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Abstract

Background: There is an increased focus on whether mass drug administration (MDA) programmes alone can
interrupt the transmission of soil-transmitted helminths (STH). Mathematical models can be used to model these
interventions and are increasingly being implemented to inform investigators about expected trial outcome and
the choice of optimum study design. One key factor is the choice of threshold for detecting elimination. However,
there are currently no thresholds defined for STH regarding breaking transmission.

Methods: We develop a simulation of an elimination study, based on the DeWorm3 project, using an individual-
based stochastic disease transmission model in conjunction with models of MDA, sampling, diagnostics and the
construction of study clusters. The simulation is then used to analyse the relationship between the study end-point
elimination threshold and whether elimination is achieved in the long term within the model. We analyse the quality
of a range of statistics in terms of the positive predictive values (PPV) and how they depend on a range of covariates,
including threshold values, baseline prevalence, measurement time point and how clusters are constructed.

Results: End-point infection prevalence performs well in discriminating between villages that achieve interruption of
transmission and those that do not, although the quality of the threshold is sensitive to baseline prevalence and
threshold value. Optimal post-treatment prevalence threshold value for determining elimination is in the range 2% or
less when the baseline prevalence range is broad. For multiple clusters of communities, both the probability of
elimination and the ability of thresholds to detect it are strongly dependent on the size of the cluster and the size
distribution of the constituent communities. Number of communities in a cluster is a key indicator of probability of
elimination and PPV. Extending the time, post-study endpoint, at which the threshold statistic is measured improves
PPV value in discriminating between eliminating clusters and those that bounce back.

Conclusions: The probability of elimination and PPV are very sensitive to baseline prevalence for individual
communities. However, most studies and programmes are constructed on the basis of clusters. Since elimination
occurs within smaller population sub-units, the construction of clusters introduces new sensitivities for elimination
threshold values to cluster size and the underlying population structure. Study simulation offers an opportunity to
investigate key sources of sensitivity for elimination studies and programme designs in advance and to tailor
interventions to prevailing local or national conditions.
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Background
The soil-transmitted helminths (STH) are a group of para-
sites comprising whipworm (Trichuris trichiura), round-
worm (Ascaris lumbricoides) and hookworm (Ancylostoma
duodenale and Necator americanus). Although not gener-
ally considered fatal, chronic, high-intensity STH infec-
tions are associated with iron-deficiency anaemia, protein
malnutrition, and intellectual and cognitive impairment,
especially amongst children [1]. The greatest burden of
STH infection falls on socio-economically disadvantaged
communities in sub-Saharan Africa, China, East Asia, and
the Americas. Global estimates suggest up to 1.5 billion
people are infected with STH resulting in approximately
5.2 million disability-adjusted life years (DALYs), of which
the majority are attributable to hookworm [2].
The current WHO approach for STH is centred on

programmes of mass drug administration (MDA), using
albendazole or mebendazole. The main goal is to achieve
a coverage of 75% of school-aged children (SAC) within
MDA programmes by 2020 [3]. Frequency of coverage is
determined by disease prevalence measured among
SAC, with shorter intervals between treatment rounds
for higher prevalences [4]. The aim of this strategy is to
eliminate STH diseases as a public health problem
(defined by a threshold of 1% medium-to-heavy infection
among school children). One problem with this ap-
proach is the focus on the treatment and monitoring of
children, which ignores morbidity in other age groups
which represent a significant proportion of the popula-
tion. Additionally, the differing age profiles of infection
among the different STH diseases mean that the impact
of such targeted treatment will vary considerably. For
example, Ascaris burden tends to be concentrated in
SAC whereas hookworm burdens are frequently heaviest
among adults. As such, treatment of SAC has a much
lower impact on hookworm disease burden than on a
population with a comparable Ascaris burden [5, 6].
A further problem with this strategy is that it does not

foresee an endpoint. MDA remains necessary to control
morbidity in SAC as adults, who remain untreated,
continue to contribute infectious material to the environ-
mental reservoir. Control programmes continue to treat
according to the WHO guidelines, maintaining a low level
of prevalence in SAC. In recent years, discussion of the
control of STH has turned to the question of whether the
emphasis of the WHO strategy for STH (and schistosome)
infections should shift from morbidity control to the inter-
ruption of transmission [7–9]. There is a growing body of
analysis that suggests that expanding MDA coverage from
pre-school aged children (Pre-SAC) and SAC to the whole
community can be sufficient to break transmission of STH
in most settings. The impact of community-wide coverage
is particularly strong for hookworm due to the relatively
heavy worm burdens in adult populations [10–12].

