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a b s t r a c t 

Building on past research, we here develop an analytic framework for describing the dynamics of the 

transmission of soil-transmitted helminth (STH) parasitic infections near the transmission breakpoint and 

equilibria of endemic infection and disease extinction, while allowing for perturbations in the infectious 

reservoir of the parasite within a defined location. This perturbation provides a model for the effect of 

infected human movement between villages with differing degrees of parasite control induced by mass 

drug administration (MDA). Analysing the dynamical behaviour around the unstable equilibrium, known 

as the transmission ‘breakpoint’, we illustrate how slowly-varying the dynamics are and develop an un- 

derstanding of how discrete ‘pulses’ in the release of transmission stages (eggs or larvae, depending on 

the species of STH), due to infected human migration between villages, can lead to perturbations in the 

deterministic transmission dynamics. Such perturbations are found to have the potential to undermine 

targets for parasite elimination as a result of MDA and/or improvements in water and sanitation provi- 

sion. We extend our analysis by developing a simple stochastic model and analytically investigate the 

uncertainty this induces in the dynamics. Where appropriate, all analytical results are supported by nu- 

merical analyses. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The past two decades have seen considerable progress in

he control of many of the Neglected Tropical Diseases (NTDs)

n resource-limited countries ( Brooker et al., 2004; WHO, 2012;

ro ). This is especially the case for helminth parasites where

rugs are available to treat infection via mass drug administration

MDA) programmes. These infections include the soil-transmitted

elminths (STH), the filarial worms and the schistosome parasites.

ost the London Declaration in 2010, pharmaceutical companies

ave donated drugs free to resource poor countries with endemic

nfection to facilitate large mass drug administration (MDA) con-

rol programmes under the direction of World Health Organization

WHO) guidelines for treatment strategies in various transmission

ettings ( WHO, 2012; Crompton, 2006; Lon ). 
∗ Corresponding author at: London Centre for Neglected Tropical Disease Re- 

earch (LCNTDR), Department of Infectious Disease Epidemiology, St. Marys Cam- 
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These important helminth parasites — that are a cause of much

orbidity and, in some cases, mortality — do not induce strong ac-

uired immunity to reinfection post anthelmintic treatment. MDA

ust therefore be repeated frequently to reduce morbidity where

he frequency of treatment depends on the intensity of transmis-

ion in a defined setting (the magnitude of the basic reproduc-

ive number R 0 ) and other factors associated with the popula-

ion biology of the parasite such as adult parasite life expectancy

 Anderson and May, 1992 ). In these circumstances, recent research

as focused on the question of whether MDA (if administered at

igh coverage, frequently and targeted at large sections of the

ommunity) can, on its own, eliminate helminth parasite trans-

ission ( Anderson et al., 2015; Truscott et al., 2015; Anderson

t al., 2017; Truscott et al., 2017 ). For STH, a number of large-

cale trials are currently underway in regions of endemic infec-

ion to test this notion ( Ásbjörnsdóttir et al., 2018; Pullan et al.,

019 ). 

Mathematical models of helminth parasite transmission and

DA effect provide many insights into both the overall impact

f various control policies and the behaviour of parasite popula-

ions under sustained drug treatment at defined levels of popu-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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lation coverage and treatment frequencies ( Anderson et al., 2017;

Truscott et al., 2017 ). Helminths are dioecious by nature having

separate sexes. As such, both male and female parasites must be

in the same host for the female worm to be fertilized and produce

viable infective stages (eggs or larvae) to sustain transmission. Past

research has shown that the parasite population has three possible

equilibria mean worm loads in the human host, a stable endemic

state, parasite extinction, and an unstable state termed the ‘trans-

mission breakpoint’ which lies between the stable state and para-

site extinction ( Macdonald, 1965; May, 1977; Anderson and May,

1985 ). The distance between the unstable breakpoint and para-

site extinction is determined by the degree of parasite aggregation

across individuals, as measured inversely by the negative binomial

shape parameter k , where high aggregation draws the breakpoint

towards the point of parasite extinction ( Anderson and May, 1992 ).

The past successes of MDA control programmes have now

moved parasite mean intensities and prevalences of infection to

low levels in many regions of endemic infection in Africa and Asia.

This has provided a further stimulus to push to eliminate para-

site transmission where possible by increased effort s to raise cov-

erage and compliance to treatment to remove the need for con-

tinued MDA programmes into the predictable future. In these cir-

cumstances, a deeper understanding of a number of epidemiologi-

cal factors is ideally required and these include the two issues ad-

dressed in this paper. 

The first of these factors is the expected dynamical behaviour of

the human host-helminth parasite system around the breakpoint

in transmission, which separates between the two dynamical at-

tractors of endemic parasite persistence and parasite extinction.

An obvious question is: how slowly (or quickly) do the parasite

transmission dynamics move away from the unstable breakpoint

towards either attractor? This question is of practical significance

since in monitoring and evaluating parasite prevalence and mean

intensity trends as MDA coverage increase, public health workers

need to understand how these epidemiological measures might be

expected to change over time as the system moves towards para-

site transmission interruption. 

The second factor is the influence of the migration of infected

individuals into areas where the parasite population is set to cross

the boundary of transmission cessation. This issue arises due to

the observed heterogeneity in MDA coverage between adjacent or

nearby villages or towns, due to various factors influencing the

delivery and acceptance of MDA. Such migrations can potentially

modify the reservoir of infectious material (eggs and larvae for

STH) and hence render the transmission dynamics uncertain. This,

in turn, poses the obvious question: how uncertain are the trajec-

tories of transmission dynamics in the presence of migration? This

issue is again of practical significance since an understanding of

the impact of human movement between population centres in a

landscape of heterogeneous MDA coverage will inform policy for-

mulation and focus attention on attaining high and uniform cover-

age. 

We examine both of these questions using mathematical mod-

els of parasite transmission and control and employing analytical

and numerical approaches. Our focus is on the control of the soil-

transmitted helminths, but the conclusions are more broadly ap-

plicable to other human helminth infections. Throughout our fo-

cus shall be on the applied significance of the predicted dynamical

properties of human-helminth parasite interactions to the design

of effective control policies and their monitoring and evaluation. 

2. Basic transmission model 

The nonlinear dynamical system of equations describing the

time evolution of the mean total worm burden M ( t ) (hereafter,

simply ‘mean worm burden’) and infectious reservoir L ( t ) is given
y Anderson and May (1992) 

d M 

d t 
= βL (t) − (μ + μ1 ) M(t) (1)

d L 

d t 
= 

λ

2 

φ[ M(t) ; z, k ] f [ M(t) ; z, k ] M(t) − μ2 L (t) , (2)

here: β quantifies the contact rate of an individual with respect

o L; μ, μ1 and μ2 are the death rates associated to humans,

orms and infectious material in the reservoir (eggs and larvae),

espectively; λ is the rate of egg production per female worm; γ
s the density-dependent fecundity power index which accounts

or a decreased egg rate per female worm in the hosts with a

arge number of worms aggregated together; and we have defined

 ≡ e −γ as well as 

f [ M(t) ; z, k ] ≡
[

1 + (1 − z) 
M(t) 

k 

]−(k +1) 

(3)

φ[ M(t) ; z, k ] ≡ 1 −
[

1 + (1 − z) M(t) /k 

1 + (2 − z) M(t) / (2 k ) 

]k +1 

, (4)

here the former factor quantifies the effect of density-dependent

ecundity, the latter factor quantifies the effect of sexual reproduc-

ion between worms in order to generate new fertilized eggs for

he reservoir (assuming fully polygamous male worms) and 1/ k is

he ‘clumping factor’ (the degree to which worms aggregate within

ndividual hosts). 

The second derivative of M ( t ) can be obtained by taking the

ime derivative of Eq. (1) 

d 

2 M 

d t 2 
= β

d L 

d t 
− (μ + μ1 ) 

d M 

d t 
, (5)

hich is essentially a ‘force’ acting in the 4-dimensional phase

pace of [ M ( t ), L ( t ), M 

′ ( t ), L ′ ( t )]. With a specified reservoir be-

aviour L ( t ), Eqs. (1) and (5) hence describe the dynamics of M ( t )

owards stable ‘equilibria’ — the latter term corresponding to re-

ions of the phase space where the first time derivatives M 

′ ( t ) and

 

′ ( t ) vanish. 

.1. Reservoir in equilibrium 

We simplify the analyses by considering the case where the in-

ectious reservoir of infection in the human habitat (eggs in the

ase of Ascaris lumbricoides or Trichuris trichuria — or larvae in the

ase of the hookworms: Necator americanus and Ancylostoma duo-

enale ) is at equilibrium. This assumption is justified by the rela-

ively long life span of the adult worm in the human host (1 to 2

ears) versus the life expectancy of the eggs or larvae outside the

uman host which is in terms of weeks to a few months — see Ref.

nderson and May (1992) ). A notable exception to this convenient

implification is the specific case of Ascaris suum , and by possible

xtension Ascaris lumbricoides , where the exceptional hardiness of

heir eggs to environmental factors can lead to very long lifespans

 Nansen and Roepstorff, 1999 ), which may render our analysis in-

ppropriate for this helminth species. 

