
UWAgents User’s Manual
(version 1.01)

Munehiro Fukuda1 Koichi Kashiwagi2 Eric Nelson1,2

Duncan Smith1

1 Computing & Software Systems, University of Washington, Bothell,
2 Computer Science, Ehime University,

Contents

1 UWAgents System 3

2 UWPlace 4
2.1 Agent Scheduling . 5

3 UWInject 6

4 UWAgent 7
4.1 Agent ID . 7
4.2 Agent Programming . 7
4.3 Postponed and Cascading Termination . 8
4.4 Methods . 8

5 Inter-agent communication 10
5.1 Message-Sending Procedure . 10
5.2 Message-Receiving Procedure . 10
5.3 UWMessage Methods . 10

6 Credits 11
6.1 Faculty . 11
6.2 Collaborators . 11
6.3 Students . 12

7 Final Comments 12

2

1 UWAgents System

The UWAgents system is a Java-based mobile-agent execution platform that is being developed by
the Distributed Systems Laboratory at UW Bothell. It is particularly intended for (but not limited to)
the underlying infrastructure of our mobile-agent-based PC grid environment, AgentTeamwork. For
this purpose, the system will be continuously enhanced for improved inter-agent communication and
security.

The two key components in the UWAgents system areUWAgent andUWPlace. The former is a
mobile agent that coordinates job executions on behalf of its client user. The latter is a place where
agents migrate autonomously, work for their clients, and interact with each other.

TheUWPlace component consists of the AgentThread, CommandLineOptionAnalyzer, UWClass-
Loader, UWObjectInputStream, UWPlace, and UWTransitSystem classes. TheUWAgent component
consists of the UWAgent, UWAgentMailbox, UWMessage, and UWMessagingSystem classes.

Table 1 provides a brief description of these and other classes.

Class Description

AgentThread Execute the specified method of an incomingUWAgent.
CommandLineOptionAnalyzerParse theUWPlace andUWInject command line.
UWClassLoader Instantiate a class from a byte array in memory.
UWObjectInputStream Instantiate a class from a byte array created by ObjectOut-

putStream.
UWPlace The place itself.
UWTransitSystem TheUWPlace interface.

UWAgent Abstract class. ExtendUWAgent to create a user agent.
UWAgentMailbox Allows UWAgents to communicate with each other through

RMI.
UWMessage The message that is transmitted from AgentMailbox to

AgentMailbox when UWAgents communicate. Uses String
[] for the message header and Hashtable for the message.

UWMessagingSystem The UWAgentMailbox interface.

UWInject Inject an agent onto aUWPlace. (See sec. 3).
AgentUtil Contains common processing for CommanderAgent, Sen-

tinelAgent and BackupAgent (parts of AgentTeamwork).

Table 1. UWAgents classes

Each host computer that participates in computation must run at least one UWPlace prior to ex-
changing UWAgents with other computers. Thereafter, UWAgents navigate over participating hosts
autonomously, using thehop() method. The current capabilities ofUWAgent include:

1. Weak migration:executing from the top of a specific function upon a migration,

2. Static class transfer:requiring all agent-carried classes to be declared upon instantiating an agent,
and

3

3. Asynchronous communication:allowing aUWAgent to send a mailbox-based message to another
agent.

This manual focuses on (1) how to launch aUWPlace at each host computer, (2) how to inject a
UWAgent into a collection of UWPlaces, and (3) how to program aUWAgent.

2 UWPlace

UWPlace must be launched at each host computer that participates in computation. The following
sequence of two commands must be used to launch UWPlace:

$ rmiregistry portnumber &

$ java UWPlace [-p placename] [-n portnumber] &

Table 2 summarizes UWPlace’s options and their default values.

Option Description Default Value

-p placeName Place class name UWPlace
-n portNumber Port number 35353

Table 2. UWPlace command line options

UWPlace can be launched either from its class file or from theUWAgent jar file, as shown in the
following two examples:

Launching from theUWPlace class file:

$ rmiregistry 12345 &

$ java UWPlace -n 12345 &

$ java UWInject localhost TestAgent -n 12345

Launching from theUWAgent jar file: 1

$ rmiregistry 12345 &

$ java -jar $UWHOME/UWAgent.jar -n 12345 &

$ java -cp $UWHOME/UWAgent.jar UWInject localhost & TestAgent -n 12345 &

1$UW HOME=/home/uwagent/MA/UWAgent on medusa

4

2.1 Agent Scheduling

EachUWPlace contains a Scheduler, which the AgentTeamwork Sentinel (or other UWAgents pro-
grams) may use to run jobs in a scheduled environment. As part of the scheduling mechanism, the
Scheduler provides a resource status reporting function. This allows the Sentinel to make decisions
about where to run user processes based on conditions at the currentUWPlace (CPU and memory
load, number of agents currently residing at the UWPlace, and number of user jobs currently executing).

