
THE DESIGN CONCEPT AND INITIAL IMPLEMENTATION OF AGENT TEAMWORK
GRID COMPUTING MIDDLEWARE

Munehiro Fukuda∗

University of Washington, Bothell
Computing and Software Systems

18115 Campus Way NE, Bothell, WA 98033

Koichi Kashiwagi, Shinya Kobayashi

Ehime University
Department of Computer Science

3 Bunkyo, Matsuyama, Ehime 790, Japan

ABSTRACT

AgentTeamwork is a grid-computing middleware sys-
tem that dispatches a collection of mobile agents to coor-
dinate a user job over remote computers in a decentralized
manner. A parallel-computing job is check-pointed peri-
odically, moved by a mobile agent for better performance,
and resumed upon a crash. The system also restores broken
communication with its error-recoverable socket and mpi-
Java libraries. This paper presents AgentTeamwork’s design
concept, implementation, and basic performance.

1. INTRODUCTION

While grid computing has drawn an emergent attention in
various applications, it has not yet obtained a successful
popularity among all end users. One reason is considered as
a centralized style of resource and job management, widely
adopted by many grid-computing middleware systems [1].
In spite of its simplicity, centralized middleware suffers from
two restrictions: (1) a powerful central server is essential
to manage all slave computing nodes, and (2) applications
are inevitably based on the master-slave or bag-of-task pro-
gramming model. Therefore, such middleware may not suf-
ficiently benefit those who can not access a shared cycle
server or who want to develop their applications with vari-
ous patterns of inter-process communication. One extreme
example is common ISP users who may wish to mutually
offer their desktop computers for grid computing but are
obviously unable to share a public cycle server.

For the last decade, mobile agents have been highlighted
as a prospective infrastructure of decentralized systems for
information retrieval, e-commerce, and network manage-
ment [2]. In fact, several grid-computing systems have been
proposed to use mobile agents as their infrastructure, claim-
ing the merits of mobile agents such as their navigational
autonomy used for automated resource search, their state-
capturing capability for job migration, and their inherent

∗This work is fully funded by National Science Foundation’s Middle-
ware Initiative (No.0438193).

parallelism for faster job execution. Regardless of these
merits, mobile-agent-based systems have not yet outperformed
commercial grid-computing middleware. This is because
they have not completely departed from the master-worker
model and thus used their mobile agents for a job deploy-
ment and a result collection. Therefore, mobile agents could
not give more than an alternative approach to grid-computing
middleware implementation.

Contrary to the above approach, we apply mobile agents
to a decentralized coordination of user jobs not necessar-
ily fitted to the master-worker model. Our only assump-
tion (and restriction) is that grid-computing users can share
at least one ftp server to register their own computing re-
sources. Once a user downloads resource information from
the ftp server, his/her mobile agents are responsible to reg-
ularly probe the workload of remote machines, to dispatch
a job to the best fitted machines, to monitor and checkpoint
the job execution, to migrate a job to a lighter loaded ma-
chine, and to resume a crashed job from the latest snap-
shot at a new machine. Those agents engaged in the same
job form a team to pursue this distributed job coordination.
We have implemented this agent collaboration in the Agent-
Teamwork grid-computing middleware system.

This paper presents the overview, the internal design,
and the basic performance of the AgentTeamwork system.

2. SYSTEM OVERVIEW

AgentTeamwork targets a computational community agreed
on by remote desktop/cluster computer owners and formed
with a common ftp server, (e.g., ftp.tripod.com in our imple-
mentation). Such an ftp server is used only to store a collec-
tion of XML-based user account/resource files and Agent-
Teamwork’s software kit. The latter includes theUWAgent
mobile agent execution platform, an eXist database man-
ager, all mobile agent programs necessary to coordinate a
user job, and Java packages to be imported when develop-
ing an application. Once each computing node downloads
these ftp contents, it runs theUWAgentexecution platform

in background so as to dispatch and to accept user jobs.
An application is coded in the AgentTeamwork-specific