Consider now theses initial situation where the reservoir is at

quilibrium, hence a trivial manipulation of Eqs. (1) and (2) yields

d M 

d t 
= (μ + μ1 ) 

{ 

R 0 φ[ M(t) ; z, k ] f [ M(t) ; z, k ] − 1 

} 

M(t) , (6)

here, following the standard methodology, we have also collated

any of the parameters into R , the density effect-independent ba-
0 
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Fig. 1. A visualisation of the phase plane generated by Eq. (6) (with k = 0 . 3 and γ = 0 . 08 ) where black solid and dashed lines correspond to the two branches of equilibrium 

solution numerically obtained by satisfying Eq. (9) . In both panels the heatmap corresponds to the strength and direction of the first derivatives M 

′ ( t ) (and second, up to 

a negative constant −(μ + μ1 ) M 

′ (t) — see Eq. (8) ) computed through Eq. (6) in the vertical direction (lines of constant R 0 ), where lighter colours correspond to strongly 

positive values (strong forces upwards) and darker colours correspond to strongly negative values (strong forces downwards) — consequently, intermediate colours have the 

weakest forces in either direction. The right panel is a zoomed version of the left panel with enhanced colour contrast for illustration purposes. The increasing timescales to 

travel between distances of, e.g., M = [1 . 0 → 1 . 1 , 0 . 9 → 1 . 0 , 0 . 83 → 0 . 9] for a fixed value of R 0 = 2 . 12 are t − t 0 � [9 . 6 years , 12 . 9 years , 23 . 4 years ] . 
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ic reproduction number 1 

R 0 = 

λβ

2(μ + μ1 ) μ2 

. (7) 

ote, by setting the reservoir at equilibrium, Eq. (5) implies also

hat 

d 

2 M 

d t 2 
= (μ + μ1 ) 

2 
{ 

1 − R 0 φ[ M(t) ; z, k ] f [ M(t) ; z, k ] 

} 

M(t) . (8)

Given Eq. (6) we may thus read off the condition for equilib-

ium mean worm burden M 

∗

(M ∗; z, k ) f (M ∗; z, k ) = 

1 

R 0 

. (9)

q. (9) may only be solved precisely by numerical approaches. Us-

ng a root-finding algorithm 

2 we plot an example of the equi-

ibrium solutions given values of k = 0 . 3 and γ = 0 . 08 with the

ashed and solid black lines in both panels of Fig. 1 . For the pur-

ose of consistency between plots, throughout this work (unless

therwise explicitly stated) we shall make the following param-

ter choices: μ = 1 / 70 years −1 , μ1 = 1 / 2 years −1 , μ2 = 5 years −1 ,

= 10 , β = 1 , γ = 0 . 08 , k = 0 . 3 and, when all of these param-

ters are fixed (which is not the case in Fig. 1 ), Eq. (7) deter-

ines R 0 � 1.94. Sources for these estimates are provided in Refs.

nderson and May (1992) and Truscott et al. (2016) . 

Two equilibria are present in the solution to Eq. (9) : the first

s typically referred to as ‘stable’ (represented by the solid black

ine in Fig. 1 ) as this is the endemic solution to the STH epidemic

hich is an attractor for a range of values of R 0 > R 0 † (where R 0 † 
efers to the value of R 0 at which the two equilibria collide); and

he second is typically referred to as ‘unstable’ (represented by the

ashed black line in Fig. 1 ) as it corresponds to a repellor in the

hase plane, i.e., a barrier where values of M ( t ) above it are at-

racted away to the stable equilibrium and values of M ( t ) below it
1 Note that this is not the ‘true’ R 0 , which itself is not calculable from the next- 

eneration method — this is because the spectral radius of the Jacobian for the force 

f infection in Eq. (2) vanishes for M = 0 . 
2 The Brent method is necessary in order to solve for the unstable equilibrium in 

articular, due to the convexity of the function one must minimise in this parame- 

er regime. 

L

 

d

re attracted away to the disease extinction equilibrium M(t) = 0

the trivial solution to Eq. (6) . 

Around the breakpoint the system may hover for tens of years

or even greater timescales) before either moving back to the sta-

le state of endemic infection or the state of parasite transmission

xtinction (zero mean worm load). In practical terms this is an im-

ortant observation. It suggests that as control measures intensify

o move the system to the point of parasite transmission extinc-

ion, individuals may carry moderate worm loads for a few years

the average lifespans of the soil-transmitted helminths range from

 to 2 years depending on species, but the maximum lifespans may

e much longer ( Anderson and May, 1992 )) as the state of parasite

radication is approached. 

The long time periods near the unstable breakpoint have im-

ortant ramifications for ongoing monitoring and evaluation pro-

rammes: they imply that little progress may be observed in

owering parasite burdens before the control measures eventu-

lly ‘push’ the parasite population to extinction. The timescales

f these movements will depend critically on the adult para-

ite life span in the human host, as well as the size of the

 0 value. Note, e.g., in Fig. 1 that, for STH, for distances of

 = [1 . 0 → 1 . 1 , 0 . 9 → 1 . 0 , 0 . 83 → 0 . 9] , with a fixed value of R 0 =
 . 12 one obtains timescales to travel these distances of t − t 0 �
9 . 6 years , 12 . 9 years , 23 . 4 years ] . Timescales for STH hovering be-

ow the unstable breakpoint before extinction will take a similar

alue to the adult worm lifespan of 1–2 years, whereas, for filar-

al worms with very long average lifespans in the human host of 7

ears or more, this timescale may be decades. 

.2. Perturbing the system with migration 

Notice that by perturbing the system away from reservoir equi-

ibrium by δL (t) = L (t) − L eq , and by approximating the dynamics

f M ( t ) to be roughly constant over the time period that it takes

 ( t ) to equilibriate, 3 such that Eq. (2) becomes 

d(δL ) = 

d 

[ L (t) − L eq ] � −μ2 L (t) + μ2 L eq = −μ2 δL (t) , (10)

d t d t 

3 This assumption is consistent with the timescale of reservoir infectious material 

eath, μ2 , being much shorter than the other two decay timescales μ and μ1 . 
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4 Or, equivalently, in the neighbourhood of the saddle-node bifurcation the sys- 

tem becomes topologically equivalent to M 

′ (t) = a + bM(t) + cM 

2 (t) . 
5 The validity of this condition may be examined by finding the value of | M −

M † (z, k ) | at which the higher-order terms in our expansion in Eq. (16) become equal 

to the second-order term. We examine the ramifications of this condition in more 

detail in a future article ( Chong et al., 2020 ). 
6 The method used is a Runge-Kutta (4)5 method developed by Dormand 

and Prince (1980) , and described in Ref. Hairer et al. (1993) , where the 

scipy.integrate module in python provides a simple software implementa- 

tion. 
we are able to find a modification of Eq. (6) — by inserting the so-

lution to Eq. (10) — which accounts for a perturbation in the infec-

tious reservoir. Under such a perturbation, which may arise from

the migration of people in or out of the spatial region represented

by the infectious reservoir, Eqs. (6) and (8) become 

d M 

d t 
� βδL (t) + (μ + μ1 ) [ R 0 (φ f ) − 1 ] M(t) (11)

d 

2 M 

d t 2 
� −βμ2 δL (t) + (μ + μ1 ) 

2 [ 1 − R 0 (φ f ) ] M(t) , (12)

where we have defined the shorthand notation ( φf ) ≡φ[ M ( t ); z,

k ] f [ M ( t ); z, k ] and, with some initial time t 0 set, we have used the

approximate solution 

δL (t) � δL (t 0 ) e 
−μ2 (t−t 0 ) . (13)

Eqs. (11) and (13) thus immediately indicate that a mechnism for

fluctuation to or away from the equilibria in, e.g., Fig. 1 , is possible

and that a deeper study of the dynamics of the system is necessary

in order to fully understand the ramifications. 

3. Saddle-node bifurcation expansion 

In this section, we shall introduce the concept of a ‘saddle-node

bifurcation’, which is found to be present at the point when the

two equilibria collide in, e.g., Fig. 1 . This concept allows for the

development of a formalism — which we broadly discuss here and

derive in more detail in Appendix A — that provides a local ap-

proximative dynamical description of the human-helminth system.

We illustrate the point at which the stable endemic equilibrium

(solid black line) and unstable breakpoint equilibrium (dashed

black line) meet, known as a saddle-node bifurcation, in Fig. 1 .

In Appendix A we demonstrate how to obtain the value of the

mean worm burden at this point M = M † (z, k ) , however here we

shall simply quote it as 

M † (z, k ) = 

k 
[

2 −z 
2(1 −z) 

] 1 
k +2 − k 

(z − 1) 
[

2 −z 
2(1 −z) 

] 1 
k +2 + (1 − z/ 2) 

. (14)

From this value, one may deduce the basic reproduction number

at this point R 0 = R 0 † (z, k ) , which we introduced in Section 1 , by

inverting Eq. (9) such that 

R 0 † (z, k ) = 

{ 

φ[ M † (z, k ) ; z, k ] f [ M † (z, k ) ; z, k ] 

} 

−1 . (15)

3.1. In the absence of migration 

Given the existence of this saddle-node bifurcation, locally

about M † ( z, k ) we may expand the system (suppressing dependen-

cies and defining ( φf ) † ≡φ[ M † ( z, k ); z, k ] f [ M † ( z, k ); z, k ] for brevity)

such that 

d M 

d t 
= (μ + μ1 ) M † (φ f ) † δR 0 + (μ + μ1 )(M − M † )(φ f ) † δR 0 

+ 

g † 

2 

(μ + μ1 )(M − M † ) 
2 R 0 + . . . , (16)

where we have defined δR 0 = δR 0 (z, k, R 0 ) ≡ R 0 − R 0 † (z, k ) and a

new function 

g † = g † (z, k ) ≡ ∂ 2 (φ f ) 

∂M 

2 

∣∣∣∣
M † 

, (17)

which is given explicitly in Appendix A . Note that, for typical val-

ues of z , the g † ( z, k ) function takes negative values which decrease

in magnitude with increasing k . 
Now by truncating the expansion in Eq. (16) , keeping up to

