
Xpression Reference
June 27 2011
Harwood Lab

Contents

1 Synopsis
2 Description
3 System Requirements
4 Commands and Arguments
5 Xpression Workflow
6 Xpression Performance
7 Notes
8 License
9 Author

Synopsis

command-line
python Xpression.py option_file.txt

graphical user interface
java -jar Xpression_GUI.jar

Description

Xpression is a fast, open-source integrated pipeline that automates the analysis of 
relatively short read-length “next-gen” sequencing data. The raw sequencing fastq 
file is filtered for sequencing quality and barcoded reads if multiplexing was used 
to combine samples. This high-quality set of reads is then mapped to a reference 
genome using the burrows-wheeler aligner, bwa. Mapping quality statistics are 
output to a text file, providing the number of reads of good sequence quality and 
of those that are mappable, unique, or non-unique. The bwa alignment file and an 
annotated genbank file provided by the user are used to calculate expression data, 
which outputs raw counts as well as counts normalised to total reads (reads pM) and 
total reads per CDS length (reads pKM). A visualisation file in ‘wig’ format is 
then generated from the expression data and can be viewed using tools such as the 
Integrated Genome Viewer and Artemis.

Xpression is primarily coded in Python with some shell scripting and is divided 
into functionally intact modules for each step. The purpose and design of the 
pipeline is to be integrated and easy to use, but also easy to modify. It runs on 
Unix-like systems like MacOSX and Linux. The Windows/CYGwin environment is not 
supported, has not been tested, and is up the user to troubleshoot. A graphical 
user interface is available, allowing simple mouse-driven interaction.

System Requirements

Hardware requirements:
Benchmarking was performed on an average modern desktop computer with a 2.33 GHz 
quad-core CPU and 8 GB RAM running linux kernel 2.6.28-19-generic. There are no 
specific requirements except for the memory needed by bwa to index the reference 
genome.



Software requirements:
operating system
Linux or MacOSX (i.e., “Unix-like”)

core
Python 2.x, latest stable release 2.4 or any release 2.5+ 
bwa 0.5.7+
samtools 0.1.10+
numpy 1.0+
Biopython 1.51+
pysam 0.3+

gui
Graphical desktop environment, e.g., X
Sun/Oracle Java JRE version 1.5/5.0+

Scripts:
All provided scripts must be in the same directory.
count_mapping.awk
count_reads_per_region.py
create_gene_annotation_pickle.py
extract_reads_from_pools.py
MappingStatCalculator.py
NativeReadCounter.py
ReverseComplementReadCounter.py
splitter.sh
StatFileWriter.py
visualize_expression_data.py
Xpression.py

Commands and Arguments

Commands
Xpression arguments are passed to Xpression.py via a text file with each line 
containing an entry in the form --parameter=value.
As currently configured, all the Xpression scripts must be located within the same 
directory, and the option file provided as the only argument to the main script, 
Xpression.py.

Arguments
--input_file=STR The path to the FASTQ input sequencing file to be processed.

--reference_fasta=STR The path to the FASTA genome file used as a reference for 
read-mapping alignment. If the fasta file has not been indexed by bwa, this will 
automatically occur before mapping.

--reference_genbank=STR The path to the genbank file used for calculating gene 
expression. Xpression generates an internally-used Python archive (pickle) of this 
file and is automatically created if it is not found in the same folder as this 
genbank file.

--input_type=STR Sequencing quality formatting type, with fastq-illumina being 
illumina version 1.3+ and ‘fastq’ being the older fastq-sanger format. Fastq-
illumina is very similar to fastq-solexa, both having an ASCII offset of 64, while 
the older fastq-sanger having an offset of 33. The pipeline will raise an error 



while processing if this format appears to be incorrect. Values: fastq-illumina | 
fastq.

--allowed_mismatches=INT Number of allowed mismatches between a read and the 
reference genome. Default: 2.

--sample_barcode=STR Short barcode unique to the sample if it is part of a 
multiplexed FASTQ file.