The recently launched DeWorm3 project aims to
investigate the possibility of breaking STH transmission
by leveraging the work of existing lymphatic filariasis
(LF) elimination programmes [13]. As LF is also treated
with albendazole (in combination with ivermectin or
diethylcarbamazine) using community-wide MDA, it
forms the ideal platform to build on. Such programmes
typically provide 4–6 yearly rounds of MDA before
prevalence is reduced to a threshold level consistent
with the interruption of transmission [14]. Hence there
is an opportunity at the conclusion of an LF elimination
programme to continue MDA, possibly in an intensified
form, to break transmission of STH in the same area.
The DeWorm3 studies are structured as cluster random-
ized controlled trials (CRT), in line with other recent
studies on transmission interruption [15]. The purpose
of this paper is to address some of the key design chal-
lenges arising from such studies. We have developed an
individual-based stochastic model of STH transmission
within an epidemiologically-independent community
[16, 17]. This is taken to be equivalent to a village in a
rural setting, although its interpretation is more prob-
lematic in an urban setting. From this, we construct a
simulation of the prospective study; the initial LF treat-
ment period and the STH eradication programme. The
simulation allows for the variability that arises between
different communities as well as that generated by the
stochasticity of demographic and epidemiological pro-
cesses and the uncertainties of diagnostic and sampling
strategies. A key problem with detection of elimination
is that it is a long term phenomenon that requires many
years to pass before it can be confirmed [17]. The simula-
tion allows individual communities to be traced forward
in time to identify the long-term ‘fate’ of populations.
The simulation allows us to examine the connection

between potential elimination thresholds and the elimin-
ation or bounce-back of the parasite population within a
community. We examine how the probability of achiev-
ing elimination within a community depends on the
baseline prevalence of infection and community size.
We also test the accuracy of a range of threshold mea-
sures to predict long-term elimination and how that
accuracy depends on other aspects of study design, such
as time of measurement and baseline prevalence. Within
the context of potential thresholds and their accuracy,
clustering is likely to play an important role. Clusters are
constructed from the aggregation of individual commu-
nities and hence thresholds at the cluster level will be
subject to greater uncertainty due to variation among
the constituent communities. Since breaking transmis-
sion occurs at a community level, the probability of
achieving elimination is also likely to depend on the
constitution of clusters. We examine the impact of
aggregation using the study simulation, looking at the
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effect of cluster size and underlying community size
distribution on the probability of elimination and the
ability of thresholds to detect it.

Methods
The model system used in the current paper arises from
and is set in the context of modelling work performed for
the Deworm3 project. The purpose of the Deworm3 pro-
ject is to test the feasibility of leveraging past LF elimin-
ation effort using a cluster randomized trial [13]. The
simulation follows participating communities through an
initial phase of 4 years of pre-study LF treatment, followed
by 3 years of twice yearly community-wide treatment at a
higher coverage during the study (see Table 1). Beyond
the study end-point, treatment ends and the parasite
populations in communities are allowed to evolve with-
out intervention to ascertain the long-term fate of the
parasite population.

Model structure
The transmission model employed focuses on hookworm
as this is the most prevalent STH species in the locations
chosen for the DeWorm3 project and also potentially rep-
resents one of the most difficult to eliminate through
school-based deworming, having an infection age profile
that typically spans both children and adults [11]. In brief,
the model is a stochastic simulation of the worm burdens
of individual hosts in a population. The epidemiologically
independent population unit is taken to be a village or
community. Births and deaths of hosts are included and
are based on a typical demography of a low-income coun-
try. Mortality rates are assumed to be independent of an
individual’s infection status. In simulations, initial host
ages are drawn from the equilibrium age profile implied
by the demography. Acquisition of worms from the infec-
tious reservoir is mediated through an age-dependent
contact rate, leading to an appropriate age profile of infec-
tion for the parasite; host contribution to infectious mater-
ial in the environment has the same age dependence. The
contact rate of individuals with infectious material has an
underlying gamma distribution which generates the

characteristic negative binomial distribution in worm
burdens seen in worm expulsion epidemiological studies
[18–20]. The distribution is dynamic over time given
changes in a key parameter of the distribution, the mean
worm burden per host.
Sexual reproduction of the parasite in the host is

incorporated, which is crucial when investigating elimin-
ation processes as STH species reproduce sexually. As
the number of worms per hosts decreases, the likelihood
of both sexes being present in a host for the production
of fertile eggs is reduced. For sufficiently low preva-
lences, fertile egg production becomes too low to sup-
port the parasite population in the host population,
leading to the interruption of transmission. Hence there
exists a critical parasite prevalence ‘breakpoint’, above
which the parasite population can sustain itself and
below which it collapses to the disease-free state.
The epidemiological parameters were obtained by