To use the Scheduler, aUWAgent runs a user process by passing it (as a Thread) to the UW-
Place.submit() function. EachUWPlace has a Scheduler associated with it. The Scheduler runs the
thread according to a scheduling policy. Currently, only FIFO scheduling is implemented. This schedul-
ing mechanism works as follows: The first thread to be submitted is allowed to run for a given time
quantum. Control is then returned to the caller, which may decide to continue running the thread (user
process), submit another user process, or migrate to anotherUWPlace based on conditions at the cur-
rentUWPlace. If the caller submits another user process, it is placed at the end of the job queue, and
does not execute until the first process is finished.

Thread.suspend() is used to suspend a process in order to return control to the caller. If the caller
decides to continue running the process, then Thread.resume() is used to resume it. Calling UW-
Place.submit(null) instructs the scheduler to run processes that are already in the job queue, without
adding any new ones.

For maximum efficiency, the user process should call UWPlace.complete() when it is finished pro-
cessing. This will preempt the scheduler, and allow the job to end immediately. If this call is not made,
the scheduler will not notice that the job has completed until the end of the last time slice.

The following code fragment shows an agent running two user jobs (class ScheduleTestUser) using
theUWPlace Scheduler:

UWPlace place = getPlace();
Status status;

// Submit a user job using the scheduler
ScheduleTestUser userJob = new ScheduleTestUser(place);
ScheduleTestUser userJob2 = new ScheduleTestUser(place);

// Submitting job 1
place.submit(userJob);

// Submitting job 2
place.submit(userJob2);

// Get machine status
status = place.getStatus();
DecimalFormat pctFormat = new DecimalFormat("###.#%");
String memUsage = pctFormat.format(status.memUsage);

System.out.println("Memory Usage = " + memUsage);
System.out.println("Number of agents = " + status.numAgents);

5

System.out.println("Number of user jobs = " + status.numUserJobs);

// Running job 1 to completion
do {

status = place.submit(null);
} while (!status.jobCompleted);

// Running job 2 to completion
do {

status = place.submit(null);
} while (!status.jobCompleted);

3 UWInject

UWInject is used to inject aUWAgent onto aUWPlace. It requires at least two command line
arguments. The first argument specifies the IP name of the host where the agent should be injected, and
the second argument specifies the file name of the agent to be injected. The optional third and following
arguments are passed to the injectedUWAgent for its own use. In addition,UWInject accepts the
arguments shown in Table 3. These are interpreted byUWInject , and are not passed to theUWAgent.

Option Description Default Value

-p placename Place Name UWPlace
-n
port number

Port Number 35353

-u path Path to the file containing the agent to
be injected

current directory

-c client name Client user name Default
-s subclass All sub-classes to be carried with the

injected agent. Multiple classes must
be delimited by commas.

None

-m
max children

Specifies the maximum number of
children that an agent may spawn.
The root agent may spawn one fewer
children than other agents.

If not specified, limited only
by memory constrants

Table 3. UWInject options

The following examples show how to inject aUWAgent throughUWInject :

$ java UWInject localhost TestAgent
Inject agent TestAgent onto host localhost, without passing any arguments.

$ java UWInject localhost TestAgent 1 2 3
Inject agent TestAgent onto host localhost and pass arguments 1, 2, and 3.

6

$ java UWInject mnode1 TestAgent -n 12345
Inject agent TestAgent onto hostmnode1through port 12345, without passing any arguments.

$ java UWInject mnode2 TestAgent 3 4 5 -s TestAgentSub
Inject agent TestAgent onto hostmnode2, pass arguments 3, 4, and 5, and instruct the agent to
carry TestAgentSub.class with it when a migration occurs.

$ java UWInject mnode1 CommanderAgent arg1 arg2 -s SentinelAgent,BackupAgent
Inject agent CommanderAgent onto hostmnode1, pass arguments arg1 and arg2, and instruct the
agent to carry SentinelAgent.class and BackupAgent.class when a migration occurs.

$ java UWInject mnode3 TestAgent -u ˜/MA/BackupAgent/agents
Inject onto hostmnode3agent TestAgent, which is located in directory
˜/MA/BackupAgent/agents.

UWInject was implemented by extending theUWPlace class so that it receives the arguments
shown above, instantiates a newUWAgent, and immediately dispatches it to the givenUWPlace.