--sample_bioseq_start=INT 1-based index of the start of valid biological 
sequence. If a barcode was used, this field is usually set to the position directly 
after it. This argument can be set to trim possible poor quality base-positions 
from the reads to be mapped. Default: 1.

--sample_prep_method=STR General library preparation method, assuming a 
portion of the resulting read is the primer used during cDNA generation and that 
the read is relatively short since bwa performs poorly on reads longer than ~100bp. 
RNAseq will allow most library prep methods to have any barcode and specificity 
combination. spRNAseq trims each read in a specfic way perticular to that 
technique. For most library construction methods, RNAseq should be selected. 
Values: spRNAseq | RNAseq. Default: RNAseq.

--sample_strand_specific=STR If strand specificity is maintained by library prep 
method, output will include positive and negative strand mapping in addition to 
gene and inter-gene mapping. Values: yes | no.

--sample_read_seq_direction=STR If libary prep method maintains native read 
orientation relative to reference genome, or if the resulting reads are actually 
reverse-complements of the reference strand. This argument is disregarded if --
sample_strand_specific is ‘no’. Values: native | reverse_complement.

--step=LIST Run the step(s) listed. Individual steps can be run or rerun with steps 
separated by a semi-colon. Steps must be performed sequentially overall. Default: 
1;2;3;4

--number_of_cpu=INT Number of processes to be run simultaneously while 
processing input fastq file. A reasonable value is 2 processes per CPU core. 
Default: 8

--sample_name=STR Name of sample used for naming output files.

--output_dir=STR Path to where output files are saved to. The output of each step 
will be saved to an individual folder.

Xpression Workflow

0. Split FASTQ file to be run in parallel. Outputs split files to 
0_splitted_FASTQ.
1. Input sequencing file filtered by various sequencing quality constraints and 
specified barcode if given. Outputs FASTQ file from quality/barcode filtered reads 
to 1_merged_FASTQ.
2. Align reads to genome using bwa, generate mapping statistics. Outputs bwa 
alignment to 2_sorted_BAM. Mapping quality statistics are output to 
‘mapping_statistic.txt’.



3. Determine mapping to genes in annotation reference. Outputs a ‘.csv’ text 
file containing raw and normalised expression data for each locus found in the 
genbank reference file to 3_expression_profile.
4. Generate visualisation files for viewing in IGV or others. Outputs wiggle-
formatted ‘.wig’ expression data visualisation file to 4_visualization.

Xpression Performance

Hardware
.33 Ghz Intel Core2 Quad Q8200
GB RAM
Linux (kernel 2.6.28-19-generic)

Input
A single sample with a 4-nt barcode from an 8-plexed RNA-seq data test set which 
included 11.9 million 36-nt single-end reads.

Output
Step 1 - Extract barcodes and filter quality 

• seconds to pull out 1.3 million reads having the specified barcode sequence, 
assess their quality and remove non-biological sequences from the reads.

Step 2 - Align quality reads to reference genome
• seconds to align 1.2 million high-quality reads against a reference genome.

Step 3 - Calculate gene expression
• ,086 seconds to count the number of reads uniquely mapped to each region of 

the reference genome.
Step 4 - Create expression visualisation file

• seconds to create two visualisation files.

Total elapsed time is 1,271 seconds or 21.18 minutes.

Notes
This pipeline was designed to provide a general functionality for most ‘next-gen’ 
sequencing analysis. Improvements, modifications and additional features are 
welcome as suggestions or the pipeline can be modified by the user to better suit 
specific uses or preferences. Due to some of the core software like bwa not being 
available for the native Windows platform, there are no plans for porting or 
providing support for environments such as cygwin.

License
GNU GPLv3

Citation
Phattarasukol, S., Radey, M., Lappala C., Brittnacher, M., and Harwood, C.S.. 2011. 
In press.

Author
Somsak “Sam” Phattarasukol designed and coded the pipeline. 


