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Abstract: We have recently completed systematic molecular dynamics simulations of 807 different
proteins representing 95% of the known autonomous protein folds in an effort we refer to

as Dynameomics. Here we focus on the analysis of side chain conformations and dynamics to

create a dynamic rotamer library. Overall this library is derived from 31,000 occurrences of each of
86,217 different residues, or 2.7 3 109 rotamers. This dynamic library has 74% overlap of rotamer

distributions with rotamer libraries derived from static high-resolution crystal structures.

Seventy-five percent of the residues had an assignable primary conformation, and 68% of the
residues had at least one significant alternate conformation. The average correlation time for

switching between rotamers ranged from 22 ps for Met to over 8 ns for Cys; this time decreased

20-fold on the surface of the protein and modestly for dihedral angles further from the main chain.
Side chain S2 axis order parameters were calculated and they correlated well with those derived

from NMR relaxation experiments (R 5 0.9). Relationships relating the S2 axis order parameters to

rotamer occupancy were derived. Overall the Dynameomics rotamer library offers a comprehensive
depiction of side chain rotamer preferences and dynamics in solution, and more realistic

distributions for dynamic proteins in solution at ambient temperature than libraries derived from

crystal structures, in particular charged surface residues are better represented. Details of the
rotamer library are presented here and the library itself can be downloaded at http://

www.dynameomics.org.

Keywords: dynamic side chain distributions; rotamer transitions; model building; side chain

dynamics

Introduction

Protein side chain conformations have been studied

since the earliest crystal structures were solved.1 As

further structures were determined, it was found

that most side chains dihedral angles cluster in dis-

crete bins and that residues prefer certain combina-

tions of these bins. Each full and discrete side chain

conformation is known as a rotamer. Rotamer libra-

ries were created, detailing the frequency, angles,

and variance of each conformation.2 These libraries

are used to predict, build, design, and solve new
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protein structures.3 Currently, there are two major

libraries: a side chain only library by the Richardson

laboratory4 and a library including main chain con-

formation by the Dunbrack laboratory.5 Both groups

selected sets of high quality X-ray crystal structures

with low sequence similarity and then filtered for

individual residues with low B-factors and low clash

scores. This process reduced experimental ambiguity

and prevented bias from the computational techni-

ques involved, particularly the use of earlier rotamer

libraries to solve structures.4

But these techniques are not without their own

problems. The crystal structures themselves, and

especially the filtering techniques employed, may

yield an overly static view of protein structure. Flexi-

ble proteins that crystallize at lower resolution or

inherently flexible amino acid conformations with

high B-factors are excluded. The libraries use crystal

structures instead of solution structures and

may suffer from artifacts such as crystal contacts,

effects of crystallization conditions, or changes from

mutations or truncations necessary to improve

crystallization quality. In addition, the number

of structures determined under cryogenic conditions is

increasing, which can also skew the distributions.

The flexibility and dynamics of amino acids—

numbers of conformations visited by a residue and

the frequencies of these conformational changes—

are only beginning to be elucidated and are not

captured in the libraries. One early study found that

crystal structures of the same protein could have

alternate conformations assigned for up to 13% of

the residues.6 A more recent study found 3.3% of

residues were multirotameric within a single crystal

structure.7 S2 side chain order parameters derived

from NMR relaxation experiments in solution reflect

dynamics on the ps-ns time scale for the vector

orientation of the terminal methyl groups of selected

amino acids, but they have only been reported for a

small number of proteins.8

We have undertaken a study of the side chain

behavior of proteins using our Dynameomics protein

simulation dataset. Dynameomics is an effort to sim-

ulate the native state and unfolding behavior of rep-

resentatives of all autonomous protein folds.9,10

Here we have analyzed the native state molecular

dynamics simulations (MD) of 807 proteins spanning

essentially all known protein folds, each simulated

at 298 K for at least 31 ns.9 The resulting Dynameo-

mics rotamer library has 74% of the population

shared with crystallographically derived rotamer

libraries and a correlation coefficient of R ¼ 0.90

with a collection of side chain S2 order parameters.

Here we report the behavior of individual dihedral

angles, the conformations of individual rotamers,

correlation times for conformational changes, and

the effect of burial on these properties.

Results

Conformational analyses
We analyzed side chain conformation and dynamics

of the Dynameomics dataset.9,10 The simulation

targets were chosen for maximal structural diver-

sity11,12 and they each represent a different protein

fold, covering 95% of all known autonomous protein

domains. Here we make use of this new v2009 target

set. This set is now complete and all protein meta-

fold structures of sufficient quality have been simu-

lated for at least 31 ns at 25�C. The set includes

807 proteins, totaling 86,217 residues, with at least

31,000 samples of each residue.