fitting an equivalent deterministic model to individual-
level intensity data from an intervention study of hook-
worm control in Vellore, South India [21]. Details of the
model, its fitting and validation can be found elsewhere
[22]. Bayesian techniques were used for fitting a likeli-
hood function to the data, leading to a posterior distri-
bution for the parameters. We use samples from the
posterior parameter distribution to capture the under-
lying epidemiological variability among communities in
the simulation. However, we assume that intensity of
transmission, as characterised by the reproductive number
R0, is the key source of variability in prevalence and hence
vary this independently to generate a sufficiently wide
range baseline prevalences for the study.

Study simulation
Using the community-scale model described above, we
construct a simulation of an elimination study following
on directly from the end of a national LF programme.
The simulation is constructed from four consecutive
time periods: an initial 10-year equilibration period for
communities to establish endemic disease transmission;
a 4-year period of LF treatment; 3 years of twice-yearly

Table 1 Overview of main study design and demographic parameters used in simulations. Community size distributions are
described in study simulation section

Default epidemiological and study parameter values Explanation

LF MDA programme Annual 4 years of MDA community-wide, coverage of 0.65, 0.65, 0.40
for pre-SAC, SAC and adults, respectively [25]

STH MDA programme Bi-annual 3 years of MDA community-wide, coverage of 0.70, 0.70, 0.60
for pre-SAC, SAC and adults, respectively [3]

Baseline prevalence Prevalence after LF MDA programme. Prevalence between 5 and 40%

Community size distribution Vellore, Tamil Nadu: Mean = 263 and approximate range 100–800

Indian census data, 2001: Mean = 2680 and approximate range 50–7500

Diagnostic test McMaster, based on two samples
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intensive community-wide treatment within the study
period and a final extensive period without treatment to
allow communities to achieve elimination or bounce
back to endemic levels. The coverage levels for the two
period of treatment are given in Table 1. The coverage
levels used represent approximate mean levels for the
two types of treatment regime. For LF, we have extended
levels ascribed to children to adults with a drop-off to
reflect the added difficulty of reaching adults. Higher
levels are often quoted, but it is also the case that official
figures are frequently unrealistic [23]. In the case of the
elimination study, levels are based on the WHO 2020
goals of 75% MDA coverage extended to adults, but
allowing again for a drop-off in coverage of adults due
to non-participation [3]. This is perhaps pessimistic as
an elimination study would take pains to achieve the
highest levels of coverage possible.
Both the diagnostics and sampling procedures are sim-

ulated and are also stochastic processes, adding to the
variance of the output. Key assumptions of the diagnos-
tic model is that measured egg output from a host is
negative binomial in distribution and that mean egg out-
put is subject to fecundity limitation due to the number
of worms present in a host [24]. Hookworm only release
eggs when fertilized, so egg output requires both male
and female worms present [10]. In this study, we assume
that McMaster is the diagnostic method based on two
independent stool samples, in agreement with the study
to which the diagnostic model was fitted [21, 22]. For
the population sampling, we randomly select 200 people
from the entire population of a study demographic unit.
The diagnostic technique and sampling method applied
in this study will increase the variance in the prevalence
measured and influence the distribution of the threshold
statistic and its critical threshold value. The output of
the simulation is used to construct the appropriate
demographic study unit, if necessary, and generate a
sample at a given time point and perform the diagnostic
test on it. This process is repeated many times to gener-
ate a probability distribution for the sampled state of the
demographic unit and the associated final state (para-
sites eliminated or bounced-back). In this study, we look
at two types of demographic study units: single commu-
nities and clusters of communities of a given size. For
single communities, we examine the sensitivity of elim-
ination and threshold statistics to size. For clusters, we
construct groups of communities of various total popu-
lation sizes from underlying distributions of community
sizes. We have used two sources of data that inform the
community size distribution. The Vellore study, against
which the model was calibrated, was conducted across
45 communities whose demography was recorded [21].
Figure 1a shows a histogram of this data along with the
expectations from a negative binomial distribution with

the maximum likelihood. However, communities within
this study are significantly smaller than average commu-
nity sizes in India (mean size 263, range 100–800). For a
more representative distribution, we use data from the
Indian census of 2001 to construct an approximate
probability distribution, shown in Fig. 1b [25]. This dis-
tribution is characterised by a mean an order of magni-
tude higher, at 2680, and ranges from 50 to 7500. For
each of the village size distributions, clusters were con-
structed by randomly accumulating communities so that
their sizes fell into predetermined ‘bins’ and the statistics
of each bin were analysed to generate the dependence
on size. The mean sizes of bins were in intervals of 500
from 500 up to 10,000 with boundaries at the mid-points.
Sample sizes from the clusters were 200 individuals and
elimination was declared if all constituent communities in
a cluster achieved parasite elimination.
In the following section, we first look at the overall