4 UWAgent

4.1 Agent ID

A new UWAgent can be created either from a UNIX shell prompt (usingUWInject), or from a
UWAgent method called spawnChild(). Although both methods instantiate a new UWAgent, they do
not assign the same ID to the new agent. TheUWInject approach establishes a new domain, so the
instantiated UWAgent becomes a root, and receives “0” as its agent ID. The spawnChild() approach
instantiates a childUWAgent in the same domain where the parentUWAgent is working. The child
UWAgent receives a new agent ID that is created by concatenating the parent’s ID, a period (.), and a
sequential number. The following examples show how agent IDs are assigned to new UWAgents:

• A UWAgent injected byUWInject receives an ID of 0.

• UWAgents spawned by a parent whose ID is 0 receive 0.0, 0.1, 0.2, and so on.

• UWAgents spawned by a parent whose ID is 0.0 receive 0.0.0, 0.0.1, 0.0.2, and so on.

4.2 Agent Programming

To make a Java class runnable as aUWAgent, the user must ensure that the following conditions are
satisfied:

• The class must extendUWAgent (“extends UWAgent”).

• The class must implement Serializable (“implements Serializable”).

• The class must implement thevoid init() method. This method will be called immediately
after the constructor.

7

• The class constructors may accept eitherString[] or no arguments.

• A method to be called upon a migration (hop) may acceptString[] or no arguments. Its return
value must be of type void.

The following code fragment shows the framework for aUWAgent class:

class MyAgent extends UWAgent implements Serializable {
MyAgent() {}

MyAgent(String[]) {}

void Init() {
hop("nextHost", "function", String [] funcArgs);

}

void function(String [] funcArgs) {
}

Thehop() statement is aUWAgent method that navigates theUWAgent to the destination spec-
ified in the first argument, and then calls the function specified in the second argument.

4.3 Postponed and Cascading Termination

The UWAgents system implements two behaviors related to agent termination. First, an agent’s ter-
mination is automatically postponed until all of its descendants have terminated. The justification for
this has to do with how UWAgents communicate with each other. Because UWAgents move around,
other agents need some way to keep track of their most recent location in order to send messages to
them. This problem is solved by sending messages through the agent hierarchy (e.g., from a child, to
a parent, to a grandparent agent). Messages are sent to mailboxes (UWAgentMailbox class). When an
agent terminates, its associated mailbox is also terminated. This might cause a communication problem.
For example, a parent might terminate, breaking the communication link between a child and its grand-
parent. To avoid this, an agent’s termination is postponed until all of its descendants have terminated.

In some cases, an agent may want to terminate immediately, without waiting for its descendants to
complete on their own. To support this, UWAgents implements cascading termination. To activate this
functionality, an agent must call its setTerminationRequest() method. Note that cascading termination
does not interrupt a user program in the middle of a function, so the parent agent may still have to wait
for the current function to complete before its descendants terminate themselves.

4.4 Methods

The table below shows the major methods ofUWAgent.

8

Method Description

String getAgentId () Returns the calling agent’s ID.
String getAncestorId (String
id)

Returns the ID of the calling agent’s parent.

int getChildrenNum () Returns the number of children that the calling agent has
spawned so far.

String getName () Returns the calling agent’s class name.
String getParentName () Returns the class name of the calling agent’s parent.
void hop(String hostName,
String funcName, String[]
funcArgs)

Migrates the calling agent to the computer named hostName,
and invokes the funcName function there, passing funcArgs
as its argument. The argument may be either String[] or null.

void init () Executed immediately after an agent’s constructor is in-
voked.

UWMessage re-
trieveNextMessage ()

Retrieves the top message from the received-message queue.
If there are no messages in the queue, the calling agent
is suspended until a new message arrives. Therefore, the
UWAgent should spawn a child thread to receive messages
so that the main thread can continue regardless of the mes-
sage queue status. By calling restartThread, the main thread
can instruct the child thread to stop waiting for a new mes-
sage, and resume its execution.

void restartThread () Resumes a child thread that is waiting for a new message,
regardless of whether or not a message has arrived.

UWAgent spawnChild (String
agentName, String[] agen-
tArgs, String DestHost)

Loads into memory an agent class from the agentName.class
file, passes the agentArgs argument to it, and starts it on the
destHost computer. The agentArgs may be either String[] or
null. The instantiated agent starts from its init() method.

UWAgent spawnChild (String
agentName, String [] agen-
tArgs, String destHost, String
[] classNames)

Same as the previous spawnChild, but loads all of the sub-
classes specified in classNames, as well as the main agent-
Name.class file. Used when the agentName class depends on
other classes.

Boolean talk (String recipId,
UWMessage message)

Sends a message to the agent whose ID is specified in re-
cipId.

Table 4. UWAgent Methods

9

5 Inter-agent communication

To communicate with another agent, aUWAgent must encapsulate its message into a new UWMes-
sage object, and then pass the object to its talk() method.