For conformational analyses, we compared the

MD results against two experimentally derived data-

sets, one with more structures and one with higher

confidence structures. First we created an Inclusive

PDB dataset (Inc), which includes all structures

from the Astral40 collection version 1.71.13 It con-

sists of 30,835 proteins selected from the SCOP14

database having sequence similarity of � 40%. From

these we accepted any residue with all heavy atom

assignments (1,164,170 total residues). Next we cre-

ated a Filtered PDB dataset (Fil), which consists of

the raw data used to generate the May 2002 revision

of the Dunbrack backbone dependent rotamer

library.5,15 The library was created from 850 high

resolution protein structures and filtered to remove

residues with high B-factors or steric clashes,4 yield-

ing 133,798 residues. Both datasets alone are poten-

tially subject to some problems, either experimental

error for the former, or filter bias for the latter. In

particular, we found these two sets differ signifi-

cantly for Asp, Asn, Gln, and Glu, as discussed

below. Statistics for amino acid composition of each

dataset are available in Supporting Information

Table I. Overall, Inclusive PDB (Inc) covers 1004

folds, Filtered PDB (Fil) covers 310 folds, and Dyna-

meomics (Dyn) covers 807 folds.

Dihedral angle energy minima. We compared

the free energy minima of each dihedral angle using

population histograms (Figs. 1 and 2). In our Dyna-

meomics simulation set, all tetrahedral-carbon

angles have modes within 10� of their canonical min-

ima. For the most part the minima (as reflected in

the higher populations) are very similar in the

three data sets, although there is broadening in the

Dynameomics set due to dynamics.

The v2 rings of Phe and Tyr are similar between

all three datasets with single broad modes near 90�

(taking into account the 180� symmetry of these

angles). Hid and Hie (d and e protonated neutral

His, respectively) v2 rings peak at �80� and 70�,
within 10� of the experimental sets. Trp v2 is the

most distinctive angle, having modes at 6 90� and

�30� in all datasets. For Pro, our potential energy
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function employs a single v1 dihedral angle at 0� to

accommodate the 6 30� pucker. The pucker has

little effect on main chain dihedral angles16 and

there is less than 1 Å deviation in the Cc atom of

the ring between puckers. The Ser and Thr minima

are similar in the different datasets although the

peaks are broadened significantly and there is a

slight shift towards 0� in the Dynameomics minima.

The carboxyl and carboxyamide dihedral angles

of Asp/Asn v2 and Glu/Gln v3 show the most diver-

sity between the three datasets (Figs. 1 and 2). In

Dynameomics, Asn v2 is either flat or has NH2

tilting away from the main chain, with peaks at

�94� and 50�, whereas in Inclusive PDB and

Filtered PDB the NH2 group points away from the

main chain, peaking between �55� and �30�, respec-
tively, with heavy shoulders out to �90� and 50�,
that is, the two rotameric states of these residues

fuse. In Dynameomics, Gln v3 is almost uncon-

strained, slightly preferring 90� and �78�, putting

the O and NH2 groups flat against the c-hydrogens.
Inclusive PDB has peaks at �60� and �55�; Filtered
PDB has a plateau between modes at �60� and 50�,
each causing a d-atom to eclipse a c-hydrogen.
Again, the individual rotameric states aren’t well

resolved in Inclusive PDB and Filtered PDB.

Asp v2 differs the most between simulation in

solution and static crystal structures. Our results

show a broad distribution peaking at 66�, such that

one Oc eclipses a b-hydrogen. In contrast, the Inclu-

sive PDB and Filtered PDB peak at �20�: again

perpendicular to the main chain. Finally, Glu v3
contains two peaks, as expected, in Dynameomics,

while the Filtered PDB peaks sharply at 0�, and the

Inclusive PDB oscillates with little preference.

Dihedral angle populations. Based on the dihedral

angle distributions, we found that the canonical bins

used in construction of the Dunbrack rotamer

library5 were appropriate for Dynameomics, with

additional divisions for some dihedrals to improve

resolution (Fig. 2 and Supporting Information Tables

2 and 3). Using these definitions, we investigated

the populations of the individual bins. Experimen-

tally, most v1 angles (excepting Ile, Val, Ser, and

Thr) follow a distribution of 0�20% gþ, 30�40% t,

and 50�60% g�. In Dynameomics, Cys, Hid, Hie,

Leu, Phe, Trp, and Tyr agree to within 10% of the

static experimental populations. Arg, Gln, Glu, Lys,

and Met increase their v1 g� populations to

75�85%. In contrast, Asp and Asn increase their t

populations to 82�85%.