response of prevalence in communities as they progress
through LF treatment, the study itself and then on to
parasite bounce back or elimination. We compare several
different candidate threshold measures for their ability to
differentiate at the end of the study between eliminating
and recovering parasite populations. We examine the de-
pendence of the probability of achieving elimination on
community size and R0. The R0 range present in our sets
of parameter values is chosen to approximately match the
baseline prevalences measured in the Vellore study
(5–45%). As such, it is hard to say how much clusters
constructed from this population will be generalizable. For
this reason we also filter results by measured baseline
prevalence ranges. This helps to minimize the depend-
ence of the results on the background distribution of
R0 and also represents a more intuitive measure of
transmission intensity.
As the prevalence is reduced substantially after such

intense MDA, a threshold is needed to differentiate at
the end of the study between simulations achieving
interruption of transmission and simulations recovering
to the endemic state (bounce-back). The quality of
threshold measures in distinguishing between interrup-
tion of transmission and bounce back is reflected by the
positive and negative predictive values (PPV and NPV,
respectively) [26]. In the current context, the positive
predictive value is defined as the proportion of elimina-
tions detected by the threshold statistic that result in
long-term eliminations. Correspondingly, the negative
predictive value is the proportion of bounce-backs
detected by the statistic that result in recovery to endemic
infection states. The predictive value measures are attract-
ive in this context as they factor in the prevalence of com-
munities that eliminate. As such, they estimate the
probability of true elimination based on based on informa-
tion available from the threshold test alone.
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In the context of an elimination study, it can be
argued that a high PPV is most important. A key require-
ment of an elimination programme is that it results in
some degree of certainty as to whether the goal has been
achieved. A low PPV value indicates that communities
tested as eliminations are likely to bounce back eventually,
leading to treatment programmes being terminated early
before transmission has been broken. In contrast, low
values of NPV encourage programme managers to assume
elimination has not been achieved at the end point, when
it has. This may incur an economic penalty from contin-
ued treatment, but does not affect the epidemiological
effectiveness of the programme or study.

Results
Figure 2 shows the measured prevalence of a selection
of communities over time, with the long-term fate of
each indicated by line colour. The combination of the
LF programme and subsequent treatment within the
study brings all communities to a low prevalence state.
At the end of the study, individual communities resolve
into either an elimination or recovery trajectory. Elimin-
ating communities remain at low prevalences but para-
sites may persist in the population for another 5 or more
years. Bounce-back communities display considerably
more variability. Prevalences vary between individual
communities due to differences in epidemiological param-
eters and within a community over time due to the vari-
ation in which individuals are sampled and variability in
the egg output from individuals as well as the diagnostic
test performance. Note that the individual rounds of
treatment are very hard to identify within the variability
between individual measurements.
Figure 3 shows the mean measured prevalence and

95% prediction intervals for prevalence, averaged across
communities that eliminate or bounce back, respectively.

The impact of differing transmission intensities among
communities has been controlled for by including only
those with a baseline prevalence between 10 and 20%.
The two groups are indistinguishable during the LF
programme and only start to differ during the elimin-
ation study. Variability across eliminating communities
is low at the study end point and continues to drop with
time. Among bounce-back communities, variance is ini-
tially larger and increases in the years directly following
the end of the study. The ‘entanglement’ of the measured
prevalences of the two classes of communities indicates
that it may be difficult to identify a good threshold to
distinguish them.

Village level results
In this section, we consider the quality of several pos-
sible threshold statistics for elimination and their sensi-
tivity to aspects of study design and epidemiology. For a
threshold statistic to be effective, it must be possible to
choose a critical value that can discriminate between the
two outcomes of interest. This can to some extent be
determined by eye from distribution of the statistic across
multiple measurements. Figure 4 shows the distributions
of three potential end-point statistics, as applied to indi-
vidual communities, and shaded according to whether
each village went on to achieve elimination of infection
(green) or bounce back to endemic levels (red) in the long
term after treatment was ended.
For both prevalence measured one year after study

end-point and, to a lesser extent, end-point prevalence
as a fraction of baseline, the distribution for eliminating
and re-establishing communities are partially distin-
guishable. For prevalence, the threshold value lies some-
where close to 1%, while for the baseline fraction, the
threshold is close to 5% of baseline value. Prevalence dif-
ference between 3 months after and 1 year after study