(M 

2 ) terms, 4 we are able to solve the system exactly to find the

ollowing analytic solution 

˜ 
 † (t) � 

 tanh 

{
arctanh (A 0 ) −

g † h 

2 

R 0 (μ + μ1 )(t − t 0 ) 

}
− δR 0 

R 0 

(φ f ) † 
g † 

, 

(18)

here ˜ M † (t) ≡ M(t) − M † and we have defined 

A 0 ≡
M(t 0 ) − M † 

h 

+ 

δR 0 

R 0 

(φ f ) † 
g † h 

(19)

h = h (z, k, R 0 ) ≡
{ [

(φ f ) † 
g † 

]2 (
δR 0 

R 0 

)2 

− 2 M † 

(φ f ) † 
g † 

δR 0 

R 0 

} 

1 
2 

. (20)

Note that when k ∼ O(0 . 1) or larger, our expansion in

q. (16) is most accurate in the limit where | M − M † (z, k ) | � 1 . 5

n both panels of Fig. 2 we plot our approximative solution to the

ransmission dynamics given in Eq. (18) against the full solution

o the dynamics obtained numerically by solving the equivalent

ystem with Eqs. (1) and (2) , 6 represented by the coloured solid

nd dashed lines, respectively. In the figure, it is also clear that

he agreement between solutions is best ∀ M ( t ) (including the ini-

ial condition M ( t 0 )) when the dynamics are confined within the

rey region representing | M − M † (z, k ) | < 1 , supporting our expan-

ion accuracy argumentation. The black dashed horizontal lines

ark the value of M at the stable endemic equilibrium (upper)

nd unstable breakpoint equilibrium (lower) numerically obtained

rom Eq. (9) , hence the full solutions, as well as those approxi-

ate solutions which initialise | M(t 0 ) − M † (z, k ) | < 1 , are expected

o change direction upon crossing the lower threshold. 

Our analysis has now reached the point where we are in a

osition to address the initial question posed in the introduc-

ion. Moving from left to right between the two sets of panels in

ig. 2 , one decreases in value of the basic reproduction number

rom R 0 = R 0 † (z, k ) + 0 . 1 � 2 . 18 to R 0 = R 0 † (z, k ) + 0 . 01 � 2 . 09 . De-

pite the effect this change has on the position of the equilibria,

n both cases it is clear that as trajectories near the transmission

reakpoint (the lower of the two dashed horizontal black lines) the

ate of change in the transmission dynamics becomes extremely

low. This is most notable by considering that the timescale over

hich both panels are plotted is 10 years — a substantial period

or the transmission dynamics to not vary significantly. 

Another way to quantify the rate of change in the human-

elminth system near the disease breakpoint is to compute the

imescales over which the dynamics evolve. For completeness, we

hall consider one such timescale directly in the next section. 

.2. Timescales away from the unstable equilibrium 

In the previous sections we have been able to obtain approx-

mate solutions to the dynamical behaviour parameterically near

he point of saddle-node bifurcation. In contrast to this, if one

ishes to compute the timescales towards fixed values over large
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Fig. 2. The approximative solution to the transmission dynamics given in Eq. (18) against the full solution to the dynamics obtained numerically by solving the equivalent 

system with Eqs. (1) and (2) , each represented by the coloured solid and dashed lines, respectively, for a range of initial conditions M ( t 0 ). In the left panel we have fixed a 

value of R 0 = R 0 † (z, k ) + 0 . 1 � 2 . 18 and in the right panel with a value of R 0 = R 0 † (z, k ) + 0 . 01 � 2 . 09 . The dotted black horizontal lines corresponds to the value of M at the 

stable (upper) and unstable (lower) equilibria numerically obtained from Eq. (9) . Lastly, the grey region corresponds to values for which | M − M † (z, k ) | < 1 and hence the 

expansion used to obtain Eq. (18) leads to good agreement with the full numerical solution. 

Fig. 3. Numerically-obtained values using integral in Eq. (21) to compute 

the length of time it takes for the transmission dynamics to reach the 

value of M = M † (z, k ) for two different initial values of M = M(t 0 ) , as shown 

in the legend. A range of worm death rates have been used of μ1 = 

1 / 2 years −1 , 1 / 5 years −1 , 1 / 8 years −1 , 1 / 12 years −1 in decreasing order, which corre- 

sponds to a fading colour in the plotted lines. 
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egions of the phase plane, a numerical approach is necessary to

void significant error. 

In order to compute the time it takes for the transmission dy-

amics to travel between values of M = M init and M end in the ab-

ence of migration, for instance, one must compute the following

ntegral 

init −end = 

∫ t end 

t init 

d t = 

∫ M end 

M init 

d M 

d t 

d M 

= 

1 

μ + μ1 

∫ M end 

M init 

d M 

M [ R 0 φ(M; z, k ) f (M; z, k ) − 1 ] 
, (21) 

here Eq. (6) has been inserted into the expression in order to

btain the last equality. By way of example, in Fig. 3 we plot the

umerically-obtained solutions to Eq. (21) for the length of time it

akes to travel to M = M † (z, k ) for different initial values and worm

eath rates μ . 
1 
Fig. 3 is a further illustration of an essential point made at the

nd of the previous section: that the local transmission dynamics

round the unstable breakpoint equilibrium are extremely slow so

hat the timescales away from this region lengthen as one nears it.

Motivated by the good agreement in the previous section be-

ween our analytic approximations and the full numerical solution

o the STH transmission dynamics within a controlled range of ini-

ial conditions, we shall proceed to develop an equivalent approach

ith the inclusion of a perturbation from the infectious reservoir

uch that we may begin to address our second question. 

.3. Including a migration perturbation 

Consider a perturbation of the form given by Eq. (13) . We shall

efer to this throughout this section as a ‘migration perturbation’

ue to the equivalence between including the out-of-equilibrium

ynamics of the infectious reservoir and the effective displacement

rovided by the variation in human population numbers. Given

his perturbation, we have already obtained Eq. (11) to describe the

ransmission dynamics, however, as with Eq. (1) , this equation also

ay only be solved precisely by numerical approaches in order to

heck the accuracy of our results. 

By truncating an expansion of Eq. (11) , keeping up to O(M 

2 )

erms in same way as in Eq. (16) , we find that the resulting ap-

roximate equation takes a Riccati form 

d 

˜ M † 

d t 
� 	(t − t pul ) βδL (t pul ) e 

−μ2 (t−t pul ) + (μ + μ1 ) M † (φ f ) † δR 0 

+ (μ + μ1 ) ˜ M † (t)(φ f ) † δR 0 + 

g † 

2 

(μ + μ1 ) ˜ M 

2 
† (t) R 0 , (22) 

here, once again, ˜ M † (t) ≡ M(t) − M † and 	(t − t pul ) is the Heav-

side (step) function which initialises the migration pulse at time

 pul and δL ( t pul ) is the maximal amplitude of the perturbation in

he infectious reservoir. 

Remarkably, evolving the elapsed time from t pul onwards,

q. (22) can be analytically solved as well. We include full details

n the derivation of this solution in Appendix B , but for brevity

ere we shall simply quote the result, which is 

˜ 
 † (t) � h 

2 I 2 X −1 Y (t)
( 1 − X ) J −X−1 [ 2 Y (t) ] + I 2 
( 1 − X ) J −X [ 2 Y (t) ] 

I 2 
( 1 − X ) J −X [ 2 Y (t) ] + 
( 1 + X ) J X [ 2 Y (t) ] 

+ h 
2 X −1 Y (t)
( 1 + X ) J X−1 [ 2 Y (t) ] − 
( 1 + X ) J X [ 2 Y (t) ] 

I 2 
( 1 − X ) J −X [ 2 Y (t) ] + 
( 1 + X ) J X [ 2 Y (t) ] 
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Fig. 4. The approximative solution to the transmission dynamics given in Eq. (23) (applied where we have set t pul = 2 years and Eq. (18) as the solution to the dynamics 

before this point) against the full solution to the dynamics obtained numerically by solving the equivalent system with Eqs. (1) and (2) , each represented by the coloured 

solid and dashed lines, respectively, for a range of initial conditions M ( t 0 ). All lines and the grey region correspond to their equivalent values in Fig. 2 , where an additional 

upper and lower panel split in this set of figures compares the relative dynamical behaviour under the influence of a migration perturbation of βδL (t pul ) = +1(−1) years −1 

for the upper (lower) pair of panels. 
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− δR 0 
R 0 

(φ f ) † 
g † 

, (23)

where one must define the following initial condition 

I ≡ [ Y (t 0 )] X exp 

{
−arctanh 

[
A 0 + 

βδL (t pul ) 

μ2 h 

]}
. (24)

Using Eq. (23) in Fig. 4 we once again plot the approxima-

tive solution to the transmission dynamics against the full solu-

tion to the dynamics obtained numerically by solving the equiva-

lent system with Eqs. (1) and (2) , each represented by the coloured

solid and dashed lines, respectively, for a range of initial conditions

M ( t 0 ) and two choices for R 0 (separated by the left and right pan-

els). The upper panels display the dynamics under the influence

of a positive-valued migration-driven perturbation, and conversely,

the lower panels display the dynamics under the influence of a

negative-valued migration-driven perturbation. 