template as shown in Figure 1. It defines system-initialized
variables, one of which is GridTcp, our Java socket library
capable of restoring disconnected TCP connections and de-
livering lost messages to their destination processors. The
user program consists of a collection of methods, each named
func plus an index starting from 0 and returning the index
of the next method to call. Given a string array, the appli-
cation starts fromfunc 0, repeats calling a new method in-
dexed by the return value of its previous method, and ends
in the method that returns−2, (i.e.,func 2 in this example).
The system takes a computation snapshot at the end of each
function call, so that the application can be resumed at a new
computing node from the latest snapshot upon its migra-
tion or accidental crash. Programmers can also use mpiJava
whose API complies with the original version but whose im-
plementation uses GridTcp to make their applications mo-
bile to and recoverable at a new node. We will ultimately
relieve users from this framework-based programming by
implementing a language preprocessor that partitions their
Java applications into a collection offunc methods.

1 public class MyApplication {
2 public GridIpEntry ipEntry[]; // used by system
3 public int funcId; // used by system
4 public GridTcp tcp; // recoverable tcp
5 public int nprocess; // # processors
6 public int myRank; // processor rank
7 public int func_0(String args[]){ // constructor
8; // actual statements inserted
9 return 1; // call func 1()

10 }
11 public int func_1() { // called from func0
12; // actual statements inserted
13 return 2; // call func 2()
14 }
15 public int func_2() { // the last function
16; // actual statements inserted
17 return -2; // application terminated
18 } }

Fig. 1. AgentTeamwork-specific code template

Figure 2 shows a series of job coordination in Agent-
Teamwork. A user job is submitted with a commander agent,
one of the system-provided mobile agents. This agent spawns
a resource agent that launches an eXist database, searches
for XML files best fitted to the user’s resource requirements,
returns an initial itinerary of available computing nodes to
the commander, and keeps alive to periodically probe the
workload of remote nodes. Given that node itinerary, the
commander agent spawns a sentinel and a bookkeeper agent.
These agents spawn as many descendants as the number of
nodes required by the job execution. Each sentinel migrates
to a different node where it launches a user program wrapper
that starts a user process, monitors it, and collects its results.

The sentinel periodically sends the latest process snapshot
to its corresponding bookkeeper agent. We use the follow-
ing formulas F1∼ F3 to assign a processor id to each agent
and to map a sentinel to the corresponding bookkeeper.

F1: rank = sId− (2 + (2N − 3)
∑ ln(sId/2)

ln(N) −1

i=0 N i)
whererank = a process id,sId = a sentinel id, and
N = # children each agent can spawn.

F2: rank = bId− (3 + (3N − 4)
∑ ln(bId/3)

ln(N) −1

i=0 N i)
wherebId = a bookkeeper id.

F3: bId = sId + N
ln(sId)
ln(N)

At a different node, each bookkeeper withrank = i
waits for and reroutes a new snapshot to its two neighbors
with their rank = i − 1 or i + 1, anticipating its acci-
dental crash. Each agent monitors the local resource con-
ditions and migrates to another node listed in its itinerary,
once the current node no longer satisfies its resource re-
quirements. It also takes charge of monitoring and resuming
its parent/child agents from their latest snapshot if they are
crashed. If agents exhaust their node itinerary, the comman-
der requests the resource agent to make another itinerary.
Upon a job termination, the standard outputs are all returned
as a string array to the commander that then passes them to
the client user through his/her display, by email, or by files.

cmd

snt

snt

snt

snt

bkp

bkp bkp

bkp

i0

i8 i9

i2 i3

i32 i33

i13 i14 i15i11

r0

r1 r2 r3 r4

r5

r0

r6

r4r3r2r1

bkp

bkp
r7
i50

User
SUBMISSION

SPAWN

SNAPSHOT

ssc
i1eXist

QUERY

snt bkp
i48 i49
r5

i34
r7

snt
r6

bkp
i12

sntsnt
i10

cmd: commander agent
rsc: resource agent
snt: sentinel agent
bkp: bookkeeper agent

i0: agent id
r0: processor rank

Fig. 2. Job coordination made in a agent hierarchy

3. INTERNAL DESIGN

This section discusses AgentTeamwork’s agent execution
platform and job migration/resumption algorithm.