Ile and Val are b-branched and generally

(>73%) found with c-carbons flanking the small Ha
(g� in Ile, t in Val) in the Filtered PDB and Inclu-

sive PDB. In Dynameomics they are more evenly

distributed between Ha-flanking and C-flanking

populations. Thr is evenly split between gþ and g�

Figure 1. Dihedral Angle Distributions. Histograms of

dihedral angle populations are shown for Dynameomics,

Inclusive PDB, and Filtered PDB datasets for 18 amino

acids. Populations for trimeric v-angles and v-angles before

aromatic rings correspond well between data sets. Asn, Asp,

Gln, and Glu terminal v-angles differed strongly between

Filtered PDB and Dynameomics, with Inclusive PDB bridging

the gap. Pro is approximated in our force field by a single

peak bifurcating the puckered states. Several residues show

more subtle shifts in modal location and areas under each

minima. v1: black; v2: red; v3: green; v4: blue.
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Figure 2. Polar Dihedrals and Dihedral Angle Bins. For each data set, amino acid, and dihedral angle, a polar plot of the

dihedral angle histogram is displayed (as in Fig. 1), the division of that dihedral angle into rotameric bins, and the total

population of each bin. The left-hand column shows the rotameric bin definitions used; the first definition additionally contains

a graphical legend of the components of each plot. The notes column draws attention to dihedral angles with significant

differences between Dynameomics and experimental datasets with an asterisk and specifies that bin definitions were used for

each dihedral angle, which angles required a different definition for dynamic analyses, and which angles are symmetric.
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in both simulation and experiment. Ser is relatively

evenly distributed between its three conforma-

tions (24�47%) experimentally, but prefers g� in

Dynameomics.

Dynameomics and experimental populations for

v2 generally follow a simple trend: avoid steric

clashes with the main chain. The cyclic amino acids,

His, Phe, Trp, and Tyr, populate a gauche rotamer

(>80%), keeping the ring flat against the main

chain. Residues with a single d-carbon (Arg, Glu,

Gln, Ile, Met, Lys) favor trans (60�85%). Leu keeps

v2 in either trans (65%) or gþ (33%), positioning at

least one of its d-carbon away from the main chain.

c-branched Asp and Asn, however, defies this trend.

Experimentally, Asn keeps Nd away from the back-

bone with 90% Og�, Nt, and Ogþ and Asp prefers t

by 60%. These trans conformations place an Od
within 3 Å of the main chain NH or CO. In contrast,

in Dynameomics, Asp and Asn v2 avoid trans. Asn

has a 30% lower population of Og� and Nt, instead

favoring Ngþ and Ogþ. Asp moves 50% of the popu-

lation from t to gþ.

Glu and Gln v3 angles are somewhat analogous

to their Asp and Asn v2 counterparts, though the

differences between simulation and experiment are

not as extreme and the Inclusive PDB is intermedi-

ate between the Filtered PDB and Dynameomics.

Met v3 populations split roughly into thirds in all

three datasets, each slightly favoring g� (41�44%),

but with a switch in the preferred secondary confor-

mation from gþ in crystal structures to t in simula-

tion. Arg v3 and v4 are split about 50% t and 25%

each in gþ and g�, experimentally. v3 is more

evenly distributed (28�37%) in Dynameomics; v4
retains experimental populations. Lys v3 and v4
favor trans (66�75%) in the static crystal structures.

Dynameomics matched in v3, but v4 shifted to

gauche conformations (gþ: 38%; g�: 47%).

Major rotamer distributions. Having examined

individual dihedral angles, we turned to the full con-

formation of the longer amino acids. Complete

rotamer libraries are available in Supporting Infor-

mation Table III. The most populated rotamer was

generally a combination of the dominant dihedral

angle conformations, discussed above (Supporting

Information Table 4). Populations of other conforma-

tions are more difficult to predict. For brevity, for

each amino acid, we present only the similarity of

its rotamer population between datasets (Fig. 3) and

a count of its significant conformations (Fig. 4 and

Supporting Information Table 4).

Similarity was measured as the fraction of the

rotamer population that does not shift rotamers

between datasets; alternatively, displacement or

difference refers to this shifted population (precise

calculation provided in Methods). The average simi-

larity between Dynameomics and both Filtered PDB

Figure 3. Data Set Similarity of Rotamer Libraries. The

figure displays the similarity between rotamer libraries from

each data set. The experimentally derived data sets

[FilteredPDB (F), InclusivePDB (I), and Control (C)] are highly

similar to each other. They are distinct from the

Dynameomics derived data sets [Dynameomics (D), Buried

(B), Intermediate (N), and Surface (S)].
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and Inclusive PDB was 74%. Filtered PDB and

Inclusive PDB were themselves 94% similar and

were �84% similar for all residues (for simplicity, we

address them together as experimental data where

they are >95% similar). A large shift in a single

dihedral angle will also limit rotamer similarity,

such as in Asn, Asp, and Lys (36�48% similarity

between simulation and experiment). In longer resi-

dues, small differences in the populations of each

rotamer can sum to a significant total difference

(Gln at 59% and Glu at 60%). Most other residues

are >75% similar between experiment and simula-

tion (or crystal and solution).

