
1

Chapter 2

Working with HTML5 and WebGL

After completing this chapter, you will be able to:

•	 Draw a simple constant color square with WebGL

•	 Create a new JavaScript source code file for your simple game engine

•	 Define new Singleton-like JavaScript objects to implement core game engine
functionality

•	 Appreciate the importance of abstraction and organize your source code structure to
support growth in complexity

Introduction
Drawing is one of the most essential functionalities common to all video games. A game engine should
offer a flexible and programmer-friendly interface to its drawing system. In this way, when building a game,
the designers and developers can focus on the important aspects of the game, such as mechanics, logic,
and aesthetics.

WebGL is a modern graphical application programming interface (API) that offers quality and
efficiency via direct access to the graphical hardware. For these reasons, WebGL can serve as an excellent
base to support drawing in a game engine, especially for video games that are designed to be played across
the Internet.

This chapter examines the fundamentals of drawing with WebGL, designs abstractions to encapsulate
irrelevant details to facilitate easy programming, and builds the foundational infrastructure to organize
a complex source code system to support future expansion.

Canvas for Drawing
To draw, you must first define and dedicate an area within the web page. We will begin with using the HTML
canvas element to define an area for WebGL drawing.

The HTML5 Canvas Project
This project demonstrates how to draw and clear a canvas element on a web page. Figure 2-1 shows an
example of running this project, which is defined in the Chapter2/2.1.HTML5Canvas folder.

Chapter 2 ■ Working with HTML5 and WebGL

2

The goals of the project are as follows:

•	 To learn how to set up the HTML canvas element

•	 To learn how to retrieve the canvas element from an HTML document for use in
JavaScript

•	 To learn how to create a reference context to WebGL from the retrieved canvas
element and manipulate the canvas from the WebGL context

Creating and Clearing the HTML Canvas
In this first project, you will create an empty HTML5 canvas and clear the canvas to a specific color with
WebGL.

	 1.	 Create a new HTML5 project titled HTML5 Canvas.

	 2.	 Open the index.html file in the editor by double-clicking the project name
(HTML5Canvas) in the Project view, then double-clicking Site Root, and lastly
double-clicking the index.html file, as illustrated in Figure 2-2.  

Figure 2-1.  Running the HTML5 Canvas project

Figure 2-2.  Editing the index.html file in your project

Chapter 2 ■ Working with HTML5 and WebGL

3

	 3.	 Create the HTML canvas for drawing by adding the following line in the
index.html file within the body element:

<canvas id="GLCanvas" width="640" height="480">
 Your browser does not support the HTML5 canvas.
</canvas>

The code defines a canvas element named GLCanvas with the specified width and height attributes. As
you will experience later, you will retrieve the reference to the GLCanvas to draw into this area. The text inside
the element will be displayed if your browser does not support drawing with canvas.

■■ Note  The lines between the <body> and </body> tags are referred to as “within the body element.”
For the rest of this book, “within the AnyTag element” will be used to refer to any line between the beginning
(<AnyTag>) and end (</AnyTag>) of the element. 

	 4.	 Create a script element for the inclusion of JavaScript programming code, once
again within the body element.

<script type="text/javascript">
 // JavaScript code goes here.
</script>

This takes care of the HTML portion of this example. Now you will write JavaScript for the remainder of
the example.

	 5.	 Retrieve a reference to the GLCanvas in your JavaScript by adding the following
line within the script element:

var canvas = document.getElementById("GLCanvas");

The code creates a new variable named canvas and stores a reference to the GLCanvas drawing area in
this variable.

■■ Note  All local variable names begin with a lowercase letter, as in canvas. 

	 6.	 Retrieve and bind a reference to the WebGL context to the drawing area by
adding the following code:

var gl = canvas.getContext("webgl") || canvas.getContext("experimental-webgl");

As the code indicates, the retrieved reference to the WebGL context is stored in the local variable named gl.
From this variable, you have access to all WebGL functionality.

Chapter 2 ■ Working with HTML5 and WebGL

4

	 7.	 Clear the canvas drawing area to your favorite color through WebGL by adding
the following:

if (gl !== null) {
 gl.clearColor(0.0, 0.8, 0.0, 1.0); // set the color to be cleared
 gl.clear(gl.COLOR_BUFFER_BIT); // clear the colors
}

This code checks to ensure the WebGL context is properly retrieved, sets the clear color, and clears the
drawing area. Note that the clearing color is given in RGBA format, with floating-point values ranging from
0.0 to 1.0. The fourth number in the RGBA format is the alpha channel. You will learn more about the alpha
channel in the later chapters. For now, always assign 1.0 to the alpha channel.

You can refer to the final source code in the index.html file in the Chapter2/2.1.HTML5Canvas project.
Run the project, and you should see a light green area on your browser window. This is the 640×480 canvas
drawing area you defined.

You can try changing the cleared color to white by setting the RGBA of gl.clearColor() to 1 or to black
by setting the color to 0 and leaving the alpha value 1. Notice that if you set the alpha channel to 0, the canvas
color will disappear. This is because a 0 value in the alpha channel represents complete transparency, and
thus you will “see through” the canvas and observe the background color of the web page. You can also try
altering the resolution of the canvas by change the 640×480 value to any number you fancy. Notice that these
two numbers refer to the pixel counts and thus must always be integers.

Separating HTML and JavaScript
In the previous project you created an HTML canvas element and cleared the area defined by the canvas
using WebGL. Notice that all the functionality is clustered in the index.html file. As the project complexity
increases, this clustering of functionality can quickly become unmanageable and negatively impact the
programmability of your system. For this reason, throughout the development process in this book, after a
concept is introduced, efforts will be spent on separating the associated source code into either well-defined
source code files or object-oriented programming. To begin this process, the HTML and JavaScript source
code from the previous project will be separated into different source code files.

The JavaScript Source File Project
This project demonstrates how to logically separate the source code into appropriate files. This is
accomplished by creating a separate JavaScript source code file named WebGL.js to implement the
corresponding functionality in the index.html file. The web page will load the JavaScript source code as
instructed by the code in the index.html file. As illustrated in Figure 2-3, this project looks identical as the
previous project when running. The source code of this project is located in the Chapter2/2.2.JavaScript
SourceFile folder.

Chapter 2 ■ Working with HTML5 and WebGL

5

The goals of the project are as follows:

•	 To learn how to separate source code into different files

•	 To organize your code in a logical structure

Separate JavaScript Source Code File
This section details how to create and edit a new JavaScript source code file. You should familiarize yourself
with this process because you’ll create numerous source code files throughout this book.