As in the case without migration, Fig. 4 demonstrates that the

approximations made to obtain Eq. (23) only depart from the fully

numerical solution in a significant way when the condition of ex-

pansion | M − M † (z, k ) | < 1 (satisfied within the grey region) is no
onger met. Comparing Fig. 2 with Fig. 4 also demonstrates very

learly how the long-time transmission dynamics of the system

ear the breakpoint are apparently quite unstable to an O(1) per-

urbation due to migration — even in the proximity of the ‘stable’

ttractor equilibrium (upper of the two dashed horizontal black

ines). 

It is important to note here how, at much later times t 
 t 0 ,

q. (23) is identical to Eq. (18) up to the inclusion of a modified

nitial condition M(t 0 ) → M(t 0 ) + βδL (t pul ) /μ2 . The simple form

f this transformation, which arises from the large hierarchy in

imescales, will motivate our Markovian model of stochastic mi-

ration in Section 4 . 

With our analysis in this subsection, we have begun to address

he second of our two questions posed in the introduction. The

ain limitation of this approach so far is that we have only con-

idered a single discrete migratory event. Therefore, in order to

urther evaluate the degree to which the unstable breakpoint and

table endemic equilibria are robust to the effects of migration and

ence draw more concrete conclusions, we will need to develop a

odel of multiple migratory events. Before doing so we will need

o introduce another expansion. 
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Fig. 5. The approximative solution to the transmission dynamics given in Eq. (26) against the full solution to the dynamics obtained numerically by solving the equivalent 

system with Eqs. (1) and (2) , each represented by the coloured solid and dashed lines, respectively, for a range of initial conditions M ( t 0 ) and having fixed a value of 

R 0 = R 0 † (z, k ) + 1 . 0 � 3 . 08 . In the left panel we plot the transmission dynamics around the stable equilibrium, and in the right panel we plot the dynamics around the 

unstable equilibrium. The solid black horizontal line corresponds to the value of M = M ∗(z, k, R 0 ) at the stable (left panel) and unstable (right panel) equilibrium numerically 

obtained from Eq. (9) . Lastly, the grey region corresponds to values for which | M − M ∗(z, k, R 0 ) | < 1 . 
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.4. Expansions about the equilibria 

In parallel with the expansion we have used previously, one

ay also derive an expansion around either the stable endemic

quilibrium or unstable breakpoint equilibrium solutions M =
 ∗(z, k, R 0 ) to Eq. (9) . This expansion takes the same form for both

quilibria and is given by the following general expression 

d M 

d t 
� (μ + μ1 )(M − M ∗) M ∗R 0 (φ f ) ′ ∗

+ (μ + μ1 )(M − M ∗) 2 R 0 (φ f ) ′ ∗
+ 

g ∗
2 

(μ + μ1 )(M − M ∗) 2 M ∗R 0 . (25) 

rom Eq. (25) we hence obtain solutions analogue to Eq. (23) , with

he form 

˜ 
 ∗(t) � 

{[
1 

M(t 0 ) − M ∗
+ 

2(φ f ) ′ ∗ + M ∗g ∗
2 M ∗(φ f ) ′ ∗

]
e −(μ+ μ1 ) R 0 (φ f ) ′ ∗(t−t 0 ) 

−2(φ f ) ′ ∗ + M ∗g ∗
2 M ∗(φ f ) ′ ∗

}−1 

, (26) 

here we are making use of the familiar notation from earlier,

 φf ) ≡φ[ M ( t ); z, k ] f [ M ( t ); z, k ], such that 

(φ f ) ′ ∗≡
∂(φ f ) 

∂M 

∣∣∣∣
M ∗

(27) 

g ∗ = g ∗(z, k, R 0 ) ≡ ∂ 2 (φ f ) 

∂M 

2 

∣∣∣∣
M ∗

, (28) 

here we have now defined 

˜ M ∗(t) ≡ M(t) − M ∗(z, k, R 0 ) . Depend-

ng on the choice of M 

∗ (which corresponds to two degenerate val-

es ∀ R 0 > R 0 † as discussed previously), we may thus describe the

ransmission dynamics parameterically near to the stable or unsta-

le equilibrium points, given a value for R 0 . 

In Fig. 5 we plot this approximate solution given by

q. (26) against the corresponding numerically-obtained solutions

o Eqs. (1) and (2) for a value of R 0 = R 0 † (z, k ) + 1 . 0 � 3 . 08 . Notice,

n particular, how the timescale for the approximative expansion

o break down is much shorter in the case of the unstable equi-

ibrium — as we have only been able to plot up to 2 years be-

ore the diverging solutions completely leave the neighbourhood
f M 

∗ — which is due to the fact that the rate of time evolution in

he transmission dynamics increases with increasing R 0 . This latter

oint becomes consistent with our expectations when noting that

he amplitude of M 

′′ ( t ) as given by Eq. (8) grows (with a negative

ign) with larger R 0 values. 

Building from the formalism previously discussed, we may de-

ive a theory of deterministic pulses around both equilibria as well,

owever the conclusions drawn from such an analysis would be

he same as those of the previous section. As an extension to such

 theory, it is possible that many such migratory events which per-

urb the reservoir may occur over the STH transmission period of

nterest. In the proceeding section we shall develop a theory which

ncludes this possibility by utilising a stochastic process. 

. A stochastic theory of migration perturbations 

.1. Epidemiology 

Extending our approach to modelling multiple migration events

f the same type as in the previous section requires deliberate

pecification in settings with endemic infection. To date few large-

cale epidemiological studies have attempted to measure these

ates in settings where soil-transmitted helminth infections are en-

emic. However, two such studies are underway that are attempt-

ng to do so, and hence more precise parameterization will be pos-

ible in the near future ( Ásbjörnsdóttir et al., 2018 ). In the absence

f further information about the nature of migration, it seems rea-

onable to draw the number of individuals migrating into the com-

unity of interest who also release infectious stages into the reser-

oir over the time period t − t 0 from a Poisson distribution with in-

ensity r + (t − t 0 ) . Correspondingly, we shall assign a Poisson distri-

ution with intensity r −(t − t 0 ) to draw the number of individuals

igrating out of the community of interest over the time period

 − t 0 who effectively ‘remove’ infectious stages from the reservoir.

e will introduce r + and r − as migration ‘rates’. 

In order to calculate the effect of these migrating individuals on

he infectious reservoir over this same time period, however, we

ust also derive a distribution for the typical number of eggs that

n infected individual might release, which we may subsequently

raw from at each migration ‘event’. We derive this distribution in

he proceeding section where we shall essentially conclude that it

s a negative binomial distribution with mean and variance param-
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eters which can be determined by specifying the parameters M, k

and z . 

Combining the above two jumps in reasoning, in this sec-

tion we will conclude that a compound Poisson process given by

Eq. (35) applied to the system in much the same fashion as the

migratory pulses of Eq. (11) provides an adequate stochastic model

of migration. The remainder of this section will focus on whether

or not the induced process on M which arises from the stochastic

migration event can be accurately modelled in an extremely sim-

ple manner, e.g., a Markov process, and on finding the critical rate

of migration above which the dynamics are overrun with stochas-

tic noise — making it extremely difficult to control transmission

through measures such as MDA. 

4.2. Deriving the stochastic term 

In this subsection we shall focus on obtaining a realistic

stochastic representation of the flux in egg and/or larvae count

into (or out of) the infectious reservoir over time. In order to

do this, it shall serve our purpose to first briefly review the cur-

rent theory regarding the probabilistic modelling for STH infections

( Anderson and May, 1992 ) and subsequently extend the approach

to develop our model. 

The well-known probabilistic derivation of the reservoir-driven

φ( M ; z ; k ) f ( M ; z, k ) term, included in the force of infection of

Eq. (1) , involves indentifying the egg count e (n ) generated by an

individual as a function of the total number of worms n carried

by that individual which includes both the density (aggregation of

worms) dependence of fecundity (encoded by the z ≡ e −γ param-

eter) and marginalising over the binomial probability of n f of the

worms being female, 7 hence 

e (n ) = λz n −1 
n −1 ∑ 

n f =0 

2 

−n n ! n f 

(n − n f )! n f ! 
= 

λ

2 

(
1 − 2 

−n +1 
)
nz n −1 . (29)

Taking the first moment of e → E(e ) with respect to the

known negative binomial probability mass function ( Anderson and

May, 1992 ) of the total worm burden distribution within hosts 

NB (n ; M, k ) = 

(k + n − 1)! 

n !(k − 1)! 

(
1 + 

M 

k 

)−k 
(

1 + 

k 

M 

)−n 

, (30)

yields E(e ) = λM φ(M ; z; k ) f (M; z, k ) / 2 ≡ λM(φ f ) / 2 by construc-

tion, where we shall continue to use this shorthand for brevity.