The number of significant conformations—indi-

vidual rotamers having >5% of the total population—

varied by the length of the residue: for residues with

1�4 angles, the average counts were 2.4, 4.6, 5.3, and

4.6 significant rotamers (Supporting Information

Table 4). The experimental datasets show similar,

though slightly higher counts. There were a few con-

formations not observed in Dynameomics: two for Arg

and four for Lys. These conformations all had steric

clashes within the residue. This was similar for

the Filtered PDB; all configurations were seen in

Inclusive PDB.

Dynameomics control dataset: no bias from

starting structures. As a control to check against

bias introduced by our selection and preparation of

proteins, we created a library from our starting

structures. Targets were prepared for simulation by

building in missing atoms and then briefly minimiz-

ing the structure in vacuo to remove clashes. This

Dynameomics Control dataset is most similar to the

Inclusive PDB (92%) and Filtered PDB (88%) data-

sets, and differs 25% from Dynameomics. For every

amino acid, both rotamer and dihedral angle bin

populations were at least as similar to the Inclusive

PDB as to Dynameomics (Fig. 3). We conclude that

the starting structures are representative of the In-

clusive PDB dataset, as expected, and have not bi-

ased our results.

Buried and surface datasets: steric restriction

and conformation. We investigated the relation-

ships between conformation and solvent exposure in

Dynameomics. Each residue in a protein was classi-

fied into Buried, Intermediate, or Surface datasets

(Fig. 4) based on side chain solvent accessible sur-

face area (ranges listed in Supporting Information

Table 5). The Intermediate subset contains 50% of

the residues and is on average only 3% displaced

from the full Dynameomics dataset, and is in no

case more than 8% different (for Cys), so we com-

pare just the Buried and Surface datasets.

Populations from the Buried and Surface sets

are different both from the Dynameomics superset

(9%) and from each other (17%). Hydrophobic resi-

dues (Cys, Ile, Trp, Tyr) have smaller displacements

from Dynameomics in the Buried set. Polar and

charged residues (Asn, Asp, Gln, Glu) are more

similar to Dynameomics in the Surface set. Other

residues show little change (<5%).

Generally, Buried residues are 5% more similar

to the Filtered PDB than to Dynameomics. Asp,

Asn, Glu, and Gln are 9�18% closer and no residue

is more than 1% further (Cyh, Hie). In contrast,

Surface residues differ from experiment by an addi-

tional 7% over Dynameomics. Arg, Asn, Asp, Cys,

Glu, Ile, Lys, Trp, and Tyr are >10% further.

Figure 4. Rotamer Occupancy. A: Significant Rotamers. A

typical residue in a protein has two rotamers at > 10%

occupancy. Gln and Met occupy the most states while the

short amino acids occupy only 1.5 rotamers. Classifying

residues by SC-SASA shows residues occupy an extra 1=2

rotamer when on the surface of a protein compared to

when buried. B: Assignable Residues. 75% of residues

have a single, unambiguously assignable rotamer

conformation (>50% occupancy). Asp, Cyh, Cys, Ile, Leu,

Phe, Ser, Thr, Trp, Tyr, and Val are assignable more than

85% of the time. These residues, except for Trp, also show

little response to burial. The longer residues, particularly

Gln and Met, can be much more difficult to assign the full

conformation to.
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These increases were apparent across almost every

dihedral angle as well.

Dynamic behavior

The dynamic behavior of amino acids was analyzed

in several ways. For each residue, we recorded how

many conformations it sampled and the rate at

which it changed between these conformations; we

then aggregated the data for each amino acid. Such

properties can only be indirectly measured via

experimental techniques, but we have calculated

properties appropriate for comparison with experi-

mental results.

Rotamer sampling

First, we examine the conformational space occupied

by individual protein residues in Dynameomics, both

in terms of dominant conformations and significant

alternate conformations. We consider residues occu-

pying a single conformation for �50% of its simula-

tion as an unambiguous primary rotamer assign-

ment [Fig. 4(a) and Supporting Information Table 6].

The amino acids fell into flexible and static groups.

The flexible amino acids averaged 42% 6 16%

‘‘assignability’’ (the fraction of residues that could be

assigned a primary conformation). These consisted

precisely of the residues with �18 defined rotamers:

Arg, Asn, Gln, Glu, Hid, Hie, Lys, and Met. The

residues with �9 defined rotamers had a primary

conformation in over twice as many cases: 95% 6

4%.