	 1.	 Create a new HTML5 project titled JavaScriptSourceFile.

	 2.	 Create a new folder named src inside the Site Root folder by right-clicking and
creating a new folder, as illustrated in Figure 2-4.

Figure 2-3.  Running the JavaScript Source File project

Chapter 2 ■ Working with HTML5 and WebGL

6

 This folder will contain all of your source code.

■■ Note  In NetBeans you can create new folders, create new files, copy/paste projects, and rename projects
by using the right-click menus in the Projects window. 

	 3.	 Create a new source code file within the src folder by right-clicking the src
folder, as illustrated in Figure 2-5. 

Figure 2-4.  Creating a new source code folder

Chapter 2 ■ Working with HTML5 and WebGL

7

Name the new source file WebGL.js.

	 4.	 Open the new WebGL.js source file for editing.

	 5.	 Create a global variable referencing the WebGL context.

"use strict";
var gGL = null;

■■ Note  All global variable names begin with a lowercase g, as in gGL. 

	 6.	 Define the initializeGL() function to retrieve GLCanvas, bind the drawing area
with the WebGL context, and store the results in the global gGL variable.

function initializeGL() {
 var canvas = document.getElementById("GLCanvas");
  
 gGL = canvas.getContext("webgl") ||
 canvas.getContext("experimental-webgl");
  

Figure 2-5.  Adding a new JavaScript source code file

Chapter 2 ■ Working with HTML5 and WebGL

8

 if (gGL !== null) {
 gGL.clearColor(0.0, 0.8, 0.0, 1.0); // set the color to be cleared
 } else {
 document.write("
WebGL is not supported!");
 }
}

■■ Note  All public function names begin with a lowercase letter, as in initializeGL(). 

Notice this function is similar to the JavaScript source code you typed in the previous project.

	 7.	 Define the clearCanvas() function to invoke the WebGL context to clear the
canvas drawing area.

function clearCanvas() {
 gGL.clear(gGL.COLOR_BUFFER_BIT); // clear to the color previously set
}

	 8.	 Define the doGLDraw() function to carry out the initialization and clearing of the
canvas area.

function doGLDraw() {
 initializeGL();
 clearCanvas();
}

Load and Run JavaScript Source Code from index.html
With all the JavaScript functionality defined in the WebGL.js file, you now need to load this file and invoke
the doGLDraw() function from your web page, the index.html file.

	 1.	 Open the index.html file for editing.

	 2.	 Create the HTML canvas, GLCanvas, as in the previous project.

	 3.	 Load the WebGL.js source code by including the following code within the body
element:

<script type="text/javascript" src="src/WebGL.js"></script>

You can include this line either before or after the definition of canvas, as long as it is within the body
element.

	 4.	 Execute the doGLDraw() function after WebGL.js is loaded.

<body onload="doGLDraw();">

The modification to the body tag says once all loading operations are done, the doGLDraw() function
should be executed.

Chapter 2 ■ Working with HTML5 and WebGL

9

You can refer to the final source code in the WebGL.js and index.html files in the Chapter2/2.2.Java
ScriptSourceFile project. Although the output from this project is identical to that from the previous
project, the organization of your code will allow you to expand, debug, and understand the game engine as
you continue to add new functionality.

Observations
Examine your index.html file closely and compare its content to the same file from the previous project.
You will notice that the index.html file from the previous project contains two types of information (HTML
and JavaScript code) and that the same file from this project contains only the former, with all JavaScript
code being moved to WebGL.js. This clean separation of information allows for easy understanding of the
source code and improves support for complex systems. From this point on, all JavaScript source code will
be added to separate source code files. In all cases, in the same manner as you have included the loading of
WebGL.js, you will have to remember to load the new source code, such as NewSourceFile.js, by including
the following line within the body element of the index.html file:

<script type="text/javascript" src="src/NewSourceFile.js"></script>

Elementary Drawing with WebGL
Drawing with WebGL is a multiple-step process that involves transferring geometric data and OpenGL
Shading Language (GLSL) instructions (the shaders) from memory to the drawing hardware, or the
graphical processing unit (GPU). This process involves a significant number of WebGL function calls. This
section presents the WebGL drawing steps in detail. It is important to focus on learning these basic steps and
avoid being distracted by the less important WebGL configuration nuances such that you can continue to
learn the overall concepts and build the game engine.

In the following project, you will learn about drawing with WebGL by focusing on the most elementary
operations, including the loading to the GPU for the simple geometry of a square, a constant color shader,
and basic instructions of drawing a square as two triangles.

The Draw One Square Project
This project leads you through the steps required to draw a single square on the canvas. Figure 2-6 shows an
example of running this project, which is defined in the Chapter2/2.3.DrawOneSquare folder.

Chapter 2 ■ Working with HTML5 and WebGL

10

The goals of the project are as follows:

•	 To understand how to load geometric data to the GPU

•	 To learn about simple GLSL shaders for drawing with WebGL

•	 To learn how to compile and load shaders to the GPU

•	 To understand the steps to draw with WebGL

Set Up and Load the Primitive Geometry Data
To draw efficiently with WebGL, the data associated with the geometry to be drawn, such as the vertex
positions of a square, should be stored in the GPU hardware. In the following steps, you will create a
contiguous buffer in the GPU, load the vertex positions of a unit square into the buffer, and store the
reference to the GPU buffer in a global variable. Learning from the previous project, the corresponding
JavaScript code will be stored in a new source code file, VertexBuffer.js.

■■ Note  A unit square is a 1×1 square centered at the origin. 

	 1.	 Create a new JavaScript source file in the src folder and name it VertexBuffer.js.

Figure 2-6.  Running the Draw One Square project

Chapter 2 ■ Working with HTML5 and WebGL

11

	 2.	 Declare a global variable gSquareVertexBuffer to store the reference to the
WebGL buffer location.

"use strict";
var gSquareVertexBuffer = null;

	 3.	 Define the initSquareBuffer() function to create and load vertices onto
the GPU.

function initSquareBuffer() {
  
 // First: define the vertices for a square
 var verticesOfSquare = [
 0.5, 0.5, 0.0,
 -0.5, 0.5, 0.0,
 0.5, -0.5, 0.0,
 -0.5, -0.5, 0.0
];
  
 // Step A: Create a buffer on the gGL context for our vertex positions
 gSquareVertexBuffer = gGL.createBuffer();
 
 // Step B: Activate vertexBuffer
 gGL.bindBuffer(gGL.ARRAY_BUFFER, gSquareVertexBuffer);
 
 // Step C: Loads verticesOfSquare into the vertexBuffer
 gGL.bufferData(gGL.ARRAY_BUFFER, new Float32Array(verticesOfSquare),
 gGL.STATIC_DRAW);
}

In the code shown, the vertices of a unit square are defined first. Notice the z-dimension is set to 0.0
because you are building a 2D game engine. Step A creates a buffer on the GPU for storing the vertex positions
of the square and stores the reference to the GPU buffer in the global variable gSquareVertexBuffer. Step B
activates the newly created buffer, and step C loads the vertex position of the square into the activated buffer.
The keyword STATIC_DRAW informs the drawing hardware that this buffer will not be changed.