3.1. Mobile Agent Execution Platform

Java is most widely used to implement mobile agents be-
cause of its architectural independence, object serialization,

and runtime class loader. Although various Java-based mo-
bile agents have been released to the public [2], we have
designed a new platform namedUWAgent, since we need
grid-computing-oriented features in agent naming and com-
munication, agent termination, and runtime job execution.

For naming and communication,UWAgentuses a con-
cept of agent domain. Submitted from the Unixshell, an
agent forms a new agent domain identified with a triplet (IP
address, a time stamp, and a user name), becomes the do-
main root with id 0, and receivesN , the maximum number
of children each agent can spawn. The root agent can create
N − 1, and each of its descendants can further generateN
children. When a new child is spawned from an agenti, it
receivesid = i ∗N + seq whereseq = an integer starting
from 0 if i 6= 0 or 1 if i = 0. This naming scheme enables
us to use the formulas defined in Section 2 to map a sentinel
to a bookkeeper as well as allocate a processor rank to them.

For termination,UWAgentpermits an agent to wait for
the termination of all its children or even to kill them with
one method. This feature helps AgentTeamwork terminate
all descendants of a commander agent, (i.e., a root agent)
when its client user’s application has been finished or aborted.

For runtime job execution,UWAgentexecutes user jobs
as Java threads. Contrary to most mobile-agent systems that
launch jobs as Unix processes,UWAgentstrictly schedules
user jobs with Java thread’s suspend and resume method,
based on their runtime attributes such as the number of mi-
grations, the total CPU time, and the execution priority.

3.2. Job Migration and Resumption

Using the following algorithms, AgentTeamwork moves a
job to an idle node or resumes a crashed job at a new node.

Job migration is achieved by a sentinel that chooses a
new node from its itinerary and migrates there with its user
process. This however breaks all TCP connections to the
process. Other processes that have detected any broken con-
nections assert an exception to their user program wrapper
that makes its sentinel wait for a “restart” message to come
from the migrating sentinel, restore the wrapper with the
new location information, and finally resume the process.

Job resumption is more difficult, since a job has been
crashed with its sentinel agent. Two resumption scenarios
are considered: one for resuming a child sentinel and the
other for a parent sentinel. As shown in Figure 3-A, a child
sentinel is resumed through the following five steps: (1) a
parent sends a “ping” message to all its children every five
seconds; (2) if detecting a child crash, it sends a “search”
message to the corresponding bookkeeper; (3) the parent re-
ceives a “retrieve” message including the crashed sentinel’s
snapshot from the bookkeeper; (4) the parent sends this
snapshot to a new node’sUWAgentplatform that resumes
the crashed sentinel; and (5) the resumed sentinel sends a
“restart” message to all the other sentinels that have waited

for broken connections to be restored. Figure 3-B shows a
parent sentinel resumed in five steps; (1) a child sentinel re-
ceives a “ping” message from its parent every five seconds;
(2) if receiving no ping for5 × agent id, it concludes that
all its ancestors are dead and thus sends a “search” message
to the corresponding bookkeeper; and (3) through to (5) are
the same as those in the child resumption scenario. The par-
ent resumption needs a long period of time to detect a parent
crash in the step 2. If all the ancestors of a given agent are
crashed, this overhead must be unnecessarily repeated until
the root agent is resumed. As an improvement, we allow a
resumed parent to assume that its ancestors are all crashed,
thus to skip the step 2, and to resume its parent immediately.

The resumption scenarios for bookkeeper and comman-
der agents are much simpler. A bookkeeper with rankr is
resumed from the one with rankr + 1 or r − 1. This does
not need the resumption step 5. The commander agent is
restarted from its beginning by any of its child agents.