The variance of e (n ) may also be calculated as follows 

Var (e ) = E(e 2 ) − [ E(e ) ] 
2 

= 

∞ ∑ 

n =0 

e 2 (n ) NB (n ; M, k ) − λ2 

4 

M 

2 (φ f ) 2 

= 

λ2 

4 

∞ ∑ 

n =0 

(
1 − 2 

−n +1 
)2 

n 

2 z 2(n −1) NB (n ; M, k ) − λ2 

4 

M 

2 (φ f ) 2 

= 

λ2 

4 

{ 

M + 

(
z 2 + 

1 
k 

)
M 

2 [
1 + 

(
1 − z 2 

)
M 

k 

]k +2 
+ 

M + 

(
z 2 

4 
+ 

1 
k 

)
M 

2 [
1 + 

(
1 − z 2 

4 

)
M 

k 

]k +2 

−
2 M + 

(
z 2 + 

2 
k 

)
M 

2 [
1 + 

(
1 − z 2 

2 

)
M 

k 

]k +2 

} 

− λ2 

4 

M 

2 (φ f ) 2 . (31)

Although the moments of the egg count distribution are cal-

culable, it is immediately unclear as to whether the shape of the

egg count distribution inherits a negative binomial shape from the
7 Note that, as in the standard result, this derivation assumes the total polygamy 

of male worms. Furthermore, the n − 1 summation limit arises from lack of gener- 

ated eggs if the totality of worms within a given host are female. 

s  

f  
orm burden. By small argument expansion of Eq. (29) we find

hat in the limit where the total number of worms n � 1/ γ one

an obtain the approximate relation 

e (n ) � 

λ

2 z 

(
1 − 2 

−n +1 
)
n , (32)

here, upon further restricting the number of worms to n � 5, the

 − 2 −n +1 factor in the expression above may be neglected to good

pproximation. This argumentation suggests that for numbers of

orms in the range 1/ γ 
 n � 5, or equivalently numbers of eggs

n the range λ/ (2 γ z) 
 e � 5 λ/ (2 z) , the egg count is effectively

irectly proportional to the total number of worms, and hence the

istribution over the egg count may be well approximated by the

ollowing negative binomial shape 

B egg (e ; M, k, z) 

= 



[ 
e + 

E 2 (e ) 
Var (e ) −E(e ) 

] 

(e + 1) 


[
E 2 (e ) 

Var (e ) −E(e ) 

][
Var (e ) − E(e ) 

Var (e ) 

]e [
E(e ) 

Var (e ) 

] E 2 (e ) 
Var (e ) −E(e ) 

. 

(33)

The event-based approach to a stochastic model of migration

o or from the region of interest suggests that the times at which

ndividuals do so are drawn from a Poisson distribution, and hence

he event intervals are exponentially distributed 

t ±,i − t ±,i −1 ∼ ExpDist (r ±) , (34)

here r ± = r + or r −, denoting the rates of people entering or leav-

ng the region of interest, respectively — or, as we shall hereafter

efer to them, ‘migratory rates’. Our proposed stochastic model

s thus a compound Poisson process, with jump sizes e i drawn

rom the egg count distribution that we argued for earlier in

q. (33) and independently chosen parameters M = M (t) and k ,

uch that 

e i ∼ NB egg [ e ;M (t) , k , z ] , (35)

ith a further normalisation included to account for the number

f people within the region N p , such that our process � ± ( t ), which

uctuates around the deterministic dynamics in continuous time,

ecomes the following 

 ±(t) = 

1 

N p 

∞ ∑ 

i =1 

e i e 
−μ2 (t−t ±,i ) 1 [ t ±,i , ∞ ) (t) , (36)

here 1 [ t ±,i , ∞ ) (t) is an indicator function which is defined to take

alue 1 for arguments t ∈ [ t ± , i , ∞ ) and value 0 otherwise. 8 

There is an important assumption behind the form of

q. (35) which has been introduced: k is assumed to be a constant

n time. If MDA control is applied to a region, then it is not neces-

arily only the mean worm burden of hosts (and hence the preva-

ence) which decreases for all of the clustered communities collec-

ively within the region (which explains our choice of M (t) = M ∗
ater), but it is also expected that the apparent value of k may de-

rease as a response to the increased heterogeneity of worm loads

ithin hosts, due to the empirical relationship between inferred

revalence within clustered communities of individuals and their

espective aggregations ( Truscott et al., 2019 ). We leave such an

xtension to the analysis for future work, however, the broad con-

lusions we seek to draw here should remain unaffected. 

In Eq. (36) the exponential death rate, which has been intu-

ted from the functional form of Eq. (22) , is a complicating fac-

or that apparently renders this process non-Markovian for events

eparated in time by less than 1/ μ2 . Motivated by the simple

orm of pulse transformation ( M(t 0 ) → M(t 0 ) + βδL (t pul ) /μ2 ) in
8 This is equivalent to the Heaviside function earlier. 
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ec. (3.3) , we shall also consider a Markovian approximation to

q. (36) which is made by temporally coarse-graining (integration

ver time) such that one obtains the following compound Poisson

rocess in continuous time 

 ±, M 

(t) = 

1 

μ2 N p 

∞ ∑ 

i =1 

e i δD (t ±,i − t) , (37)

ith an expected jump size and variance given by 

E[ � ±, M 

(t)] = r ±(t − t 0 ) 
E(e i ) 

μ2 N p 
(38) 

ar [ � ±, M 

(t)] = r ±(t − t 0 ) 
E(e 2 

i 
) 

(μ2 N p ) 2 
. (39) 

.3. Computing the variability in the mean worm burden 

Using Eq. (36) , and taking note of the functional form given

y Eq. (11) , we write the following stochastic differential equation

hich combines both mean value drift and egg count distribution

umps which arise from the movements of people in and out of

he given region of interest 

d M 

d t 
� β[ � + (t) − � −(t)] 

+ (μ + μ1 ) 
{ 

R 0 φ[ M(t) ; z, k ] f [ M(t) ; z, k ] − 1 

} 

M(t) . (40) 

y computing numerical integrations over an ensemble of realisa-

ions for Eq. (40) and subsequently binning the samples at differ-

nt ‘snapshots’ in time, one is able to construct a numerical ap-

roximation to the time evolution of the probability density func-

ion over the ensemble of possible worm burdens P ( M, t ). 

In Fig. 6 we have initialised the P ( M, t ) distribution at the

table endemic (right column) and unstable breakpoint (left col-

mn) equilbrium values P (M, t 0 ) = δD (M ∗ − M) , where M 

∗ here is

he solution for either of the equilibria from Eq. (9) , where we

ave set both R 0 = R 0 † (z, k ) + 0 . 1 � 2 . 18 and the number of peo-

le N p = 100 . The solid lines indicate that the fully non-Markovian

rocess given by Eq. (36) is used, whereas the dashed lines indi-

ate the corresponding choice of approximate Markovian process,

iven by Eq. (37) , which appears to match the fully non-Markovian

rocess well. 

For illustration purposes, in Fig. 6 we have also made the sym-

etric choice r = r + = r − as well as setting egg count distributions,

hich are given by Eq. (35) , both with the same constant param-

ters, such that M (t) = M ∗ and k = k . In the upper row of plots,

e have plotted the distribution at different moments in time for

 value of r = 0 . 1 μ2 and, in the lower row of plots, a value of

 = 10 μ2 , where it is immediately clear that a substantial variance

s induced by migratory rates of r � μ2 . 

Due to the properties of the stable and unstable equilibria we

ave already discussed, the reader may initially expect the variance

f the distributions in the left panels of Fig. 6 to be greater than

hose of the distributions in the right panels. The fact that this ap-

ears to not be the case is explained firstly by the weakness of

erivatives in the proximity of both equilibria, as discussed exten-

ively in the previous section. Secondly, and even more crucially,

he mean worm burden of the region from which the migrations

ccur to is assumed to be affected by the same MDA control pro-

ramme as that of the local cluster of hosts, such that M (t) = M ∗,
hich reduces the amplitude of egg pulses which are around the

nstable in comparison to those around the stable equilibrium. We

eave further considerations, such as worm burden heterogeneity

etween clustered communities within a treated region and the in-

lusion of changes in k with treatment — as we discussed earlier

to future developments of our model. 
Lastly, we note here that there is an asymmetry in the tails of

he distribution around the unstable equilibrium. This is as one

ight expect given that the disease extinction equilibrium is a

ard condition on the left hand side of the plot as opposed to

he physically allowable continuum on the right hand side. A sim-

lar asymmetry in the opposite direction exists around the stable

quilibrium due to the presence of the unstable equilibrium, and

ltimately the disease extinction equilibrium, on the left side of

his plot. Such observations will be useful in our interpretation of

he variance of the distribution as a function of time. We reiter-

te to the reader, so as to avoid confusion, that the distributions

f Fig. 6 do not refer to individual worm burdens, but rather the

robabilities of the system taking values for the mean worm bur-

en M . 

Maintaining choices as above for Fig. 6 , the full formula for

he variance Var [ M(t)] = E[ M 

2 (t)] − { E[ M(t)] } 2 , which is derived

n detail in Appendix C in the limit of a Markovian process � ± ,M 

( t ),

implifies substantially to 

ar [ M(t)] = 

β2 

2 

rE(e 2 
i 
) 

(μ2 N p ω) 2 

[
e −2 ω(t−t 0 ) + 2 ω(t − t 0 ) − 1 

]
+ 

β2 

4 ω 

r 2 E 

2 (e i ) 

(μ2 N p ω) 2 

{ 

2 − 2 e −2 ω(t−t 0 ) − 2 ω(t − t 0 ) [ 2 − 2 ω(t − t 0 ) ] 

} 

. 

(41) 

In Fig. 7 we plot the variances for the same system as before

ut with a wider range of values of the migratory rates r . We

ave provided the time evolution curves for the variance computed

umerically for the fully non-Markovian process (solid coloured

ines) and numerically for the Markovian process (dotted coloured

ines), where the latter process is also computed with the ana-

ytic approximation provided by Eq. (41) (dashed coloured lines).

he overall agreement between the numerically-obtained Marko-

ian and non-Markovian processes is excellent — confirming the

pparent agreement between the two distributions in Fig. 6 and

trongly indicating that, due to the large hierarchy in dynamical

imescales between the infectious reservoir and worm burden, mi-

ratory effects on the transmission dynamics appear effectively

emoryless. The agreement when r = μ2 about the stable equi-

ibrium is not as good, however, which will require future study to

eciper. 