■■ Tip  Remember that the gGL global variable is defined in the WebGL.js file and initialized by the
initializedGL() function. 

	 4.	 Lastly, remember to load the VertexBuffer.js source code in your web page by
adding the following code within the body element of the index.html file:

<script type="text/javascript" src="src/VertexBuffer.js"></script>

■■ Tip  From now on, when you are reminded to “load the new source file in index.html,” you should add the
script line (remember to change VertexBuffer.js to your new source code file name) into index.html.

Kelvin
Comment on Text
Typo

Chapter 2 ■ Working with HTML5 and WebGL

12

With the functionality of loading vertex positions defined, you are now ready to define and load the
GLSL shaders.

Set Up the GLSL Shaders
The term shader refers to programs that run on the GPU. In the context of the game engine, shaders must
always be defined in pairs consisting of a vertex shader and a corresponding fragment shader. The GPU will
execute the vertex shader once per primitive vertex and the fragment shader once per pixel covered by the
primitive. For example, you can define a square with four vertices and display this square to cover a 100×100
pixel area. To draw this square, WebGL will invoke the vertex shader 4 times (once for each vertex) and
execute the fragment shader 10,000 times (once for each of the 100×100 pixels)!

In the case of WebGL, both the vertex and fragment shaders are implemented in the OpenGL Shading
Language (GLSL). GLSL is a language with syntax that is similar to the C programming language and
designed specifically for processing and displaying graphical primitives. You will learn sufficient GLSL to
support the drawing for the game engine when required.

In the following steps, you will load into memory the source code for both vertex and fragment shaders,
compile and link them into a single shader program, and load the compiled program into the GPU. In this
project, the shader source code is defined in the index.html file, while the loading, compiling, and linking of
the shaders are defined in the ShaderSupport.js source file.

■■ Note  The WebGL context can be considered as an abstraction of the GPU hardware. To facilitate
readability, the two terms WebGL and GPU are sometimes used interchangeably.

Define the Vertex and Fragment Shaders

GLSL shaders are simply programs consisting of GLSL instructions.

	 1.	 Define the vertex shader by opening the index.html file, and within the body
element, add the following code:

<script type="x-shader/x-vertex" id="VertexShader">
 attribute vec3 aSquareVertexPosition;
 void main(void) {
 gl_Position = vec4(aSquareVertexPosition, 1.0);
 }
</script>

The script element type is set to x-shader/x-vertex because that is a common convention for
shaders. As you will see, the id field with the value VertexShader allows you to identify and load this vertex
shader into memory.

The GLSL attribute keyword identifies per-vertex data that will be passed to the vertex shader
in the GPU. In this case, the aSquareVertexPosition attribute is of data type vec3 or an array of three
floating-point numbers. As you will see in later steps, aSquareVertexPosition will contain vertex
positions for a square.

The gl_Position is a GLSL built-in variable, specifically, an array of four floating-point numbers
that must contain the vertex position. In this case, the fourth position of the array will always be 1.0. The
code shows the shader converting the aSquareVertexPosition into a vec4 and passing the information
to WebGL.

Chapter 2 ■ Working with HTML5 and WebGL

13

	 2.	 Define the fragment shader in index.html by adding the following code within
the body element:

<script type="x-shader/x-fragment" id="FragmentShader">
 void main(void) {
 gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);
 }
</script>

Note the different type and id fields. Recall that the fragment shader is invoked once per pixel. The
variable gl_FragColor is the built-in variable that determines the color of the pixel. In this case, a color of
(1,1,1,1), or white, is returned. This means all pixels covered will be shaded to a constant white color.

With both the vertex and fragment shaders defined in the index.html file, you are now ready to
implement the functionality to compile, link, and load the resulting shader program to the GPU.

Compile, Link, and Load the Vertex and Fragment Shaders

To maintain source code in logically separated source files, you will create shader support functionality in a
new source code file, ShaderSupport.js.

	 1.	 Create a new JavaScript file, ShaderSupport.js.

	 2.	 Create two global variables, gSimpleShader and
gShaderVertexPositionAttribute, to store the reference to the shader program
and the vertex position attribute in the GPU.

var gSimpleShader = null;
var gShaderVertexPositionAttribute = null;

	 3.	 Create a function to load and compile a shader from index.html.

function loadAndCompileShader(id, shaderType) {
 var shaderText, shaderSource, compiledShader;
 
 // Step A: Get the shader source from index.html
 shaderText = document.getElementById(id);
 shaderSource = shaderText.firstChild.textContent;
 
 // Step B: Create the shader based on the source type: vertex or fragment
 compiledShader = gGL.createShader(shaderType);
 
 // Step C: Compile the created shader
 gGL.shaderSource(compiledShader, shaderSource);
 gGL.compileShader(compiledShader);
 
 // Step D: check for error and return result
 if (!gGL.getShaderParameter(compiledShader, gGL.COMPILE_STATUS)) {
 alert("A shader compiling error occurred: " +
 gGL.getShaderInfoLog(compiledShader));
 }
 return compiledShader;
}

Chapter 2 ■ Working with HTML5 and WebGL

14

Step A of the code finds shader source code from the index.html file using the id field you specified
when defining the shaders, either VertexShader or FragmentShader. Step B creates a specified shader (either
vertex or fragment) in the GPU. Step C specifies the shader source code and compiles the shader. Finally,
step D checks and returns the reference to the compiled shader where an error will result in a null value.