Fig. 1 Distribution of village sizes in the Vellore study (a) and from the Indian census, 2001 (b). a Histogram of the Vellore data and the equivalent
expectations for the fitted model (Parameters: mean = 263, aggregation parameter = 7.7. Labels give lower bounds of bins with width 50). b The Indian
census distribution is an approximation from the number of communities in a range of size categories (mean = 2770, standard deviation = 1870)
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end is clearly less differentiated, with the range of preva-
lence differences from eliminating village being shared
by a reasonable proportion of re-establishing communi-
ties (Fig. 4c). This is a consequence of the ‘noisiness’ of
prevalence values at study end in comparison to the abso-
lute prevalence. Comparison of two prevalence serves to
double the variance, obscuring any trend on the under-
lying mean. This is on top of the extra cost and logistical
effort of measuring the prevalence twice.
Both the overall probability of elimination and the

ability of a threshold to detect elimination at the end
point are strongly dependent on the baseline prevalence.
Baseline prevalence serves as a proxy for transmission
intensity, so the range of R0 values associated with each
baseline prevalence range is also shown. A problem with
looking at the statistics of communities selected from a
population with a wide range of transmission intensities

is that the probability of elimination and threshold quality
will depend on the background (prior) distribution of R0.
However, the R0 distribution associated with the param-
eterizing dataset may not be generalizable to other popu-
lations. By choosing from a narrow range, we minimize
the impact of this variability. The association between
community size and elimination is well established for
micro-parasitic diseases in the concept of critical commu-
nity size (first identified by Bartlett [27]). In these cases,
small communities generate low numbers of infectious
individuals which are prone to stochastic fade-out, even
when R0 is greater than 1. In the current model, this effect
is complicated by the existence of a deterministic break-
point separating the endemic and disease-free states, as
described above.
Figure 5a shows the relationship between probability

of elimination and baseline prevalence, community size

Fig. 2 Time series of measured prevalence in a selection of individual communities within the stochastic simulation. Vertical lines indicate the
four distinct regions of the simulation; endemic behaviour, LF treatment period, the duration of the study and the post-study period without
MDA treatment. Red and green lines indicate communities that ultimately bounce back or eliminate, respectively

Fig. 3 Summary statistics for measured prevalences across communities with baseline prevalence in the range 10–20% going to elimination
(green) and bouncing back (red). Solid lines represent mean values and broken lines the 95% prediction interval
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and R0. There is a clear association between baseline
prevalence and probability of elimination. Prevalences
below 20% are almost certain to achieve elimination
while above 30% baseline, elimination is not possible
with the prior treatment and study design used. Prob-
ability of elimination is only weakly correlated with com-
munity size. Results from communities of size 2000 and
4000 are indistinguishable in terms of elimination.
Smaller communities of size 500 are 5–10% more likely
to eliminate for a given baseline prevalence. This indi-
cates that, at least for communities of 500 individuals or
more, the elimination process is dominated by the deter-
ministic breakpoint rather than size-dependent effects.
Figure 5b illustrates the effectiveness of a range of

prevalence threshold values, taken 1 year post study, to
detect elimination. In this case, we have a sample size of
200, which is just large enough to measure a 0.5% preva-
lence threshold. As the absolute probability of elimination

decreases with increasing baseline prevalence (and R0),
the positive predictive value of all thresholds also
decreases. For baseline prevalences less than 20%, PPV
remains well above 95% for all thresholds examined. How-
ever, under these conditions, the probability of elimination
is very likely. For baselines of 20–30%, with a probability
of elimination around 40%, a threshold of 2% or less is
required to achieve a PPV greater than 60%. PPV values
for baseline range 30–40% are not available since no
communities from this range achieve elimination. More
representative of a population of communities, if com-
munities are drawn from a broad range of baseline
prevalences (5–40%), a threshold of 2% is capable of
distinguishing elimination with a PPV of above 80%.