snt snt

bkp

bkp

snt

snt sntsnt

snt

child 1 child 2new child 2

snt

parent

parent

child 1 child 2

(1) send a ping

(3) retrieve a snapshot

(0) periodical snapshot
bkp: bookkeeper agent
snt: sentinel agent

(0) snapshot

(0) snapshot

(1) ping
(2) search

(2) search
(3) retrieve

(4) agent

(5) restart

(5) restart

(3) retrieve(4) agent
(1) ping

(A) Child resumption
(5) restart a user program

(2) search for a snapshot

(4) send an agent

new parent

(5) restart
(1) ping (1) ping

(5) restart

(B) Parent resumption

Resumed agents

Crashed agents

Alive agents

Fig. 3. Agent resumption

4. PERFORMANCE EVALUATION

We have implemented the basic features of the AgentTeam-
work system, while still developing the mpiJava API and
job-scheduling algorithms. To evaluate its performance, we
used the following three Java Grande MPJ benchmark pro-
grams [3]: (a) Series: a Fourier coefficient analysis, (b)
RayTracer: a 3D ray tracer, and (c) MolDyn: a molecular
dynamics simulation. We have converted them into three
versions: (1) Java version: the original programs using or-
dinary Java sockets, (2) GridTcp version: the ones using the
GridTcp sockets, (3) AgentTeamwork version: the GridTcp
version coordinated by AgentTeamwork. They were further
modified to keep running 10 times, each taking an execution
snapshot in both the GridTcp and AgentTeamwork versions.

The evaluation used a Myrinet-2000 cluster of eight nodes,
each with 2.8GHz Pentium-4 Xeon and 512MB memory.

Figure 4 shows a performance of Series that computes a
different block of 100,000 coefficients with each processor
and collects all results at the rank 0 processor. Since this is
a master-slave model and its data size is small, AgentTeam-
work demonstrated its very competitive performance.

 400

 800

 1200

 1600

 2000

 2400

 1 2 4 8

tim
e

(s
ec

)

#cpus

java
gridtcp

agentteamwork

Fig. 4. Performance of Series: Fourier coefficient analysis.

Figure 5 shows a performance of RayTracer that ren-
ders a given scene at500 × 500 pixels in parallel, calls
MPI.allreduceto compute a global checksum, and collects
results at the rank 0. Although this is a master-slave pro-
gram, its large data size incurs substantial overheads in com-
munication and check-pointing. Therefore, AgentTeamwork
performed4.4% ∼ 18.6% slower than the Java version.

 200

 400

 600

 800

 1000

 1200

 1 2 4 8

tim
e

(s
ec

)

#cpus

java
gridtcp

agentteamwork

Fig. 5. Performance of RayTracer: 3D ray tracer.

Figure 6 shows a performance of MolDyn that models
8,788 particles interacting under the Lennard-Jones poten-
tial in a cubic space, calculates a particle force for 50 cy-
cles, and exchanges the space information among proces-
sors every cycle. Since this is not based on the master-slave

model and needs cyclic communication, AgentTeamwork
performed 1.3 to 2.9 times slower than the Java version.

 200

 400

 600

 800

 1000

 1 2 4 8

tim
e

(s
ec

)

#cpus

java
gridtcp

agentteamwork

Fig. 6. Performance of MolDyn: Molecular dynamics.

Table 1 summarizes the ratio of agent-resumption time
over total execution time, where a sentinel agent is inten-
tionally crashed and thereafter resumed at a new node. Agent-
Teamwork has successfully restrained its resumption over-
head to at most7% of the entire computation.

#CPUs Series RayTracer MolDyn
1 1.00% 0.51% 1.02%
2 0.28% 3.79% 1.34%
4 2.53% 7.00% 2.65%

Table 1. Overhead of process resumption

5. CONCLUSIONS

In this paper, we have presented the design concept and
internal implementation of AgentTeamwork. The system
demonstrated its scalable and competitive performance when
running three Java Grande MPJ benchmark programs.

Our next step is to complete and enhance AgentTeam-
work’s programming support, job scheduling algorithms,
and security to make the system robust for practical use.

6. REFERENCES

[1] Grid@IFCA commercial grid solutions,
“http://grid.ifca.unican.es/dissemination/Commercial.htm,”
2003.

[2] Dejan Milojicic et al.,Mobility Processes, Computers,
and Agents, Addison-Wesley, Reading, MA, 1999.

[3] The Java Grande Forum Benchmark Suite,
“http://www.epcc.ed.ac.uk/javagrande/,” 2002.