	 4.	 You are now ready to create and compile a shader program by defining the
initSimpleShader function.

function initSimpleShader(vertexShaderID, fragmentShaderID) {
 // Step A: load and compile the vertex and fragment shaders
 var vertexShader = loadAndCompileShader(vertexShaderID, gGL.VERTEX_SHADER);
 var fragmentShader = loadAndCompileShader(fragmentShaderID,
 gGL.FRAGMENT_SHADER);
 
 // Step B: Create and link the shaders into a program.
 gSimpleShader = gGL.createProgram();
 gGL.attachShader(gSimpleShader, vertexShader);
 gGL.attachShader(gSimpleShader, fragmentShader);
 gGL.linkProgram(gSimpleShader);
 
 // Step C: check for error
 if (!gGL.getProgramParameter(gSimpleShader, gGL.LINK_STATUS))
 alert("Error linking shader");
  
 // Step D: Gets a reference to the aSquareVertexPosition attribute
 gShaderVertexPositionAttribute = gGL.getAttribLocation(gSimpleShader,
 "aSquareVertexPosition");
  
 // Step E: Activates the vertex buffer loaded in VertexBuffer.js
 gGL.bindBuffer(gGL.ARRAY_BUFFER, gSquareVertexBuffer);
 // Step F: Describe the characteristic of the vertex position attribute
 gGL.vertexAttribPointer(gShaderVertexPositionAttribute,
 3, // each vertex element is a 3-float (x,y,z)
 gGL.FLOAT, // data type is FLOAT
 false, // if the content is normalized vectors
 0, // number of bytes to skip in between elements
 0); // offsets to the first element
}

Step A of the code compiles the shader code you defined in index.html by calling the
loadAndCompileShader() function with the corresponding parameters. Step B loads the compiled shader
onto the GPU and links the two shaders into a program. The reference to this program is stored in the
global variable gSimpleShader. After error checking in step C, step D locates and stores the reference to the
aSquareVetexPosition attribute defined in your vertex shader. Step E activates the vertex buffer you loaded
in VertexBuffer.js, and step F connects the activated buffer to the aSquareVertexPosition attribute by
describing the data format of the vertex buffer, where each vertex position is a three-float (x, y, z) position.

	 5.	 Finally, as with any new source code file, remember to load the ShaderSupport.js
file the index.html file.

The shader loading and compiling functionality is now defined. You can now activate these functions to
draw with WebGL.

Chapter 2 ■ Working with HTML5 and WebGL

15

Set Up Drawing with WebGL
With the vertex data and shaders functionality defined, you can now execute the following steps to draw with
WebGL. Recall from the previous project that the initialization and drawing code is stored in the WebGL.js
file. Now open this file for editing.

	 1.	 Modify the initializeGL() function to include the initialization of the vertex
buffer and the shader program.

function initializeGL() {
 var canvas = document.getElementById("GLCanvas");
 gGL = canvas.getContext("webgl") || canvas.getContext("experimental-webgl");
  
 if (gGL !== null) {
 gGL.clearColor(0.0, 0.8, 0.0, 1.0); // set the color to be cleared
  
 // A. initialize the vertex buffer
 initSquareBuffer(); // This function is defined VertexBuffer.js

 // B. now load and compile the vertex and fragment shaders
 initSimpleShader("VertexShader", "FragmentShader");
 // the two shaders are defined in the index.html file
 // initSimpleShader() function is defined in ShaderSupport.js
 } else {
 document.write("
WebGL is not supported!");
 }
}

The code in bold shows you should modify the initializeGL() function to call the
initSquareBuffer() and initSimpleShader() functions after successfully obtaining the WebGL context.

	 2.	 Replace the clearCanvas() function with the drawSquare() function for drawing
the defined square.

function drawSquare() {
 gGL.clear(gGL.COLOR_BUFFER_BIT);
 
 // Step A: Activate the shader to use
 gGL.useProgram(gSimpleShader);
  
 // Step B: Enable the vertex position attribute
 gGL.enableVertexAttribArray(gShaderVertexPositionAttribute);
  
 // Step C: Draw with the above settings
 gGL.drawArrays(gGL.TRIANGLE_STRIP, 0, 4);
}

This code shows the steps to draw with WebGL. Step A activates the shader program to use. Step B
enables the vertex attribute for the vertex shader. Finally, step C issues the draw command. In this case, you
are issuing a command to draw the four vertices as two connected triangles that form a square.

Chapter 2 ■ Working with HTML5 and WebGL

16

	 3.	 Lastly, modify doGLDraw() to call the drawSquare() function.

function doGLDraw() {
 initializeGL(); // Binds gGL context to WebGL functionality
 drawSquare(); // Clears the GL area and draws one square
}

Recall that doGLDraw() is the function called by index.html after all source code files are completely
loaded. For this reason, WebGL will be initialized and the white square drawn. For reference, you can refer to
the source code in the Chapter2/2.3.DrawOneSquare project.

Observations
Run the project and you will see a white rectangle on a green canvas. What happened to the square?
Remember that the vertex position of your 1×1 square was defined at locations (±0.5, ±0.5). Now observe
the project output: the white rectangle is located in the middle of the green canvas covering exactly half of
the canvas’s width and height. As it turns out, WebGL draws vertices within the ±1.0 range onto the entire
defined drawing area. In this case, the ±1.0 in the x-dimension is mapped to 640 pixels, while the ±1.0 in the
y-dimension is mapped to 480 pixels (the created canvas dimension is 640×480); the 1x1 square is drawn
onto a 640x480 area, or an area with an aspect ratio of 4:3. Since the 1:1 aspect ratio of the square does not
match the 4:3 aspect ratio of the display area, the square shows up as a 4:3 rectangle. This problem will be
resolved later in this chapter.

You can try editing the fragment shader in index.html by changing the color set in the gl_FragColor
function to change the color of the white square. Notice that a value of less than 1 in the alpha channel will
result in the white square becoming transparent and showing through some of the greenish canvas color.

Finally, note that this project defines many global variables with little attempt at hiding information.
This organization does not lend itself to supporting changes in functionality or growth in complexity. In
the next sections, you will encapsulate and abstract portions of this example to form the basis of the game
engine framework.

Abstraction with JavaScript Objects
The previous project decomposed the drawing of a square into logical modules and implemented the
modules as files containing global functions and variables. In software engineering, this solution process is
referred to as functional decomposition, and the implementation is referred to as procedural programming.
Procedural programming produces solutions that are well-structured, easy to understand, and often fast to
create. This is why it is often used to prototype a concept or to learn new techniques.

This project enhances the Draw One Square solution with object-oriented analysis and programming to
introduce data abstraction. As additional concepts are introduced and as the game engine complexity grows,
proper data abstraction supports straightforward design and code reuse through inheritance.

The JavaScript Objects Project
This project demonstrates how to abstract the global functions and variables from the Draw One Square
project into JavaScript objects. This objected-oriented abstraction will result in a framework that offers
manageability and expandability for subsequent projects. As illustrated in Figure 2-7, when running, this
project displays a white rectangle in a greenish canvas, identical to that from the Draw One Square project.
The source code to this project is defined in the Chapter2/2.4.JavaScriptObjects folder.