Cluster level results
Figure 6a shows statistics for clusters of various sizes,
constructed from communities taken from the two

Fig. 4 Histograms for three possible post-study threshold statistics: a measured prevalence at 1 year post-study; b prevalence difference between
1 year and 3 months post-study; and c the ratio of prevalence at 1 year post-study to baseline prevalence. Values from eliminating and rebounding
communities are green and red, respectively. Results represent 1000 model iterations

Fig. 5 a Probability of elimination for communities with different baseline prevalence ranges and across a range of village population sizes. Error
bars show 2 standard deviations for the R0 ranges of different baseline prevalence limits (indicated by circles). b PPV values for a range of
elimination thresholds and baseline prevalences
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distributions described. Clusters are constructed from
communities with a range of baseline prevalences from 5
to 40%. Probability of elimination is strongly dependent
on cluster size and the underlying distribution of village
sizes. When constructed from the smaller communities in
the Vellore distribution, the probability of elimination
drops rapidly to zero by about a cluster size of 2000 indi-
viduals. In the case of the Indian Census communities,
probability of cluster elimination also decreases with size,
but more slowly. Figure 6b indicates that major determin-
ant of this behaviour is the number of communities in a
cluster. Since elimination within a cluster requires elimin-
ation within all constituent communities, the probability
of elimination in a cluster might be expected to have an
approximately exponential dependence on the number of
communities if the probability of elimination were the
same across communities. Some of the remaining discrep-
ancy between clusters from the two village size distribu-
tions can be accounted for by the differences in their
ranges. As shown in Fig. 5a, small communities are more
likely to achieve elimination than large ones, due to the
increased importance of stochastic variability. Clusters
constructed from the Indian census data are less likely to
contain small communities and will on average be less

likely to be driven to elimination by treatment, as seen in
Fig. 6b. Very similar effects are at play in the dependence
of PPV on cluster size (Fig. 6c, d). PPV was calculated for
a threshold of 2% prevalence at one year post-study. A
sample of individuals taken from a cluster effectively sam-
ples from all the constituent communities and the mea-
sured prevalence is a weighted mean of the individual
village prevalences. As such, the sampled prevalence can
be below the threshold while individual communities may
be above it, increasing the likelihood of a failure to elimin-
ate and reducing the PPV. The greater the number of con-
stituent communities, the more likely that one or more
communities will fail to eliminate, leading to a drop in
PPV with cluster size and number of communities. The
cluster size effect for NPV is the opposite. Any collection
of communities within a cluster that tests negatively
against the elimination threshold will contain communi-
ties with prevalences above the cluster mean and hence
more likely to bounce back to endemicity. As a result, the
whole cluster will fail to eliminate as predicted. NPV
values across all cluster sizes tend to be very close to 1.
The quality of the threshold statistic is also sensitive to

the time at which it is recorded. Figure 7 shows the
dependence of PPV on time since study end. The time

Fig. 6 Impact of cluster size and composition on probability of elimination (a and b) and threshold PPV (c and d). Probability of elimination and
PPV are plotted against cluster size (a and c) and mean number of communities (b and d), respectively. Prevalence threshold is set at 2%, one
year post study, with baseline prevalence range of 5–40% and sample size of 200 individuals
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dependence in PPV closely reflects that of the prevalence
mean and prediction interval shown in Fig. 3. As the
parasite populations recover in the bounce-back com-
munities, the two groups become more easily distin-
guished and the PPV improves. The difference between
village and cluster level results is not large in this case as
the mean size of the two groupings is relatively close.
The bounce back rate for PPV is approximately expo-
nential with a half-life of approximately 3 years. Hence
threshold quality improves markedly within 1–2 years of
the end of the study.

Sensitivity of diagnostic testing
The number of samples taken from individuals within a
sample will vary according to local practice or available
resources. WHO protocols are not specific, but standard
practice is 2 samples [28]. Throughout the paper we have
assumed two samples, but here we investigate the sensitiv-
ity to number of samples taken. Increasing sampling will
naturally lead to greater diagnostic sensitivity to preva-
lence and an increase in PPV and NPV scores. Our ana-
lysis shows that using one sample performs substantially
poorer than using two or more samples, however there is
no benefit in using more than two samples (Table 2).

Discussion
The precise assessment of the infectious state of a popu-
lation is complicated by the many sources of variation
and uncertainty. The underlying stochasticity of infec-
tion and demographic processes is compounded by the
process of constructing a sample and the sensitivity of
the diagnostic tools. For the large populations involved
in CRTs and MDA programmes, there is the additional
factor of the variability within the population; in this
case, the variation in the demographic structures and

epidemiological rates across different communities. The
methodological approach adopted in this paper has
endeavoured to include these sources of uncertainty,
their interactions with each other and their magnitude,
as captured from data collected from a large STH con-
trol study [21]. The power of this simulation model is
that it provides the opportunity to examine a large range
of covariates related to the design of studies and pro-
grammes and link them to long term end states such as
elimination or recovery. To study these phenomena dir-
ectly in the field would require decades and throw up a
number of obvious ethical issues. For example, programme
managers are obliged to treat participants who are identi-
fied as infected. Treating participants in the control group
could possibly dilute the differences between two arms
and is therefore undesirable.
Within the current paper, we have addressed the issue

of the quality of potential threshold statistics and their
sensitivity to design features such as the construction of
the study demographic units and the time of measure-
ment and epidemiological aspects like baseline prevalence
ranges. The time series shown in Figs. 2 and 3 illustrate
the key features of the variability in measurements. They