The agreement between our analytic relation given by Eq. (41) ,

hich predicts linear growth in time arising from the linear expan-

ion approximation and the numerical variances in Fig. 7 appears

o be particularly poor for a choice of the migratory rate r � μ2 . In

his range, due to the disagreement between the numerical solu-

ion to the Markovian process and our approximation, we deduce

hat the numerically-obtained apparent sub-linear growth in the

ariance is due to limitations imposed on the process by the pres-

nce of the disease extinction equilibrium M(t) = 0 and higher-

erivative effects when the mean worm burdens become large.

uch a limitation effect may already be observed in the asymmet-

ic tails of the distributions in Fig. 6 . Confirming this in more detail

ill require future rigorous investigation, however. 

We turn, finally, to readdressing the second of the two ques-

ions posed in the introduction. Our stochastic model of migratory

erturbations has demonstrated that both the stable endemic and

nstable breakpoint equilibria behave in a similar fashion under

he influence of a symmetric migrating flux of people in and out of

he infectious reservoir: when such a rate r is low when compared

o the reservoir death rate r �μ2 the deterministic transmission

ynamics experience some degree of controlled uncertainty; when

 
μ2 our results indicate enormous variability in the dynamics

ay be potentially induced — as is indicated by the large variances

llustrated in our Figs. 6 and 7 . 
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Fig. 6. A comparison between the probability distributions P ( M, t ) at different snaphots in time (denoted by different colours) using r = 0 . 1 μ2 (top panels) and r = 10 μ2 

(bottom panels) migration rates, having initialised P(M, t 0 ) = δD (M ∗ − M) (where δD is a Dirac delta function) at the unstable (left column) and stable (right column) equi- 

librium points M 

∗ , given a choice of R 0 = R 0 † (z, k ) + 0 . 1 � 2 . 18 . The solid lines indicate that the fully non-Markovian process given by Eq. (36) is used, whereas the dashed 

lines indicate the corresponding choice of approximate Markovian process, given by Eq. (37) . The distributions themselves have been numerically obtained by binning 10 3 

realisations of Eq. (40) . 

Fig. 7. The root-variance over M ( t ) initialised at the unstable equilibrium M 

∗ value (left panel) and at the stable equilibrium M 

∗ value (right panel), plotted as a function of 

time, and numerically obtained by summing over 10 3 realisations of Eq. (40) using the non-Markovian (solid coloured lines) and Markovian (dotted coloured lines) migration 

processes given by Eqs. (36) and (37) , respectively. The dashed coloured lines correspond to the analytic Markovian solution given in Eq. (41) . 
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9 In more detail, this breakpoint arises due to a combination of helminth sexual 

reproduction and their the mating habits which allow for the existence of a thresh- 

old below which the disease may become dynamically driven to extinction for a 

finite initial condition in M . 
. Discussion 

In this paper we have developed an analytic framework for de-

cribing the transmission dynamics of STH parasitic infections near

he unstable equilibrium, or ‘breakpoint’ — the target for trans-

ission elimination strategies using MDA and/or sanitation based

rogrammes of soil-transmitted helminth control. Our analysis, in

ddition to extending the literature with new analytic insights,

as also analytically and numerically investigated the effect that

nfected human migration can have on the dynamics of parasite

ransmission by developing the new models of discrete infectious

eservoir ‘pulses’ and a stochastic theory of many migratory events.

he tools we have developed, along with our specific findings,

hould have important ramifications for both policies for control

nd the design of monitoring and evaluation programmes, e.g., our

esults regarding the critical migration rate of infected individuals

bove which elimination may be extremely difficult to achieve. As

ontrol effort s f or neglected tropical helminth infections increase,

ur results should be applicable to many programmes today and in

he future. 

We assessed the rate of change in time for the transmission tra-

ectories near the parasite transmission breakpoint (arising from

he dieocious nature of helminth parasites), finding them to be

xtremely slowly varying. Illustrating this point quite clearly are

ur Figs. 2 and 3 , where the timescales for significant change (and

ence consequently of great relevance to monitoring and evaluat-

ng the impact of control programmes) can be of the order of many

ears. The slowly-varying dynamics around the unstable equilib-

ium thus represent a significant challenge to the detection of

hether or not the breakpoint in transmission has been crossed

nd the STH population is on the way to extinction. Stochastic

oise arising from low counts of infected people will further accen-

uate this detection challenge, since random variation may either

ead to quick elimination or very drawn out trajectories to elimi-

ation. 

A secondary, yet no less important effect, was studied in con-

unction with our earlier analysis and is perhaps best illustrated by

he combination of Figs. 6 and 7 . The migration of infected humans

nto an area where control measures have driven STH prevalence

elow the transmission breakpoint was found to introduce signifi-

ant uncertainty in the transmission dynamics near both the stable

ndemic and the unstable ‘breakpoint’ equilibrium. 

In the limit where the migratory rate — the rate of people

eaving and entering the region or community and introducing

aterial into the infectious reservoir (eggs or larvae, depending

n the species of STH) per unit time — is much smaller than

he rate of reservoir death (the rate at which the eggs or lar-

ae die outside of a host), our results indicate that uncertainty

n the dynamics is present but controlled to some degree such

hat elimination will eventually occur. In the opposite limit, where

he average migratory rate greatly exceeds the average death rate

f infectious eggs or larvae in the reservoir, our results suggest

hat great variability in the transmission dynamics is possible and,

ndeed, likely. We therefore find that infected human migration

s an important effect to quantify in order to assess its ability

o undermine targets for parasite elimination from control mea-

ures, such as MDA and/or improvements in water and sanitation

rovision. 

We wish to further clarify some of the assumptions we have

ade in building the stochastic model of egg pulses here: we have

ssumed that a discrete pulse of infectious stages enter or leave

he reservoir with a Poisson event rate. The amplitude of these

ulses — see, e.g., Eq. (36) — is derived by assuming that each

ulse corresponds to a single individual. The natural interpretation

f this movement with respect to the reservoir death rate is the

ate of death of individual eggs and/or larvae compared to that of
he rate at which the burden of a typical migrating individual can

eturn to (or take from) the reservoir. 

In addition to these important practical implications which may

tem from human migration, our analysis has also yielded fur-

her insights into the theory of human helminth parasite trans-

ission dynamics. The large differences in dynamical timescales

resent between the infectious reservoir, or vector hosts in the

ase of schistosomes, filarial worms (life expectancy a few weeks

o months) and adult worms in the human host (one to many

ears) admits an accurate Markovian description to be formulated

or the migration model. This in turn provides analytical insights

nto the key parameters that determine epidemiological outcomes

ithin the dynamic transmission systems. 

Throughout this paper we have deliberately excluded the pos-

ible effects induced by the presence of an age-structured popula-

ion. Many components of our analysis should be generalisable in

his aspect and we leave this extension to future work. 
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ppendix A. The saddle-node bifurcation expansion in more 

etail 

One can ‘prove’ that there is indeed a saddle-node bifurca-

ion at the critical value where the stable and unstable equilib-

ia collide. Taking Eq. (6) , the Jacobian of the M 

′ (t) = F [ M(t)] one-

imensional system (i.e., J = F ′ (M) ) is 

 = (μ + μ1 ) 
{ 

R 0 φ[ M(t) ; z, k ] f [ M(t) ; z, k ] − 1 

+ R 0 M 

∂ 

∂M 

φ[ M(t) ; z, k ] f [ M(t) ; z, k ] 

} 

, (A.1) 

long either of the equilibria M 

∗ , Eq. (9) is satisfied, and so accord-

ng to Eq. (A.1) one finds a singularity ( J = 0 ) when 

∂ 

∂M 

φ[ M(t) ; z, k ] f [ M(t) ; z, k ] = 0 , (A.2)

t which point a saddle-node bifurcation is known to occur. This

oint marks the collision between the stable endemic equilibrium

nd unstable equilibrium, which is known in the epidemiological

iterature as the disease ‘breakpoint’. 9 The value of M = M † (z, k )

hich satisfies the above relation can also be deduced 

M † (z, k ) = 

k 
[

2 −z 
2(1 −z) 

] 1 
k +2 − k 

(z − 1) 
[

2 −z 
2(1 −z) 

] 1 
k +2 + (1 − z/ 2) 

, (A.3)

nd the critical basic reproduction number R 0 † , which we intro-

uced in Section 1 , is thus clearly 

R 0 † (z, k ) = 

{ 

φ[ M † (z, k ) ; z, k ] f [ M † (z, k ) ; z, k ] 

} 

−1 . (A.4)

http://www.gatesfoundation.org/
http://www.taskforce.org/
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11 There is a subtlety here in the choice of initial condition: due to the discon- 
Given the existence of this saddle-node bifurcation, locally

about M † ( z, k ) we may expand the system (suppressing dependen-

cies and defining ( φf ) † ≡φ[ M † ( z, k ); z, k ] f [ M † ( z, k ); z, k ] for brevity)

such that 

d M 

d t 
= F (M † ) + (M − M † ) J 

∣∣
M † 

+ 

1 

2 

(M − M † ) 
2 ∂J 

∂M 

∣∣∣∣
M † 

+ . . . 

= (μ + μ1 ) M † (φ f ) † δR 0 + (μ + μ1 )(M − M † )(φ f ) † δR 0 

+ 

g † 

2 

(μ + μ1 )(M − M † ) 
2 R 0 + . . . , (A.5)

where we have defined δR 0 = δR 0 (z, k, R 0 ) ≡ R 0 − R 0 † (z, k ) and a

new function 

g † = g † (z, k ) ≡ ∂ 2 (φ f ) 

∂M 

2 

∣∣∣∣
M † 

= 

(k + 2)(k + 1) 

k 2 

{ 

(1 − z) 2 
[

1 + (1 − z) 
M † 

k 

]−k −3 

−(1 − z/ 2) 2 
[

1 + (1 − z/ 2) 
M † 

k 

]−k −3 
} 

. (A.6)

Note that, for typical values of z , the g † ( z, k ) function takes negative

values which decrease in magnitude with increasing k . 