Chapter 2 ■ Working with HTML5 and WebGL

17

The goals of the project are as follows:

•	 To separate the game engine from the game logic code

•	 To demonstrate the implementation of a Singleton-like object based on the
JavaScript Module pattern

•	 To understand how to build abstractions with JavaScript objects

The steps for creating the project are as follows:

	 1.	 Create separate folders to organize the source code for the game engine and the
logic of the game.

	 2.	 Define JavaScript objects to abstract the game engine functionality:
Core, VertexBuffer, and SimpleShader. These objects will be defined in
corresponding JavaScript source code files.

	 3.	 Define a JavaScript object to implement the drawing of one square, which is the
logic of your simple game for now.

Source Code Organization
Create a new HTML5 project with the NetBeans IDE with a source code folder named src. Within src, create
Engine and MyGame as subfolders, as illustrated in Figure 2-8.

Figure 2-7.  Running the JavaScript Objects project

Chapter 2 ■ Working with HTML5 and WebGL

18

The src/Engine folder will contain all the source code to the game engine, and the src/MyGame folder
will contain the source for the logic of your game. It is important to organize source code diligently because
the complexity of the system and the number of files will increase rapidly as more concepts are introduced.
A well-organized source code structure facilitates understanding and expansion.

■■ Tip  The source code in the MyGame folder implements the game by relying on the functionality provided by
the game engine defined in the Engine folder. For this reason, in this book, the source code in the MyGame folder
is often referred to as the client of the game engine.

Abstracting the Game Engine
A completed game engine would include many self-contained subsystems to fulfill different responsibilities.
For example, you may be familiar with or have heard of the geometry subsystem for managing the
geometries to be drawn, the resource management subsystem for managing images and audio clips, the
physics subsystem for managing object interactions, and so on. In most cases, the game engine would
include one unique instance of each of these subsystems, that is, one instance of the geometry subsystem, of
the resource management subsystem, of the physics subsystem, and so on.

These subsystems will be covered in later chapters of this book. This section focuses on establishing the
mechanism and organization for implementing these single-instance or Singleton-like objects based on the
JavaScript Module pattern.

The Core of the Game Engine: gEngine.Core

The core of the game engine contains the common functionality shared by the entire system. This can
include one-time initialization of the WebGL (or GPU), shared resources, utility functions, and so on.

	 1.	 Create a new source file in the src/Engine folder and name the file Engine_
Core.js. Remember to load this new source file in index.html.

	 2.	 At the beginning of the file, create gEngine, a new global variable representing
the core of the game engine as follows:

"use strict"; // Operate in Strict mode
 
var gEngine = gEngine || { };
 // initialize the variable while ensuring it is not redefined

Figure 2-8.  Creating Engine under the src folder

Chapter 2 ■ Working with HTML5 and WebGL

19

This line instructs the system to retain a current gEngine variable if it is defined; otherwise, it creates
a new instance with an initial empty object. Different subsystems of the game engine will be implemented
as distinct properties of the gEngine object in separate files. This line ensures that properties defined in
separate source files will be retained independent from the order upon which they are loaded.

	 3.	 Define the gEngine.Core property as follows:

gEngine.Core = (function() {
 // instance variable: the graphical context for drawing
 var mGL = null;
  
 // Accessor of the webgl context
 var getGL = function() { return mGL; };
 
 // Contains the functions and variables that will be accessible.
 var mPublic = {
 getGL: getGL
 };
 
 return mPublic;
}());

■■ Note  All instance variable names begin with an m and are followed by a capital letter, as in mVariable.
Though not enforced by JavaScript, you should never access an instance variable from outside the object.
For example, you should never access gEngine.Core.mGL directly; instead, call the gEngine.Core.getGL()
function to access the variable. 

The code defines the gEngine.Core property as a global object. This object contains one private
instance variable and a public accessor. It is important to note the following about the syntax:

a.	 The mPublic object defines public methods for gEngine.Core. In this case,
getGL() is the only public method of the gEngine.Core object.

b.	 The () at the end of the function block signals to the system to execute the
function immediately, and thus only a single instance of gEngine.Core will
be created.

c.	 This is the JavaScript Module pattern, which will be used to implement all
the subsystems in the game engine.

	 4.	 Inside the gEngine.Core object, add a function to initialize the WebGL context
from the HTML canvas ID.

// initialize the WebGL, the vertex buffer and compile the shaders
var initializeWebGL = function(htmlCanvasID) {
 var canvas = document.getElementById(htmlCanvasID);
  

Chapter 2 ■ Working with HTML5 and WebGL

20

 // Get the standard or experimental webgl and binds to the Canvas area
 // store the results to the instance variable mGL
 mGL = canvas.getContext("webgl") || canvas.getContext("experimental-webgl");
  
 if (mGL === null) {
 document.write("
WebGL is not supported!");
 return;
 }
 
 // now initialize the VertexBuffer
 gEngine.VertexBuffer.initialize();
};

Apart from the syntax involved with the JavaScript Module pattern, the previous function should appear
very similar to the initializeGL() function from the previous project and actually accomplishes the same
task as it. A difference to note is the call to gEngine.VertexBuffer.initialize(). This function call sets up
the WebGL vertex buffer and will be described in detail.

	 5.	 Add an additional function to clear the canvas to the desired color.

// Clears the draw area and draws one square
var clearCanvas = function(color) {
 mGL.clearColor(color[0], color[1], color[2], color[3]); // set the color to
 be cleared
 mGL.clear(mGL.COLOR_BUFFER_BIT); // clear to the color previously set
};

	 6.	 Finally, export the public functions through the returned mPublic object.

var mPublic = {
 getGL: getGL,
 initializeWebGL: initializeWebGL,
 clearCanvas: clearCanvas
};

The Shared Vertex Buffer

In the game engine that you are building, all graphical objects will be drawn based on the unit square. For
this reason, the geometry subsystem is rather simplistic. The gEngine.VertexBuffer object implements the
geometry subsystem.

	 1.	 Create a new source file in the src/Engine folder and name the file Engine_
VertexBuffer.js. Remember to load this new source file in your index.html file.