Fig. 7 Sensitivity of PPV to time since end of study for communities (mean = 2770) and clusters of size (3–5000) individuals. Sample size is 200
individuals and the overall probability of elimination is approximately 27%

Table 2 Impact of sensitivity of diagnostics on PPV and NPV
values. Rows represent different numbers of independent
McMaster test done on each individual in the sample. Baseline
prevalence range 5–40%

Number
of samples

Threshold quality (PPV / NPV)

0.5% 1% 2% 5%

1 0.97/0.96 0.91/0.99 0.81/1 0.65/1

2 0.99/0.91 0.97/0.98 0.88/1 0.74/1

3 0.99/0.87 0.97/0.95 0.87/1 0.72/1

4 1/0.87 0.98/0.95 0.88/1 0.73/1
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show that variability around the mean prevalence
after the end point of the study is relatively small for
communities that reach elimination. In contrast, for
communities that bounce back, variability in preva-
lence post study grows rapidly and takes at least ten
years to recovery to endemic levels. Figure 2 shows
that communities that are bouncing back may spend
a number of years at very low prevalence levels. The
overlap of these two distributions is clear in the his-
tograms of the three possible statistics, categorised by
final state, shown in Fig. 4. Both prevalence difference
and prevalence ratio have more overlap, and hence
less resolution, than a single measure of prevalence;
the prevalence difference particularly so. This is partly
explained by the fact these two statistics are con-
structed from two separate prevalences and hence the
combined variance is the sum of the variance at each
time-point. The difference in prevalence at two time
points is commonly used to quantify the effects of a
programme, but is predicated on the assumption that
correlations between successive measurements can be
used to ‘neutralise’ the variance between individuals.
However, close to elimination, variance to mean ratios
are particularly large, swamping any benefit achieved.
The idea of identifying a valid threshold for elimin-

ation is reinforced by the fact that sexual reproduction
of the worms within a host leads to a breakpoint preva-
lence threshold below which there are insufficient ferti-
lised females to maintain the transmission cycle. For
micro-parasitic diseases, there is generally no equivalent
threshold. This difference is reflected in the impact of
community size on elimination. For communities larger
than 500 individuals, the probability of elimination is
largely independent of population size. This contrasts
with the micro-parasitic diseases, where critical commu-
nity size is a key determinant of the persistence of infec-
tion in a population [27]. Independence from community
size is also a consequence of the transmission model
used, in which transmission intensity does not scale
with community size.
The ability to bring about elimination in a community

is clearly dependent on its baseline prevalence, which in
turn is a function of transmission intensity (R0) and past
LF treatment [29]. For baseline prevalences above 30%,
elimination in the current treatment context is not
possible with the coverages assumed in this study. For
prevalences where elimination is possible, thresholds of
2% or less are required to achieve PPV scores of greater
than 50%. Results shown in Fig. 5 are based on sample
sizes of 200. PPV values can be marginally improved
with larger samples.
Cluster-level results differ markedly from those for indi-

vidual communities. Due to economies of scale and logis-
tic considerations, studies and monitoring and evaluation

for programmes are usually based on clusters or regions
composed of a number of communities. As shown in
Fig. 6, probability of elimination within a cluster and
the PPV of thresholds drops of rapidly with increasing
number of constituent communities. This reflects the
fact that, at least within the current model framework,
elimination is a property of individual communities ra-
ther than whole regions. By viewing elimination at the
level of cluster or region, some detail is inevitably lost.
In scenarios in which all communities are have transmis-
sion intensities low enough for the study or programme to
achieve elimination with certainty, the size and constitution
of clusters will not be important. However, in scenarios in
which elimination is not certain across all communities,
the quality of thresholds can be very sensitive to the size of
clusters and the distribution of community sizes.
Our analysis indicates that there are no significant bene-

fits to applying more than two samples per individual
when determining infection prevalence. However, it is
important to note that the parameters used in the diag-
nostic model were estimated from an extremely conscien-
tious testing procedure within a trial context [21]. It is
likely that when diagnostics tests are performed in the
context of national programmes, the diagnostic process
will be of a lower quality due to the large volume of
samples, financial restrictions, administrative challenges
and inadequate training of personnel. It will depend on
health economic considerations to ensure a cost-effective
approach. New diagnostic technologies such as qPCR may
improve the accuracy as a measure of the presence of
infection in less controlled settings [30, 31].
A number of issues remain to be explored. The choice