We define significant rotamers in a residue’s

conformation space as those populated for more

than 10% of the simulation [Fig. 4(b) and Supporting

Information Table 6]. The average residue populated

2.08 rotamers. Flexible residues averaged 2.8 6 0.4

rotamers and ranged from 2.2 to 3.5 rotamers. The

static residues fell in a narrow range between 1.3 and

1.8 rotamers, with a mean of 1.66 0.2 rotamers.

Buried residues had 0.28 fewer rotamers and

Surface residues had 0.22 more rotamers than the

full Dynameomics set [Fig. 4(b)], on average. The

Intermediate set again closely resembles the full

Dynameomics set. The flexible residues have a large

increase in occupied rotamers when solvent exposed

(þ0.85 6 0.37). Though falling into the static group,

the aromatic residues increased as much as dynamic

residues (þ0.78 6 0.60). The rest of the residues

were relatively flat (þ0.10 6 0.25), with Asp losing

0.4 rotamers and Thr gaining 0.4 rotamers.

The flexible and assignable groups held up in

assignability as well, with the exception of Trp. The flexi-

ble residues lost 43% 6 9% assignability on the surface

relative to full burial and static residues lost 5% 6 14%.

Trp represented the bulk of this loss, at 46%.

Rotamer transitions. We next investigated the

correlation times for rotamer transitions (Fig. 5).

While our primary rotamer definitions are intended

for conformational analyses, analysis of rotamer

dynamics requires rotamer boundaries at energy

maxima for all residues, lest the switching times be

dominated by rapid movement within an energy

well (Figs. 1 and 2). For v2 of Asn, Asp, His, Phe,

and Tyr and v3 of Gln and Glu, we define gþ and

g� rotamers separated at 0� and 180�.
Residues were loosely grouped into short (<100

ps), medium (100�1,000 ps), and long (>1,000 ps)

correlation times. Met and Gln were the fastest

Figure 5. Correlation times for rotamer transitions. The

correlation time for a residue is a function of the behavior of

each v-angle, often dominated by a single fastest angle.

More terminal v-angles and more solvent exposed v-angles
tend to move faster (exceptions noted in text). Correlation

times longer than 1,000 ps are increasingly under-sampled

due to the limits of simulation time, so mean correlation

times of slower residues are likely underestimated.
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residues (having short times and more overall tran-

sitions); Arg, Asn, Cyh, Glu, Hid, Hie, Ile, Leu, and

Lys had intermediate times; Asp, Cys, Phe, Ser, Thr,

Trp, Tyr, and Val were slow (long correlation times

with few transitions, with individual residues often

maintaining the same rotameric state throughout

the simulation).

For longer residues, the outer dihedral angles

generally experienced more transitions than those

closer to the main chain (Fig. 5). Asn, Asp, Gln and

Glu terminal v angles switched between rotamers up

to 10� more frequently than the penultimate angle.

The only exceptions were v2-angles of Gln, Glu, Phe,

and Tyr, which took 25�100% longer than v1-angles
due to the strong v2 preference for trans (Gln/Glu)

and gauche (Phe,Tyr) conformation irrespective of v1
orientation. The Lys v4 angle correlation time was

18% longer than its v3. Flexible residues (as defined

above) tended to have faster switching times than

static ones.

Solvent accessibility also modulates correlation

times (Fig. 5), with virtually all residues transition-

ing faster with increased solvent exposure. Here,

there were two groups and one outlier. Some resi-

dues showed modest increases upon solvent expo-

sure, increasing switching rates by 0.2�6 fold when

fully exposed compared with full burial: Cyh, Cys,

Ile, Lys, Met, Ser, and Val. The second set increased

by 11�33 fold: Arg, Asn, Asp, Gln, Glu, His, Leu,

Phe, Tyr, and Tyr. Finally, Trp showed a 239-fold

increase in switching rate when solvent exposed.

Not only did outer angles of Trp residues tend to

have shorter correlation times, the values decreased

faster upon solvent exposure (Fig. 5). Trp v2 dropped

from 4,113 ps when buried to 14 ps at the surface

(300� increased rate) while v1 only decreased from

11,750 ps to 528 ps (22� increased rate). That the v2
increase was greater than the total increase indi-

cates that changes in v2 and v1 became more coupled

at the surface. This is caused by shallow energy

wells for Trp v2 and complicated by the fact that the

apparent energy maxima change as a function of

solvent exposure (Fig. 5), with the trans population

disappearing in the Surface dataset. Ile, Leu, Met,

and Phe had parallel rate increases, between 1.0

and 1.6 fold. Lys and Tyr were the only residues

with more slowly increasing rates, 0.5 and 0.7 fold.