	 2.	 Follow the JavaScript Module pattern and define VertexBuffer as a property of
gEngine, as follows:

"use strict"; // Operate in Strict mode
 
var gEngine = gEngine || { };
 
// The VertexBuffer object
gEngine.VertexBuffer = (function() {

Chapter 2 ■ Working with HTML5 and WebGL

21

 // First: define the vertices for a square
 var verticesOfSquare = [
 0.5, 0.5, 0.0,
 -0.5, 0.5, 0.0,
 0.5, -0.5, 0.0,
 -0.5, -0.5, 0.0
];
  
 // reference to the vertex positions for the square in the gl context
 var mSquareVertexBuffer = null;
  
 var getGLVertexRef = function() { return mSquareVertexBuffer; };
  
 var initialize = function() {
 var gl = gEngine.Core.getGL();
 
 // Step A: Create a buffer on the gGL context for our vertex positions
 mSquareVertexBuffer = gl.createBuffer();
 
 // Step B: Activate vertexBuffer
 gl.bindBuffer(gl.ARRAY_BUFFER, mSquareVertexBuffer);
 
 // Step C: Loads verticesOfSquare into the vertexBuffer
 gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(verticesOfSquare),
 gl.STATIC_DRAW);
 };
  
 var mPublic = {
 initialize: initialize,
 getGLVertexRef: getGLVertexRef
 };
 return mPublic;
}());

The gEngine.VertexBuffer object implements the same functionality as the source code in
VertexBuffer.js from the previous project: it creates and loads the unit square geometry to the WebGL
vertex buffer. Notice that instead of being global, mSquareVertexBuffer, the reference to the WebGL vertex
buffer, is now a private variable with a proper accessor. The initialize() function contains the same three
setup steps as the initSquareBuffer() function from the previous project.

Recall that the gEngine.VertexBuffer.initialize() function is called from the end of the gEngine.
Core.initializeWebGL() function. In this way, after the InitialzeWebGL() function, the WebGL will be
initialized and loaded with the vertex positions of the unit square, and the vertex buffer reference will be
ready for drawing operations.

The Shader Object

Although the code in the ShaderSupport.js file from the previous project properly implements the required
functionality, the global variables and functions do not lend themselves well to modification and code reuse.
This section follows the object-oriented design principles and creates a SimpleShader object to abstract the
behaviors and hide internal representations of shaders.

Chapter 2 ■ Working with HTML5 and WebGL

22

	 1.	 Create a new source file in the src/Engine folder and name the file
SimpleShader.js to implement the SimpleShader object. Remember to load this
new source file in index.html.

	 2.	 Define the constructor for SimpleShader to load, compile, and link the shaders
into a program and to create a reference for loading from the WebGL vertex
buffer for drawing.

function SimpleShader(vertexShaderID, fragmentShaderID) {
 // instance variables (Convention: all instance variables: mVariables)
 this.mCompiledShader = null;
 // reference to the compiled shader in webgl context
 this.mShaderVertexPositionAttribute = null;
 // reference to SquareVertexPosition in shader
  
 var gl = gEngine.Core.getGL();
  
 // start of constructor code
 //
 // Step A: load and compile vertex and fragment shaders
 var vertexShader = this._loadAndCompileShader(vertexShaderID, gl.VERTEX_SHADER);
 var fragmentShader = this._loadAndCompileShader(fragmentShaderID,
 gl.FRAGMENT_SHADER);
  
 // Step B: Create and link the shaders into a program.
 this.mCompiledShader = gl.createProgram();
 gl.attachShader(this.mCompiledShader, vertexShader);
 gl.attachShader(this.mCompiledShader, fragmentShader);
 gl.linkProgram(this.mCompiledShader);
 
 // Step C: check for error
 if (!gl.getProgramParameter(this.mCompiledShader, gl.LINK_STATUS)) {
 alert("Error linking shader");
 return null;
 }
  
 // Step D: Gets a reference to the aSquareVertexPosition attribute
 this.mShaderVertexPositionAttribute = gl.getAttribLocation(this.mCompiledShader,
 "aSquareVertexPosition");
  
 // Step E: Activates the vertex buffer loaded in Engine.Core_VertexBuffer
 gl.bindBuffer(gl.ARRAY_BUFFER, gEngine.VertexBuffer.getGLVertexRef());
  
 /// Step F: Describe the characteristic of the vertex position attribute
 gl.vertexAttribPointer(this.mShaderVertexPositionAttribute,
 3, // each element is a 3-float (x,y.z)
 gl.FLOAT, // data type is FLOAT
 false, // if the content is normalized vectors
 0, // number of bytes to skip in between elements
 0); // offsets to the first element
}

Chapter 2 ■ Working with HTML5 and WebGL

23

Notice that this constructor is similar to the initSimpleShader() function from the previous project,
with the following exceptions:

a.	 The global gShaderVertexPositionAttribute and gSimpleShader variables
are now the private instance variables mShaderVertexPositionAttribute
and mCompiledShader.

b.	 The reference to WebGL context, the gl variable, is now accessed through
gEngine.Core.

	 3.	 Add a _loadAndCompileShader() method to the SimpleShader prototype to
perform the actual loading and compiling functionality.

// Returns a complied shader from a shader in the dom.
// The id is the id of the script in the html tag.
SimpleShader.prototype._loadAndCompileShader = function(id, shaderType) {
 var shaderText, shaderSource, compiledShader;
 var gl = gEngine.Core.getGL();
 
 // Step A: Get the shader source from index.html
 shaderText = document.getElementById(id);
 shaderSource = shaderText.firstChild.textContent;
 
 // Step B: Create the shader based on the shader type: vertex or fragment
 compiledShader = gl.createShader(shaderType);
 
 // Step C: Compile the created shader
 gl.shaderSource(compiledShader, shaderSource);
 gl.compileShader(compiledShader);
 
 // Step D: check for errors and return results (null if error)
 // The log info is how shader compilation errors are typically displayed.
 // This is useful for debugging the shaders.
 if (!gl.getShaderParameter(compiledShader, gl.COMPILE_STATUS)) {
 alert("A shader compiling error occurred: " +
 gl.getShaderInfoLog(compiledShader));
 }
 
 return compiledShader;
};

Notice that this method is almost identical to the LoadAndCompile() function from the previous project.
The only modification is that the WebGL context is now accessed through gEngine.Core.

	 4.	 Add a function to activate the shader for drawing.

SimpleShader.prototype.activateShader = function() {
 var gl = gEngine.Core.getGL();
 gl.useProgram(this.mCompiledShader);
 gl.enableVertexAttribArray(this.mShaderVertexPositionAttribute);
};

Chapter 2 ■ Working with HTML5 and WebGL

24

■■ Note  Functions that are meant to be private will have names that begin with an underscore (_), as in
_loadAndCompileShader(). Though not enforced by JavaScript, you should never call a function with a name
that begins with an underscore from outside the object. For example, the _loadAndCompileShader() function
is not designed to be called from outside the SimpleShader object. 