of hookworm with its broadly flat age-intensity profile,
along with community-wide MDA and sampling, mini-
mizes the impact of age structure. Both Ascaris and
Trichuris tend to have infection much more concen-
trated in school-aged children and this will have a big
impact on where elimination thresholds will lie, particu-
larly as SAC are the usual focus of STH monitoring. In
such a scenario, threshold prevalences sampled from
SAC are likely to be considerably higher. Given a study
design with SAC-focused MDA, as recommended by
WHO, a further complication would arise from the age
profile of host contributions to the reservoir. If the
majority of infectious material is contributed by hosts
outside the targeted group, the impact of treatment will
be greatly reduced. Unfortunately, very little is known
about this aspect of the transmission cycle.
Along with the size and constitution of clusters, the dis-

tribution of transmission intensities among constituent
communities has a strong impact on the probability of
elimination and its detection, as shown. The distribution
in this case is characteristic of the dataset used for the
parameterization of the model and can’t be generalised to
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other scenarios. The range of transmission intensities
should be chosen to match the baseline prevalences of a
particular study and prior LF treatment programme for
the threshold and PPV values to be appropriate. Indeed, a
clear use of a study simulator is to determine an appropri-
ate distribution of transmission intensities matching base-
line prevalences in the light of known prior LF coverages.
This is in addition to a knowledge of the size distribution
of the communities. A related question is what corre-
sponds to a community as represented in our model. In a
rural setting, this refers to a village, but it is less clear in
an urban setting. It is also unclear to what extent neigh-
bouring communities are epidemiologically independent.
People within one village may have a lot of contact with
another village and perhaps within a different cluster. For
STH, this may be important given that individuals can
deposit transmissions stages via defaecation on travels
between communities. However, it should be noted that
the range of spatial correlation for hookworm has been
observed to be less than 100 m [32, 33]. These additional
correlating processes will presumably reduce the variance
of measurements within clusters. Measures of migration
and movement are necessary to resolve these questions
and it is hoped that the DeWorm3 project will contribute
to a better understanding of these effects.
A further potential issue is the structure of the transmis-

sion model itself. Models of STH transmission generally
employ a single environmental reservoir of infectious ma-
terial. While these models generally perform well on valid-
ation, they have not been tested rigorously at low
prevalence yet [22]. There is evidence of heterogeneity at
the household level for STH and this could lead to differ-
ent dynamics at low prevalences [33]. Again, it is hoped
that the detailed monitoring within the DeWorm3 project,
among other ongoing studies, will inform modelling in
this prevalence regime.
As illustrated by the analyses reported in this paper,

setting a threshold prevalence for elimination needs
careful consideration. For a given PPV, baseline preva-
lence, prior treatment, cluster design and community
size distribution all play a part. The design and imple-
mentation of such studies and the elimination pro-
grammes that arise from them are time-consuming and
costly processes. Simulations such as the one presented
in this paper offer a guide to this process and illustrate
the key types of data necessary.

Conclusions
Breaking transmission is increasingly a goal for NTDs.
In practice, efforts to break transmission and to confirm
the resulting state of elimination require huge resources
and take place over an extended time scale. Model simu-
lations offer a chance to investigate and gain insight into
the elimination process ‘in silico’, informing the process

of program design. The results from the current model-
ling show that prevalence thresholds have the potential
to determine whether elimination is successfully
reached. The ability of biannual MDA to achieve elimin-
ation and the quality of thresholds to detect it (as mea-
sured by PPV) is highly sensitive to baseline prevalence,
with thresholds of 2% or less required for PPV value
greater than 50%. Baseline prevalence is sensitive both
to the intrinsic transmission intensity in a population
and also to its prior history of treatment, so information
about patterns of past treatment are essential.
The breaking of transmission is a phenomenon with a

geographical scale determined by the nature of epidemio-
logical mixing in the population. We have identified this
scale as the village or community, but this may vary with
the social structure of a population. Elimination programs
are concerned with breaking transmission in populations
comprising many of these basic units. Our results show
that breaking transmission and detecting it in large popu-
lations is sensitive to the both the size and demographic
constitution of these populations. Much of the sensitiv-
ity is accounted for by the total number villages within
a population, with larger numbers leading to lower
probabilities of elimination and lower PPV values for
the thresholds to detect it. Our work indicates that
baseline prevalence, past treatment history and the
social structure of a population are key indicators of
the success of an elimination program and should be
the focus of data collection.
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