S2 Side chain order parameters. Currently, the

best experimental measure of side chain dynamics is

S2 order parameters from NMR relaxation experi-

ments.17,18 These measure the vector deviation of

side chain methyl groups of Ala Cb, Ile Cc and Cd,
Leu Cd, Met Ce, Thr Cc, and Val Cc on a ps-ns time

scale. We calculated S2 order parameters with a 5-

nanosecond window for each of these groups in

Dynameomics and compared these distributions to a

collection of relaxation data for 18 proteins.8

[Fig. 6(A) and Supporting Information Table 7]. Cor-

relations for each group ranged from R ¼ 0.69 to

0.93, with an overall correlation of R ¼ 0.88. The

individual terminal methyl groups were indistin-

guishable for Leu Cd1 and Cd2 (R ¼ 0.96) as well as

for Val Cc1 and Cc2 (R ¼ 0.99), so they were

grouped together as Leu Cd and Val Cc in the table

and figures. The largest differences were for Ile Cd,
which is slightly less mobile than experiment, and

Thr Cc, which is more mobile than experiment.

We next compared our S2 calculations with our

measures of rotamer occupancy, the time spent by

individual residues in their primary, secondary, and

tertiary (the sum of all other) rotamers [Fig. 6(B)

and Supporting Information Table 8]. S2 was moder-

ately correlated with primary rotamer occupancy

(R ¼ 0.57 to 0.84); the linear fit is shown in Figure

6(b). For all groups, order parameters above 0.75

indicated > 90% occupancy of a primary rotamer.

For Ile, Leu, and especially Met, order parameters

below 0.5 indicated > 10% population of tertiary

rotamers.

Discussion

We have studied protein side chain behavior in

Dynameomics, a database of all-atom simulations of

807 proteins in explicit solvent at 25�C. These pro-

teins represent essentially all known autonomous

protein domains. We analyzed conformational and

dynamical properties and compared our results with

experiment, where available. Our primary goals

were to create a dynamic rotamer library for compu-

tational protein structure building and design and to

better understand protein motion. Further, we

desired a rotamer library representative of proteins

in solution at ambient temperatures. We compared

our results with experimental data, which include a

mix of structures determined by X-ray crystallogra-

phy (100% in Filtered PDB, 86% in Inclusive PDB),

NMR (14% in Inclusive PDB), and other methods

(four structures in Inclusive PDB). We note that

84�89% of the crystal structures were obtained at

cryo temperatures (�100 K).

Our rotamer library overlapped 74% with the

experimental libraries (Fig. 3), which were them-

selves similar for most residues. The primary differ-

ences were in the terminal dihedral angles of

charged residues (e.g., Asp, Gln, Lys, Ser) or in b-
branched residues (Ile and Val; Figs. 1 and 2 and

Supporting Information Table 3). Long residues

(Arg and Met) and residues without well-defined di-

hedral energy minima (Hid, Hie) also differed more

between data sets due to subtle conformational

shifts. Experimental and simulation datasets were

generally more similar for residues buried in the

proteins as opposed to surface exposed residues,

regardless of residue charge, though differences

were larger for charged residues, which are
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generally surface exposed. Asp, Asn, Glu, and Gln

also had the largest differences (11�16%) between

the two experimental datasets while the other

residues averaged 4% difference (Figs. 1 and 2,

Supporting Information Tables 3 and 4).

Rotamers for solvent-exposed residues present

a particular challenge for experimental techniques.

In crystal structures, surface residues are more

dynamic, have poorer electron density, and may be

systematically left out or incorrectly assigned. Sur-

face residues are also often buried at crystal packing

interfaces, potentially distorting their conformations.

Dynameomics captures the rotamer populations

of individual residues, both buried and exposed alike

(Figs. 2 and 3). Residues spend significant time

(>10% occupancy) in 2.1 rotamers on average and

75% of the residues have a single, unambiguous

rotamer assignment (> 50% occupancy). Amino acids

broke down into ‘‘dynamic’’ and ‘‘static’’ groups: those

that were defined as having at least 18 rotamers

and averaging at least two significant rotamers

versus those with fewer rotamers that were at least

85% assignable. The one exception was Asp, which

has 18 rotamers defined but was 95% assignable

and occupied only 1.7 significant rotamers. Further-

more, all the dynamic residues (including Arg, Asn,

Gln, Glu, Hid, Hie, Lys, and Met) were at least 20%

displaced between experimental and MD libraries,

whereas only Asp, Ile, Ser, and Val were more than

20% displaced in the static residues (which also

include Cyh, Cys, Leu, Phe, Thr, Trp, and Tyr).

We measured correlation times between rotamer

transitions for each residue (Fig. 5). Overall, Met,

and Gln had the shortest correlation times: on the

order of 30 ps between rotamer flips. Cys was the

slowest (8 ns). The amino acids formed similar

groups again, with dynamic residues switching tran-

sitioning between rotameric states more frequently

than static ones.