	 5.	 Finally, add an accessor for the actual WebGL shader program.

SimpleShader.prototype.getShader = function() { return this.mCompiledShader; };

The src/Engine folder contains the source code to the game engine. In this way, the game engine is
simply a library that provides functionality for creating games. For now, your game engine consists of three
objects that support the initialization of WebGL and the drawing of a unit square. This is the folder that
you will continue to add source files and functionality to, which eventually will become a complete and
sophisticated game engine.

The Client Source Code
The src/MyGame folder will contain the actual source code to a game. As mentioned, the code in this folder
will be referred to as the client of the game engine. For now, the source code in the MyGame folder will focus
on testing the functionality of the simple game engine.

	 1.	 Create a new source file in the src/MyGame folder, or the client folder, and name
the file MyGame.js. Remember to load this new source file in index.html.

	 2.	 Create a constructor that receives an HTML canvas ID as a parameter and
contains a shader as an instance variable.

function MyGame(htmlCanvasID) {
 // The shader for drawing
 this.mShader = null;
 ...
}

	 3.	 Within the constructor, initialize the WebGL context and the VertexBuffer.

gEngine.Core.initializeWebGL(htmlCanvasID);

	 4.	 Then, create, load, and compile the shaders by doing the following:

this.mShader = new SimpleShader("VertexShader", "FragmentShader");

	 5.	 Finally, clear the canvas, activate the shader, and draw.

// Step C1: Clear the canvas
gEngine.Core.clearCanvas([0, 0.8, 0, 1]);
  
// Step C2: Activate the proper shader
this.mShader.activateShader();
  

Chapter 2 ■ Working with HTML5 and WebGL

25

// Step C3: Draw with the currently activated geometry and the activated shader
var gl = gEngine.Core.getGL();
gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

Remember to create the MyGame object from within the index.html body element.

<body onload="new MyGame('GLCanvas');">

Observations
Although you’re accomplishing the same tasks as with the previous project, with this project you have
created infrastructure that supports subsequent modifications and expansions of your game engine.
You have organized your source code into separate and logical folders, created Singleton-like objects to
implement core functionality of the engine, and gained experience with abstracting the SimpleShader object
that will support future design and code reuse. With the engine now comprised of well-defined objects with
clean interface methods, you can learn new concepts and build new abstractions, which you can continually
add to your engine.

Separating GLSL from HTML
Recall that in your projects thus far the GLSL shader code is embedded in the HTML source code of index.
html. This organization means that new shaders must be added through the editing of the index.html file.
Logically, GLSL shaders should be organized separately from HTML source files; logistically, continuously
adding to index.html will result in an unmanageable, cluttered file that would become difficult to work with.
For these reasons, the GLSL shaders should be stored in separate source files.

The Shader Source Files Project
This project demonstrates how to separate the GLSL shaders into separate files. As illustrated in Figure 2-9,
when running this project, a white rectangle is displayed on a greenish canvas, identical to the previous
projects. The source code to this project is defined in the Chapter2/2.5.ShaderSourceFiles folder.

Chapter 2 ■ Working with HTML5 and WebGL

26

The goals of the project are as follows:

•	 To separate the GLSL shaders from the HTML source code

•	 To demonstrate how to load the shader source files during runtime

Loading Shaders in SimpleShader
Instead of loading the GLSL shaders as part of the HTML document, the _loadAndCompileShader() in
SimpleShader can be modified to load the GLSL shaders as separate files.

	 1.	 Continue from previous project and open the SimpleShader.js file to edit the
_loadAndCompileShader() function to receive a file path instead of an HTML ID:

SimpleShader.prototype._loadAndCompileShader = function(filePath, shaderType)

	 2.	 Replace the HTML element retrieval code with the following XMLHttpRequest to
load a file:

xmlReq = new XMLHttpRequest();
xmlReq.open('GET', filePath, false);
try {
 xmlReq.send();
} catch (error) {
 alert("Failed to load shader: " + filePath);
 return null;
}
shaderSource = xmlReq.responseText;
 

Figure 2-9.  Running the Shader Source Files project

Chapter 2 ■ Working with HTML5 and WebGL

27

if (shaderSource === null) {
 alert("WARNING: Loading of:" + filePath + " Failed!");
 return null;
}

Notice that the file loading will occur synchronously where the web page will actually stop and wait for
the completion of the xmlReq.open() function to return with the opened file content. If the file should be
missing, the opening operation will fail, and the response text will be null.

The synchronized “stop and wait” for the completion of xmlReq.open() function is inefficient and may
result in slow loading of the web page. This shortcoming will be addressed in Chapter 4 when you learn
about the asynchronous loading of game resources.

■■ Note T he XMLHttpRequest() object requires a running web server to fulfill the HTTP get request. This
means you will be able to test this project from within the NetBeans IDE. However, unless there is a web server
running on your machine, you will not be able to run this project by double-clicking the index.html file directly.
This is because there is no server to fulfill the HTTP get requests and the GLSL shader loading will fail.

With this modification, the SimpleShader constructor can now be modified to receive and forward file
paths to the _loadAndCompileShader() function instead of the HTML element IDs.

Extracting Shaders into Their Own Files
The following steps retrieve the source code to the vertex and fragment shaders from the index.html file and
create separate files for storing them.

	 1.	 Create a new folder in the src folder and name it GLSLShaders, as illustrated in
Figure 2-10.  

Figure 2-10.  Creating the GLSLShaders folder

This will be the folder that contains all of the GLSL shader source code files.

	 2.	 Create two new text files within the GLSLShaders folder and name them
SimpleVS.glsl and WhiteFS.glsl. 

■■ Note A ll GLSL shader source code files will end with the .glsl extension. The VS in the shader file names
signifies that the file contains a vertex shader, while FS signifies a fragment shader. 

Chapter 2 ■ Working with HTML5 and WebGL

28

	 3.	 To create the GLSL vertex shader, edit SimpleVS.glsl to add the existing vertex
shader code in the index.html file from the previous project.

attribute vec3 aSquareVertexPosition; // Expects one vertex position
void main(void) {
 gl_Position = vec4(aSquareVertexPosition, 1.0);
}

	 4.	 To create the GLSL fragment shader, edit WhiteFS.glsl to add the fragment
shader code in the index.html file from the previous project.

void main(void) {
 gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);
}

Cleaning Up HTML Code
With vertex and fragment shaders being stored in separate files, it is now possible to clean up the index.html
file such that it contains only HTML code.