5.1 Message-Sending Procedure

The UWMessage class has the following five constructors:

1. UWMessage()

2. UWMessage(UWAgent agent, String msgHeader)

3. UWMessage(UWAgent agent, String [] msgHeader)

4. UWMessage(UWAgent agent, String msgHeader, Hashtable msg)

5. UWMessage(UWAgent agent, String [] msgHeader, Hashtable msg)

The first constructor composes a null message. The remaining constructors create a message consist-
ing of the given String, String array, and/or Hashtable parameters, and associate it with the ID and host
IP name of the specifiedUWAgent. For example, the last constructor composes a message consisting of
themsgHeader string array and themsg hashtable, and associates it withagent ’s ID and the host
IP name where it resides. A hashtable encapsulated in a message must include serializable objects, so
that all the objects are packed in the message and are transferred to a destinationUWAgent.

The following example shows how to send a message:

UWMessage message = new UWMessage(this, "Hello");
boolean success = talk("0.1", message);

5.2 Message-Receiving Procedure

Inter-agent messages are pushed into their receiver agent’s message queue, which is implemented with
a Vector class. The receiver UWAgent must call retrieveNextMessage() in order to pop and retrieve
the front message from this queue. If there are no messages in the queue, the callingUWAgent will be
suspended until a new message is delivered to it. To prevent itself from being blocked, theUWAgent
should instantiate a new child thread and let this thread call retrieveNextMessage(). TheUWAgent can
wake up all of its child threads by calling restartThread() if they are currently waiting for a new message.

5.3 UWMessage Methods

The user can process a received UWMessage using the methods shown in the table below.
The following example shows how to receive a message:

// Dequeue a new message from the queue
UWMessage receivedMessage = retrieveNextMessage();

10

Method Description

String getSendingAgentId() Returns the sender agent’s ID.
InetAddress getSendingIp() Returns the host IP where the sender agent resides.
String getAgentName() Returns the name of the sender agent’s class.
String [] getMessageHeader() Extracts a message header into a String[].
Hashtable getMessage() Extracts a hashtable.
String [] getMessageKeys () Extracts a list of keys from a hashtable (if this message in-

cludes one).
Object getMessageValue(String key)Retrieves the object corresponding to the given key from a

hashtable (if this message includes one).

Table 5. UWMessage Methods

// Retrieve the sender agent’s ID from the message
String senderAgentId = receivedMessage.getSendingAgentId();

// Extract a header from the message into a String[]
String[] header = receivedMessage.getMessageHeader();

// Extract a hashtable from the message
Hashtable table = receivedMessage.getMessage();

6 Credits

The following people have worked on UWAgents and the AgentTeamwork system.
(Source: http://depts.washington.edu/dslab/AgentTeamwork/index.html)

6.1 Faculty

Munehiro Fukuda
Computing and Software Systems
University of Washington, Bothell

6.2 Collaborators

Shinya Kobayashi
Department of Computer Science
Ehime University, Japan

Koichi Kashiwagi
Department of Computer Science
Ehime University, Japan

11

6.3 Students

Dates Name Work

01/03 - 06/03 Hyon Kim Designed UWAgents’ agent migration.
04/03 - 09/03 Eric Nelson Ported Tsukuba Univ’s Voyager-based job dispatcher to

LAB302 and designed UWAgents’ inter-agent communica-
tion.

04/03 - 06/03 John Hagen Designed a computing-resource database with MySql.
06/03 - 09/03 Doug Kim Designed the Sentinel agent’s job launching feature.
06/03 - 03/04 Ryan Liu Designed a Xindice-based resource database and the Re-

source agent.
04/04 - 06/04 Vivian Chan Ported the Java Grande benchmark to AgentTeamwork.
04/04 - 06/04 Tae Suzuki Re-engineered and documented all mobile agent code.
06/04 - 09/04 Duncan Smith Implemented and enhanced UWAgents’ priority-based

scheduling and inter-agent communication.
06/04 - 09/04 Donya Shirzad Ported MPI applications to AgentTeamwork.
06/04 - 09/04 Shane Rai Enhanced the Resource agent.

7 Final Comments

The UWAgents mobile agent platform was originally developed for our mobile-agent-based PC grid,
AgentTeamwork, and it is being used for that purpose. However, we welcome comments from users
who are interested in using this platform for their distributed/network computing applications. Any
comments and/or suggestions would be greatly appreciated. Please contact us at:

Name E-mail Address Language
Munehiro Fukuda mfukuda@u.washington.edu For English/Japanese assistance
Koichi Kashiwagi kashiwagi@koblab.cs.ehime-u.ac.jp For Japanese assistance

12