Finally, we calculated side chain S2-axis order

parameters for those residues commonly probed in

NMR relaxation experiments (Ala, Ile, Leu, Met,

Thr, and Val). We compared these distributions to an

experimental dataset assembled for 18 proteins8

Figure 6. S2 Side chain order parameters. A: Order parameter histograms. Order parameter distributions for Dynameomics

closely replicate trends seen in experiment. R-values are listed for each methyl group. B: Order parameters vs. rotamer

occupancy. Order parameters directly reflect the rotamer sampling of a residue. These plots relate order parameters to

occupancy of primary, secondary, and tertiary rotamers for each residue in Dynameomics along with linear trend lines. R-

values between the order parameter and the primary rotamer occupancy are included in the figure. Complete correlations and

equations for the lines are in Supporting Information Table 8.
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[Fig. 6(A) and Supporting Information Table 7].

Taking the histogram at 0.1 bins of the S2 values,

we found decent to excellent correlations (R ¼ 0.69

to 0.93). We related order parameters to rotamer

occupancy, measured as the fraction of time a resi-

due spends in its primary, secondary, and tertiary

(all other) rotamers [Fig. 6(B) and Supporting

Information Table 8]. We found linear correlations

for each cardinal rotamer compared with S2 with

correlations ranging from R ¼ 0.57 to 0.84, account-

ing for up to 70% of the variance in the S2 values.

These correlations suggest that the dynamic

behavior observed in the Dynameomics dataset is

well in line with experiment. The differences

observed between Dynameomics and Filtered PDB

were largest for the dynamic, surface residues,

which are not well represented by the filtered, low

temperature, crystal structures comprising the

experimental data sets. The work described here

constitutes a new dynamic rotamer library and one

of the most detailed analyses to date of dynamic side

chain behavior. In addition, comparison with experi-

mentally derived crystallographic rotamer libraries

indicates that the Dynameomics rotamer library

provides more accurate results for polar surface

residues. Results from this study, as well as other

structural analyses of the Dynameomics database,

are publicly available at our website at http://

www.dynameomics.org as part of our Structural

Library of Intrinsic Residue Propensities (SLIRP)

endeavor. In addition the library itself is available

for download for incorporation into model building

programs and other applications.

Materials and Methods

Conformational data sets

Using three primary data sources and four filters,

we created seven rotamer libraries for conforma-

tional analyses. Our major data set was Dynameo-

mics,9,17,18 a database of simulations of 807 proteins.

Each protein in the dataset represents a unique pro-

tein fold11,12 as determined by a two out of three

consensus by three protein domain dictionaries:

SCOP,14 CATH,19 and Dali.20 These proteins repre-

sent 81% of all known protein structures. Each pro-

tein was simulated at 298 K for 31�51 nanoseconds

using the simulation package ilmm (in lucem molec-

ular mechanics).21 ilmm employs the Levitt et al.

force field22 in the NVE microcanonical ensemble

with explicit F3C waters.23,24 The first nanosecond

of each simulation was considered equilibration time

and not included in analysis. Structures were saved

and analyzed at one ps resolution.

We divided Dynameomics into three further

data sets by classifying each amino acid by its side

chain solvent accessible surface area (SC-SASA)25

into Buried, Intermediate, or Surface groups (Sup-

porting Information Table 5). To determine the SC-

SASA cutoffs, we referred to a set of penta-peptide

simulations, each of the sequence Gly-Gly-X-Gly-Gly,

where X is the amino acid of interest.26 We

measured the distribution of SC-SASA for the cen-

tral residue in 5 Å2 bins and used the smallest bin

containing at least 1% of the population as the bot-

tom cutoff for Surface residues. We then took 25% of

this threshold as the top cutoff for Buried residues;

residues in between are in the Intermediate set.

These cutoffs were selected to give a structural

meaning to the datasets while including enough

occurrences of each residue for statistical analysis

(Supporting Information Tables 1 and 8). There

were 24,872 buried residues, 42,854 intermediate

residues, and 18,805 surface residues.

A static Control set was constructed from the

starting structures of each Dynameomics simulation.

These structures have passed though our build

process, which includes reconstruction of missing

atoms, brief minimization in vacuo, solvation in a

water box, and equilibration of the water. We have

shown data for the starting structures to confirm

that the build process had a minimal effect on the

structure.

