fang, Y. Impact of license choice on
open source software development activity. Journal of
the American Society for Information Science and
Technology, 60, 5 (2009), 997-1011.

13. Crowston, K., Wei, K., Howison, J. and Wiggins, A.
Free/Libre open-source software development: What we
know and what we do not know. ACM Computing
Surveys (CSUR), 44, 2 (2012), 7.

14. Dourish, P. and Anderson, K. Collective information
practice: Exploring privacy and security as social and
cultural phenomena. Human-Computer Interaction, 21,
3 (2006), 319-342.

15. Evans, J.A. Industry collaboration, scientific sharing,
and the dissemination of knowledge. Social Studies of
Science, 40, 5 (2010), 757-791.

16. Fischer, B.A. and Zigmond, M.J. The essential nature of
sharing in science. Science and Engineering Ethics, 16,
4 (2010), 783-799.

17. Foster, I. The grid: A new infrastructure for 21st
century science. Physics Today, 55, 2 (2002), 51-63.

18. Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B.,
Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y.
and Gentry, J. Bioconductor: open software
development for computational biology and
bioinformatics. Genome Biology, 5, 10 (2004), R80.

19. Hackett, E.J. Essential tensions. Social Studies of
Science, 35, 5 (2005), 787-826.

20. Hey, T. and Trefethen, A.E. Cyberinfrastructure for e-
Science. Science, 308, 5723 (2005), 817-821.

21. Howison, J. and Herbsleb, J. Socio-technical logics of
correctness in the scientific software development
ecosystem. In Proc. CSCW'10 Workshop, ACM (2010).

22. Howison, J. and Herbsleb, J.D. Scientific software
production: incentives and collaboration. In Proc.
CSCW'11, ACM (2011), 513-522.

23. Kelly, D. and Sanders, R. Assessing the quality of
scientific software. In Proc. Workshop on Software
Engineering for Computational Science and
Engineering (2008).

24. Kelly, D.F. A software chasm: Software engineering
and scientific computing. Software, IEEE, 24, 6 (2007),
119-120.

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

433

ACM (2003), 339-348.

25. Kensing, F. and Blomberg, J. Participatory design:
Issues and concerns. Computer Supported Cooperative
Work (CSCW), 7, 3 (1998), 167-185.

26. Kibrick, R., Conrad, A. and Perala, A. Through the far
looking glass: Collaborative remote observing with the
WM Keck Observatory. Interactions, 5, 3 (1998), 32-39.

27. Kling, R., McKim, G., Fortuna, J. and King, A.
Scientific collaboratories as socio-technical interaction
networks: a theoretical approach. In Proc. Americas
Conference on Information Systems (Long Beach, CA).
(2000).

28. Knorr-Cetina, K. Epistemic cultures: How the sciences
make knowledge. Harvard Univ Pr, 1999.

29. Lave, J. and Wenger, E. Situated learning: Legitimate
peripheral participation. Cambridge Univ Pr, 1991.

30. Luscombe, N.M., Greenbaum, D. and Gerstein, M.
What is bioinformatics? An introduction and overview.
Yearbook of Medical Informatics, 1 (2001), 83-99.

31. Merton, R.K. The sociology of science: Theoretical and
empirical investigations. University of Chicago Press,
1979.

32. MYERS, J.D. Tools for Collaboration. Collaboratories:
Improving Research Capabilities in Chemical and
Biomedical Sciences: Proceedings of a Multi-Site
Electronic Workshop, National Academies Press (1999.

33. Nguyen-Hoan, L., Flint, S. and Sankaranarayana, R. A
survey of scientific software development. In Proc.
ESEM'10, ACM (2010), 12.

34. Olson, G.M., Atkins, D.E., Clauer, R., Finholt, T.A.,
Jahanian, F., Killeen, T.L., Prakash, A. and Weymouth,
T. The upper atmospheric research collaboratory (uarc).
ACM Interactions, 5, 3 (1998), 48-55.

35. Rosen, L. Open source licensing: Software freedom and
intellectual property law. Prentice Hall PTR, 2004.

36. Rother, K., Potrzebowski, W., Puton, T., Rother, M.,
Wywial, E. and Bujnicki, J.M. A toolbox for developing
bioinformatics software. Briefings in bioinformatics,
(2011).

37. Sanders, R. and Kelly, D. Dealing with risk in scientific

software development. Software, IEEE, 25, 4 (2008),
21-28.

38. Santos Jr, C.D. and Kon, F. ATTRACTIVENESS OF
FREE AND OPEN SOURCE PROJECTS. European
Conference on Information Systems, (2010).

39. Santos Jr, C.D., Cavalca, M.B., Kon, F., Singer, J.,
Ritter, V., Regina, D. and Tsujimoto, T. Intellectual
property policy and attractiveness: a longitudinal study
of free and open source software projects. In
Proc.CSCW'11, ACM (2011), 705-708.

40. Scacchi, W. Free/open source software development:
Recent research results and methods. Advances In
Computers, 69 (2007), 243-295.

41. Schön, D.A. The reflective practitioner: How
professionals think in action. Basic books, 1983.

42. Segal, J. Some problems of professional end user
developers. In Proc. VLHCC'07, IEEE (2007), 111-118.

43. Segal, J. Models of scientific software development. In
Proc. Workshop on SECSE'08 (2008).

44. Shrum, W., Genuth, J. and Chompalov, I. Structures of
scientific collaboration. Cambridge: MIT Press, 2007.

45. Singh, P.V. and Phelps, C. Determinants of open source
software license choice: A social influence perspective.
Available at SSRN:http://ssrn.com/abstract=1436153.
(2009).

46. Strauss, A.L. and Corbin, J. Basics of qualitative
research. Sage Newbury Park, CA, 1990.

47. Sun, C., Xia, S., Sun, D., Chen, D., Shen, H. and Cai, W.
Transparent adaptation of single-user applications for
multi-user real-time collaboration. TOCHI, 13, 4 (2006),
531-582.

48. Vertesi, J. and Dourish, P. The value of data:
considering the context of production in data economies.
In Proc. CSCW'11, ACM (2011), 533-542.

49. Wenger, E. Communities of practice: Learning,
meaning, and identity. Cambridge Univ Pr, 1998.

50. Willinsky, J. The access principle: The case for open
access to research and scholarship. Cambridge, MA:
MIT Press, (2006).

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

434