Now by truncating the expansion in Eq. (16) , keeping up to

O(M 

2 ) terms, 10 we are able to solve the system exactly to find the

following analytic solution 

˜ M † (t) � h tanh 

{
arctanh (A 0 ) −

g † h 

2 
R 0 (μ + μ1 )(t − t 0 ) 

}
− δR 0 

R 0 

(φ f ) † 
g † 

, 

(A.7)

where ˜ M † (t) ≡ M(t) − M † and we have defined 

A 0 ≡
M(t 0 ) − M † 

h 

+ 

δR 0 

R 0 

(φ f ) † 
g † 

(A.8)

h = h (z, k, R 0 ) ≡
{ [

(φ f ) † 
g † 

]2 (
δR 0 

R 0 

)2 

− 2 M † 

(φ f ) † 
g † 

δR 0 

R 0 

} 

1 
2 

, 

(A.9)

and one predictably finds that the latter function becomes imag-

inary for a finite k exactly when R 0 becomes less than the crit-

ical value, i.e., R 0 < R 0 † ( z, k ). As a consistency check, one may fur-

ther confirm that this switch maps the hyperbolic tangent function

Eq. (18) onto a standard tangent — a switch between hyperbolic to

elliptic local geometries — and, consequently, the dynamics of M ( t )

switch generally from a possible endemic equilibrium attraction to

pure decay M ( t ) → 0, ∀ M ( t 0 ), as expected. 

Appendix B. Solving the system with a migration perturbation 

In the main text, by truncating an expansion of Eq. (11) and

keeping up to O(M 

2 ) terms in same way as in Eq. (16) , we find

that the resulting approximate equation takes a Riccati form 

d 

˜ M † 

d t 
� 	(t − t pul ) βδL (t pul ) e 

−μ2 (t−t pul ) 

+(μ + μ1 ) M † (φ f ) † δR 0 + (μ + μ1 ) ˜ M † (t)(φ f ) † δR 0 

+ 

g † 

2 

(μ + μ1 ) ˜ M 

2 
† (t) R 0 , (B.1)
10 Or, equivalently, in the neighbourhood of the saddle-node bifurcation the sys- 

tem becomes topologically equivalent to M 

′ (t) = a + bM(t) + cM 

2 (t) . 

t

p

here, once again, ˜ M † (t) ≡ M(t) − M † and 	(t − t pul ) is the Heav-

side (step) function which initialises the migration pulse at time

 pul and δL ( t pul ) is the maximal amplitude of the perturbation in

he infectious reservoir. 

Remarkably, evolving the elapsed time from t pul onwards,

q. (22) can be analytically solved as well. If one picks the trans-

ormation 

˜ 
 † (t) = − 2 

g † (μ + μ1 ) R 0 

d ln U 

d t 
, (B.2)

e may rewrite Eq. (22) as the following Sturm-Liouville equa-

ion 

d 

2 U 

d t 2 
− (μ + μ1 )(φ f ) † δR 0 

d U 

d t 
+ 

g † 

2 

(μ + μ1 ) 
2 M † (φ f ) † R 0 δR 0 U(t)

+ 

g † 

2 

(μ + μ1 ) R 0 βδL (t 0 ) e 
−μ2 (t−t pul ) U(t) = 0 , (B.3)

hose formal solution is known to be 

(t) = C 1 [ Y (t) ] 
−Z 


( 1 − X ) J −X [ 2 Y (t) ] + C 2 [ Y (t) ] 
−Z 


( 1 + X ) J X [ 2 Y (t) ] , 

(B.4)

here J x ( y ) is the Bessel function of the first kind and, for brevity,

e have have also defined 

X ≡ g † h 

(μ + μ1 ) 

μ2 

R 0 (B.5)

Y (t) ≡ 1 

μ2 

[ 
g † 

2 

(μ + μ1 ) R 0 βδL (t 0 ) 
] 1 

2 

e −
1 
2 μ2 (t−t pul ) (B.6)

Z ≡ (μ + μ1 ) 

μ2 

(φ f ) † δR 0 . (B.7)

sing Eq. (B.2) to transform Eq. (B.4) back into ˜ M † (t) (and hence

 ( t )), we arrive at our general system solution after some straight-

orward manipulations 

˜ 
 † (t) � h 

2 C 1 X 
−1 Y (t)
( 1 − X ) J −X−1 [ 2 Y (t) ] + C 1 
( 1 − X ) J −X [ 2 Y (t) ] 

C 1 
( 1 − X ) J −X [ 2 Y (t) ] + C 2 
( 1 + X ) J X [ 2 Y (t) ] 

+ h 
2 C 2 X 

−1 Y (t)
( 1 + X ) J X−1 [ 2 Y (t) ] − C 2 
( 1 + X ) J X [ 2 Y (t) ] 

C 1 
( 1 − X ) J −X [ 2 Y (t) ] + C 2 
( 1 + X ) J X [ 2 Y (t) ] 

− δR 0 
R 0 

(φ f ) † 
g † 

. (B.8)

otice that in the limit δL ( t 0 ) → 0 the solution above should

symptotically match the time dependence of Eq. (18) . Taking this

imit for Eq. (B.8) yields the following asymptotic behaviour 

˜ 
 † (t) −−−−−→ 

δL (t 0 ) → 0 
h 

C 2 [ Y (t)] X − C 1 [ Y (t)] −X 

C 1 [ Y (t)] −X + C 2 [ Y (t)] X 
− δR 0 

R 0 

(φ f ) † 
g † 

, (B.9)

ence, by assuming that the initial conditions of Eq. (B.8) have no

igration perturbation already, we match the two solutions with

ollowing choices for the constants 11 

C 1 = C −1 
2 = I ≡ [ Y (t 0 )] X exp 

{
−arctanh 

[
A 0 + 

βδL (t pul ) 

μ2 h 

]}
. 

(B.10)

herefore, the fully-determined solution corresponding to the
inuity at the boundary, an additional component of βδL (t pul ) 
∫ 

t pul 
e −μ2 (t−t pul ) d ̃ t � 

β
μ2 

δL (t pul ) must be added to the initial worm burden from the infectious reservoir 

ulse, such that M(t 0 ) = M(t pul ) + 

β
μ2 

δL (t pul ) . 
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pproximative transmission dynamics in this case is reduced

o 

˜ 
 † (t) � h 

2 I 2 X −1 Y (t)
( 1 − X ) J −X−1 [ 2 Y (t) ] + I 2 
( 1 − X ) J −X [ 2 Y (t) ] 

I 2 
( 1 − X ) J −X [ 2 Y (t) ] + 
( 1 + X ) J X [ 2 Y (t) ] 

+ h 
2 X −1 Y (t)
( 1 + X ) J X−1 [ 2 Y (t) ] − 
( 1 + X ) J X [ 2 Y (t) ] 

I 2 
( 1 − X ) J −X [ 2 Y (t) ] + 
( 1 + X ) J X [ 2 Y (t) ] 

− δR 0 
R 0 

(φ f ) † 
g † 

. (B.11) 

ppendix C. Computing the variance over the ensemble of 

ossible worm burdens 

Motivated by the expansions in previous sections, we may take

 linear approximation of Eq. (40) in the neighbourhood of one of

he equilibria M 

∗ in order to write the following approximate equa-

ion 

d 

˜ M ∗
d t 

� β[ � + (t) − � −(t)] + ω 

˜ M ∗(t) , (C.1)

here ω ≡ (μ + μ1 ) M ∗R 0 (φ f ) ′ ∗ and we are reminded that ˜ M ∗(t) ≡
(t) − M ∗. Eq. (C.1) admits the following implicit solution 

˜ 
 ∗(t) = 

˜ M ∗(t 0 ) e 
−ω(t−t 0 ) + β

∫ t 

t 0 

d t ′ 
[
� + (t ′ ) − � −(t ′ ) 

]
e −ω(t −t ′ ) . 

(C.2) 

et us now assume to be in the limit where r � 1/ μ2 , hence we

ay replace the noise term with an approximately Markovian one

 ± ( t ) → � ± ,M 

( t ) as in Eq. (37) . Taking the ensemble average over

eparate realisations of Eq. (C.2) , and initialising all realisations at

ome value M ( t 0 ), we thus arrive at the following solution for the

rst moment of M ( t ) 

[ M(t)] = M ∗ + { M(t 0 ) − M ∗} e −ω(t−t 0 ) 

+ β
r + E(e i, + ) − r −E(e i, −) 

μ2 N p ω 

2 

[ 
e −ω(t−t 0 ) + ω(t − t 0 ) − 1 

] 
, (C.3) 

here we have made use of Eq. (38) and have included the pos-

ibility that two different egg count distributions — with the form

f Eq. (35) — may be used to draw the jump sizes from for the

ngoing e i, + and outgoing e i, − migrant patterns. 