Finally, we selected two publicly available data-

sets of static experimental structures, which we

refer to as Inclusive PDB and Filtered PDB. Inclu-

sive PDB was derived from Astral40, a curated set

of protein structures selected from SCOP14 having

<40% sequence identity. We analyzed version 1.71

and included any residue with all heavy atom

assignments, totaling 30,835 pdbs, 1,164,170 resi-

dues, and 1004 unique protein folds. Filtered PDB is

derived from the dataset used to generate the

Dunbrack and Cohen backbone dependent rotamer

library,5,15 first published in 1997, last revised in

2002. The revision begins with 850 protein chains

from high quality crystal structures (<1.7 Å

resolution) and then filters for residues having low

B-factors, no steric clashes, and a single assigned

conformation. It contains 133,798 residues and 310

unique protein folds. The current library and residue

data are available at the Dunbrack web site (http://

dunbrack.fccc.edu/bbdep/).

Conformational analyses
For each analysis and dataset, all residues in all

proteins were considered to be independent observa-

tions; residue results were normalized by simulation

length for Dynameomics data sets. Dihedral angle

distributions (Figs. 1 and 2) were collated to deter-

mine the location and shape of energy minima in

our ensemble. For each angle of each residue, we

created histograms of the populations in 5� bins.

We generated a backbone independent rotamer

library for each dataset (Supporting Information

Table 4). To capture the full conformational range of
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each amino acid, we use rotamer definitions similar

to that reported by Dunbrack,5,15 which divide

the 360� range of each dihedral angle into bins

separated at the predicted energy maxima of

eclipsed atoms (Fig. 2 and Supporting Information

Table 2). A rotamer is a combination of these bins,

defining the total conformation of a residue. A

rotamer library is simply the probability distribution

of observing a residue in a given rotamer. It contains

Supporting Information data such as the average

and modal dihedral angles of a conformation.

To measure similarity between dihedral angle

bin or rotamer distributions, we use a population

displacement metric. We begin with histograms A

and B of the dihedral or rotamer distributions from

different data sets. Each dataset includes all each

normalized to a population of 1. The similarity

between histograms is the population that does not

change between equivalent bins Ai and Bi [Eq (1)].

For each bin pair, this is the population that is

found in both bins, or Min(Ai, Bi). The total similar-

ity is the sum over all bins. Displacement, con-

versely, is the fraction that does change [Eq. (2)].

Similarity and displacement together sum to one.

Similarity ¼
X

MinðAi;BiÞ (1)

Displacement ¼
P jAi � Bij

2
(2)

Dynamics analyses

Our dynamical analyses were applied to Dynameo-

mics and its derived dynamical datasets (Buried,

Intermediate, and Surface). We measured distribu-

tions of how many rotamers individual residues

populated (Fig. 4) at given occupancy thresholds. We

discuss results for the 50% and 10% thresholds as

unambiguous assignment and significant occupancy,

respectively. Results for 0�100% occupancy are

available in Supporting Information Table 6.

We analyzed correlation times between transi-

tions for both rotamers and dihedral angle bins for

each amino acid (Fig. 5 and Supporting Information

Table 7). A new set of dynamical rotamer definitions

was necessary for dihedral angles with wide, shallow

energy minima: v2 of Asn, Asp, His, Phe, and Tyr

and v3 of Gln and Glu. These angles all had energy

maxima at 0� and 180� (Figs. 1 and 2) and so we

split them into two bins at those angles. Symmetric

dihedral angles were treated as asymmetric for this

purpose. Correlation time distributions were calcu-

lated for each protein residue, normalized to the

simulation time, and then these distributions were

averaged together for each amino acid. Mean corre-

lation times were calculated from these histograms

(Fig. 5).

S2 generalized order parameters27–29 are used to

describe the motion of side chain methyl groups (Ala

Cb, Ile Cc, Ile Cd, Leu Cd1 and Cd2, Met Ce, Thr Cc,
and Val Cc1 and Cc2) observed by NMR. For com-

parison with experiment,8 we have measured distri-

butions of S2 order parameter distributions for each

of these residues (36,356 total residues including

6,430 alanines) in Dynameomics (Fig. 6).30–32 S2 can

be calculated for an individual methyl group in the

following way. First, all structures in the simulation

are aligned and the vector orientation of the methyl

group is calculated for each time point. Equation 3

is applied to a time window to determine S2 for that

window. The final value for each methyl group is the

average of a sliding window across the entire simu-

lation. P2 is the second Legendre polynomial: P2[x] ¼
1/2(3x2 � 1). l(i)l(j) is the projection of a unit vector

along the bond vector at a time i to a time j. T is the

window size. We used a window of 5 ns, which is

comparable to correlation times used in experiment

(2�10 ns). Distributions for windows from 250 ps to

10 ns were also calculated, but they had poorer

matches to experiment. To aid interpretation, we

created scatter plots of S2 against primary, second-

ary, and tertiary multirotameriticity populations

for each residue and performed linear regression

analysis (Fig. 6).

S2 ¼ 1=T2
XT

i¼0

XT

j¼0

P2½lðiÞlðjÞ� (3)
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