	 1.	 Remove all the GLSL shader code from index.html, such that this file becomes
as follows:

<!DOCTYPE html>
<head>
 <title>2.5: The Shader Source Files Project</title>
</head>
<body onload="new MyGame('GLCanvas');">
 <!-- Engine code -->
 <script type="text/javascript" src="src/Engine/Engine_Core.js"></script>
 <script type="text/javascript" src="src/Engine/Engine_VertexBuffer.js">
 </script>
 <script type="text/javascript" src="src/Engine/SimpleShader.js"></script>
 <!-- Client game code -->
 <script type="text/javascript" src="src/MyGame/MyGame.js"></script>
 ...
</body>

Notice that index.html no longer contains any GLSL shader and only a single line of JavaScript code
(to create the MyGame object). With this organization, the index.html file can properly be considered as
representing the web page where you will not need to edit it to modify a shader.

	 2.	 Modify the game to load the shader files instead of HTML element IDs. Edit
MyGame.js to modify step B to refer to the shader files created.

this.mShader = new SimpleShader(
 "src/GLSLShaders/SimpleVS.glsl", // Path to the VertexShader
 "src/GLSLShaders/WhiteFS.glsl"); // Path to the FragmentShader

Chapter 2 ■ Working with HTML5 and WebGL

29

Source Code Organization
The separation of logical components in the engine source code has progressed to the following state:

•	 index.html: This is the file that contains the HTML code that defines the canvas on
the web page for the game and loads all of the source code for your game.

•	 src/GLSLShaders: This is the folder that contains all the GLSL source code files that
shade the elements of your game.

•	 src/Engine: This is the folder that contains all the source code for your game engine.

•	 src/MyGame: This is the client folder that contains the source code for the actual game.

Changing the Shader and Controlling the Color
With GLSL shaders being stored in separate source code files, it is now possible to edit or replace the shaders
with relatively minor changes to the rest of the source code. The next project demonstrates this convenience
by replacing the restrictive constant white color fragment shader, WhiteFS.glsl, with a shader that can be
parameterized to draw with any color.

The Parameterized Fragment Shader Project
This project replaces WhiteFS.glsl with a SimpleFS.glsl that supports the drawing with any color.
Figure 2-11 shows the output of running the Parameterized Fragment Shader project; notice that a blue
square replaces the white square from previous projects. The source code for this project is defined in the
Chapter2/2.6.ParameterizedFragmentShader folder.

Figure 2-11.  Running the Parameterized Fragment Shader project

Chapter 2 ■ Working with HTML5 and WebGL

30

The goals of the project are as follows:

•	 To gain experience with creating a GLSL shader in the source code structure

•	 To learn about the uniform variable and define a fragment shader with the color parameter

Defining the SimpleFS.glsl Fragment Shader
A new fragment shader needs to be created to support changing the pixel color for each draw operation. This
can be accomplished by creating a new GLSL fragment shader in the src/GLSLShaders folder and name it
SimpleFS.glsl. Edit this file to add the following:

precision mediump float; // sets the precision for floating point computation
uniform vec4 uPixelColor; // to transform the vertex position
void main(void) {
 gl_FragColor = uPixelColor;
}

Recall that the GLSL attribute keyword identifies data that changes for every vertex position. In this
case, the uniform keyword denotes that a variable is constant for all the vertices. The uPixelColor variable
can be set from JavaScript to control the eventual pixel color. The precision mediump keywords define the
floating precisions for computations.

■■ Note  Floating-point precision trades the accuracy of computation for performance. Please follow the
references in Chapter 1 for more information on WebGL.

Modify the SimpleShader to Support the Color Parameter
The SimpleShader can now be modified to gain access to the new uPixelColor variable.

	 1.	 Edit SimpleShader.js and add a new instance variable for referencing the
uPixelColor.

this.mPixelColor = null;
// reference to the pixelColor uniform in the fragment shader

	 2.	 Add code to the end of the constructor to create the reference.

// Step G: Gets a reference to the uniform variable uPixelColor in the
// fragment shader
this.mPixelColor = gl.getUniformLocation(this.mCompiledShader, "uPixelColor");

	 3.	 Modify the shader activation to allow the setting of the pixel color.

SimpleShader.prototype.activateShader = function (pixelColor) {
 var gl = gEngine.Core.getGL();
 gl.useProgram(this.mCompiledShader);
 gl.enableVertexAttribArray(this.mShaderVertexPositionAttribute);
 gl.uniform4fv(this.mPixelColor, pixelColor);
};

Chapter 2 ■ Working with HTML5 and WebGL

31

The gl.uniform4fv() function copies four floating-point values from pixelColor to the mPixelColor,
or the uPixelColor, in the SimpleFS.glsl fragment shader.

Drawing with the New Shader
To test SimpleFV.glsl, modify the MyGame constructor to create and draw with the new shader.

function MyGame(htmlCanvasID) {
 // Step A: Initialize the webGL Context and the VertexBuffer
 gEngine.Core.initializeWebGL(htmlCanvasID);
  
 // Step B: Create, load and compile the shaders
 this.mShader = new SimpleShader(
 "src/GLSLShaders/SimpleVS.glsl", // Path to the VertexShader
 "src/GLSLShaders/SimpleFS.glsl"); // Path to the FragmentShader
  
 // Step C: Draw!
 // Step C1: Clear the canvas
 gEngine.Core.clearCanvas([0, 0.8, 0, 1]);

 // Step C2: Activate the proper shader
 this.mShader.activateShader([0, 0, 1, 1]);

 // Step C3: Draw with the currently activated geometry and the activated shader
 var gl = gEngine.Core.getGL();
 gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);
}

Notice that the mConstColorShader is created with the new SimpleFS.glsl (instead of WhiteFS) and
that it is now important to set the drawing color when activating the shader. With the new SimpleFS, you can
now experiment with drawing the squares with any desired color.

As you have experienced in this project, the source code structure supports simple and localized
changes when the game engine is expanded, in this case only changes to SimpleShader.js file. This
demonstrates the benefit of proper encapsulation and source code organization.

Summary
By this point the game engine is simple and supports only the initialization of WebGL and the drawing of
one colored square. However, through the projects in this chapter, you have gained experience with the
techniques needed in order to build an excellent foundation for the game engine. You have also structured
the source code in a way that allows you to support further complexity with limited modification to the
existing code base, and you are now ready to further encapsulate the functionality of the game engine to
facilitate additional features. The next chapter will focus on building a proper framework in the game engine
to support more flexible and configurable drawings.