By using the Markov condition for the � ± ,M 

( t ) processes (where

D is a Dirac delta function) 

[ � ±, M 

(t) � ±, M 

(t ′ )] = E[ � 2 ±, M 

(t )] δD (t − t ′ ) , (C.4) 

s well as assuming that no cross-correlations exist, such that

[ � ±, M 

(t) � ∓, M 

(t ′ )] = 0 , we may further use Eq. (C.2) to obtain the

econd moment of M ( t ), which is 

[ M 

2 (t)] = 2 M ∗E[ M(t)] − M 

2 
∗ + E[ ˜ M 

2 
∗ (t)] 

= 2 

(
M ∗ + [ M(t 0 ) − M ∗] e −ω(t−t 0 ) 

)
E[ M(t)] 

− M 

2 
∗ − [ M(t 0 ) − M ∗] 2 e −2 ω(t−t 0 ) 

+ β2 
r + E(e 2 

i, + ) + r −E(e 2 
i, −) 

(2 μ2 N p ω) 2 

[
e −2 ω(t−t 0 ) + 2 ω(t − t 0 ) − 1 

]
+ β2 r 

2 
+ E 

2 (e i, + ) + r 2 −E 2 (e i, −) 

2 ω (2 μ2 N p ω ) 2 

×
{ 

2 − 2 e −2 ω(t−t 0 ) − 2 ω(t − t 0 ) [ 2 − 2 ω(t − t 0 ) ] 

} 

. (C.5) 
eferences 

ccelerating work to overcome the global impact of neglected tropical diseases: a

roadmap for implementation: executive summary , 2012. World Health Organi-

zation . 
nderson, R., Farrell, S., Turner, H., Walson, J., Donnelly, C.A., Truscott, J., 2017. As-

sessing the interruption of the transmission of human helminths with mass
drug administration alone: optimizing the design of cluster randomized trials.

Parasites Vectors 10 (1), 93. doi: 10.1186/s13071- 017- 1979- x . 
nderson, R. , May, R. , 1992. Infectious diseases of humans: dynamics and control.

Dynamics and Control. OUP Oxford . 

nderson, R., Turner, H., Farrell, S., Yang, J., Truscott, J., 2015. What is required in
terms of mass drug administration to interrupt the transmission of schistosome

parasites in regions of endemic infection? Parasites Vectors 8 (1), 553. doi: 10.
1186/s13071- 015- 1157- y . 

nderson, R.M., May, R.M., 1985. Helminth Infections of Humans: Mathematical
Models, Population Dynamics, and Control. In: Advances in Parasitology, 24.

Academic Press, pp. 1–101. doi: 10.1016/S0065- 308X(08)60561- 8 . 
sbjörnsdóttir, K.H., Ajjampur, S.S.R., Anderson, R.M., Bailey, R., Gardiner, I., Hal-

liday, K.E., Ibikounle, M., Kalua, K., Kang, G., Littlewood, D.T.J., Luty, A.J.F.,

Means, A.R., Oswald, W., Pullan, R.L., Sarkar, R., Schr, F., Szpiro, A., Truscott, J.E.,
Werkman, M., Yard, E., Walson, J.L., Team, T.D.T., 2018. Assessing the feasibil-

ity of interrupting the transmission of soil-transmitted helminths through mass
drug administration: the deworm3 cluster randomized trial protocol. PLoS Negl

Trop Dis 12 (1), 1–16. doi: 10.1371/journal.pntd.0 0 06166 . 
rooker, S., Bethony, J., Hotez, P.J., 2004. Human Hookworm Infection in the 21st

Century. In: Advances in Parasitology, 58. Academic Press, pp. 197–288. doi: 10.

1016/S0 065-308X(04)580 04-1 . 
hong, N. S., Hardwick, R. J., Truscott, J. E., Anderson, R. M., 2020. Article in prepa-

ration. 
rompton, D.W.T. , 2006. Preventive chemotherapy in human helminthiasis: coordi-

nated use of anthelminthic drugs in control interventions: a manual for health
professionals and programme managers. World Health Organization . 

ormand, J., Prince, P., 1980. A family of embedded Runge–Kutta formulae. J. Com-

put. Appl. Math. 6 (1), 19–26. doi: 10.1016/0771-050X(80)90013-3 . 
nding the neglect and reaching 2020 goals. https://unitingtocombatntds.org/

london- declaration- neglected- tropical- diseases/ . 
airer, E. , Nørsett, S.P. , Wanner, G. , 1993. Solving Ordinary Differential Equations I

(2nd Revised. Ed.): Nonstiff Problems. Springer-Verlag, Berlin, Heidelberg . 
acdonald, G., 1965. The dynamics of helminth infections, with special reference

to schistosomes. Trans. R. Soc. Trop. Med. Hyg. 59 (5), 489–506. doi: 10.1016/

0035- 9203(65)90152- 5 . 
ay, R.M., 1977. Thresholds and breakpoints in ecosystems with a multiplicity of

stable states. Nature 269 (5628), 471–477. doi: 10.1038/269471a0 . 
ansen, P. , Roepstorff, A. , 1999. Parasitic helminths of the pig: factors influencing

transmission and infection levels. Int. J. Parasitol. 29 6, 877–891 . 
ullan, R.L., Halliday, K.E., Oswald, W.E., Mcharo, C., Beaumont, E., Kepha, S., Witek-

McManus, S., Gichuki, P.M., Allen, E., Drake, T., Pitt, C., Matendechero, S.H.,

Gwayi-Chore, M.-C., Anderson, R.M., Njenga, S.M., Brooker, S.J., Mwan-
dawiro, C.S., 2019. Effects, equity, and cost of school-based and community-

wide treatment strategies for soil-transmitted helminths in Kenya: a cluster-
randomised controlled trial. Lancet doi: 10.1016/S0140- 6736(18)32591- 1 . 

rogress reports of the london declaration. https://unitingtocombatntds.org/reports/ .
ruscott, J., Ower, A., Werkman, M., Halliday, K., Oswald, W., Gichuki, P., Mcharo, C.,

Brooker, S., Njenga, S., Mwandariwo, C., Pullan, R., Anderson, R., 2019. Parasites

Vectors (in press). 
ruscott, J., Turner, H., Anderson, R., 2015. What impact will the achievement of the

current world health organisation targets for anthelmintic treatment coverage
in children have on the intensity of soil transmitted helminth infections? Para-

sites Vectors 8 (1), 551. doi: 10.1186/s13071-015-1135-4 . 
ruscott, J., Turner, H., Farrell, S., Anderson, R., 2016. Chapter three - soil-transmitted

helminths: mathematical models of transmission, the impact of mass drug
administration and transmission elimination criteria. In: Basez, M.G., Ander-

son, R.M. (Eds.), Mathematical Models for Neglected Tropical Diseases. In: Ad-

vances in Parasitology, 94. Academic Press, pp. 133–198. doi: 10.1016/bs.apar.
2016.08.002 . 

ruscott, J.E., Werkman, M., Wright, J.E., Farrell, S.H., Sarkar, R., Ásbjörnsdóttir, K.,
Anderson, R.M., 2017. Identifying optimal threshold statistics for elimination of

hookworm using a stochastic simulation model. Parasites Vectors 10 (1), 321.
doi: 10.1186/s13071- 017- 2256- 8 . 

http://refhub.elsevier.com/S0022-5193(19)30445-X/sbref0001
http://refhub.elsevier.com/S0022-5193(19)30445-X/sbref0001
https://doi.org/10.1186/s13071-017-1979-x
http://refhub.elsevier.com/S0022-5193(19)30445-X/sbref0003
http://refhub.elsevier.com/S0022-5193(19)30445-X/sbref0003
http://refhub.elsevier.com/S0022-5193(19)30445-X/sbref0003
https://doi.org/10.1186/s13071-015-1157-y
https://doi.org/10.1016/S0065-308X(08)60561-8
https://doi.org/10.1371/journal.pntd.0006166
https://doi.org/10.1016/S0065-308X(04)58004-1
http://refhub.elsevier.com/S0022-5193(19)30445-X/sbref0008
http://refhub.elsevier.com/S0022-5193(19)30445-X/sbref0008
https://doi.org/10.1016/0771-050X(80)90013-3
https://unitingtocombatntds.org/london-declaration-neglected-tropical-diseases/
http://refhub.elsevier.com/S0022-5193(19)30445-X/sbref0010
http://refhub.elsevier.com/S0022-5193(19)30445-X/sbref0010
http://refhub.elsevier.com/S0022-5193(19)30445-X/sbref0010
http://refhub.elsevier.com/S0022-5193(19)30445-X/sbref0010
https://doi.org/10.1016/0035-9203(65)90152-5
https://doi.org/10.1038/269471a0
http://refhub.elsevier.com/S0022-5193(19)30445-X/sbref0013
http://refhub.elsevier.com/S0022-5193(19)30445-X/sbref0013
http://refhub.elsevier.com/S0022-5193(19)30445-X/sbref0013
https://doi.org/10.1016/S0140-6736(18)32591-1
https://unitingtocombatntds.org/reports/
https://doi.org/10.1186/s13071-015-1135-4
https://doi.org/10.1016/bs.apar.2016.08.002
https://doi.org/10.1186/s13071-017-2256-8

	The ‘breakpoint’ of soil-transmitted helminths with infected human migration
	1 Introduction
	2 Basic transmission model
	2.1 Reservoir in equilibrium
	2.2 Perturbing the system with migration

	3 Saddle-node bifurcation expansion
	3.1 In the absence of migration
	3.2 Timescales away from the unstable equilibrium
	3.3 Including a migration perturbation
	3.4 Expansions about the equilibria

	4 A stochastic theory of migration perturbations
	4.1 Epidemiology
	4.2 Deriving the stochastic term
	4.3 Computing the variability in the mean worm burden

	5 Discussion
	Acknowledgements
	Appendix A The saddle-node bifurcation expansion in more detail
	Appendix B Solving the system with a migration perturbation
	Appendix C Computing the variance over the ensemble of possible worm burdens
	References


