Java-Based

Simple Mobile Agent System

Hyon S. Kim
CSS499
Project Report

Table of Contents

1. ADOUt UW MODILE AGENL....c..eiiiiiiiiieiieeiieieecie ettt et e e e ssaeebeeseseenneas
A.PTOJECT TOPIC .veiittiiiiiie ettt e e e e e v e e e abeeessaeeensaeeeasaeesnseeas
D.TeChNOlOZIES USEA.......eiiiiiiieiieeiie ettt et e e e e e eabee e

2. Background Knowledge..........ccoueiiiiiiiiiiiiieeeee s
Q. SETTAIIZATION. ...ttt ettt ettt et et eas

3. Directory Structure and Filescocoviriiniiiiiiiiiceee e
A.DIFECTOTIES ...ouiiiiiieit ettt e e
Figure 1: Directory Structure and Filesccccoceiiiniriiniininiiicicccececceeeee
DLFILES ..ttt
4. HOW 0 USE 1.ttt ettt ettt ettt ettt e et e ettt e ettt e sabb e e sabt e e sabee e sbee e eabeeea
ATMITEZISIIY 355603 ..eniiiiiiiie ettt ettt e et e et e et eesbeeeabeeenseeenaeas
DUUWPLACE ...ttt ettt et e st e bt e st et e sabeeeneeenne
C.INJECE AZENT ..ottt ettt et e et e e bt e esbeebaeesbeeseessseensaennseens

S IMPTOVEMIENIEceiiiiiiiiii ittt ettt e e et e e e st e e s ebtaeeeesnreeeeeas

1. About UW Mobile Agent

a. Project Topic

Implement a Java-based simple mobile agent system that will be used for
Prof. Fukuda's grid computing later on.

b. Technologies used

The implementation of a mobile agent system requires the up-to-date Java,
XML, and Servelt technologies that are the central of IS industries.

Currently I used three Java networking technologies: serialization, RMI,
and class loader. Using the Java serialization, a mobile agent will capture
their execution state. With RMI, the agent will transfer its state to a remote
site. And finally, it will resume its execution with the support of the Java
class loader.

2. Background Knowledge

a. Serialization

Serialization is the process of writing objects to a stream and reading them
back. To be serialized, your objects must implement the Serializable
interface. This interface has no fields, constructors, or methods — it just
shows that an object is serializable.

b. RMI

Remote Method Invocation (RMI) enables the programmer to create
distributed Java technology-based to Java technology-based applications,
in which the methods of remote Java objects can be invoked from other
Java virtual machines, possibly on different hosts. A Java technology-
based program can make a call on a remote object once it obtains a
reference to the remote object, either by looking up the remote object in
the bootstrap naming service provided by RMI or by receiving the
reference as an argument or a return value. A client can call a remote
object in a server, and that server can also be a client of other remote
objects. RMI uses object serialization to marshal and unmarshal
parameters and does not truncate types, supporting true object-oriented
polymorphism.

c. Class Loader

A class loader is an object that is responsible for loading classes. The class
ClassLoader is an abstract class. Given the name of a class, a class loader
should attempt to locate or generate data that constitutes a definition for
the class. A typical strategy is to transform the name into a file name and
then read a "class file" of that name from a file system.

3. Directory Structure and Files

a. Directories

As you can see in Figure 1 below, root directory contains mnodel,
mnode2, mnode3 and mnode4 directories and other necessary files.

e mnodel, monde2, mnode3, and mnode4 directories
This is the arbitrary folders that I made since medusa and other
networked computers(mnode#) are in NFS. This way I can verify
that the RMI really works or not. Each of these folders contains all
the files in root directory, except ‘Inject.class’, ‘Inject.java’,
‘TestAgent.class’ and ‘TestAgent.java’

=

uwmessenger

File Edit W“iew Favorites Tools Help

J Back _‘J |$ /_) Search ll._ Folders -

Address || C\Documents and SettingsihkimDeskkopluwmessenger

Size Type Date Modified

File and Folder Tasks File Folder 6112003 9:47 AM
.j e Iijrnnode2 File Falder 6/11)2003 9:47 AM
;] Chmnodes File Falder 6/11)2003 9:47 AM
2] E\ﬂ:Sh this Folder to the ESymnoded File Folder 6/11{2003 9:47 &M
AgentThread.class 2KB CLASS File 611172003 2:43 AM

BDate.class 1KE CLASS File 6742003 5:55 AM
oOther Places ByteCIassLoader.cIass ZKE CLASS File 61172003 9:43 AM
BiwteClassLoader.java 2KE Java Source file E2/2003 10:39 AM
(@ Deshiop & nject. class ZKE CLASS File 611112003 9:43 AM
B Iy Documents Inject.java 3KE Java Source file 611172003 942 AM
.j My Computer Testngent.class 3KE CLASS File B/1112003 2:43 AM
":-I My Nebwork Flaces Testagent.java 3KE Java Source file 6)11§2003 9:35 AM

UWF\gent.cIass ZKB CLASS File 6142003 5:55 AM
UWMessenger, class 3KBE CLASS File 6/11)2003 9:43 AM
Details } UWMessenger. java 4KB Java Source file 6/11/2003 9:35 &M
UMessengerAttribute.class 2KB CLASS File 611172003 2:43 AM
UWMessengerSystem. class 1KE CLASS File Ef1172003 943 AM
UWMessengerSystem. java 1KE Java Source file 61172003 9:40 AR
UWPlace.class SKE CLASS File Ef1172003 9:43 AM
UiPlace.java 8KE Java Source file E1172003 9:39 AM
UPlace_Skelclass 3KE CLASS File Gi11f2003 2:43 AM
UPlace_stub.class 4KE CLASS File 61112003 2:43 AM

Figure 1: Directory Structure and Files

b. Files

e ByteClassLoader.java: Used to load a class from a byte array.

Inject.java: Used to initiate launching the mobile agent.
TestAgent.java: Used to create a mobile agent.
UWMessenger.java: Used as an abstract class for TestAgent.java
UWDMessengerSystem.java: Used to call the remote function
(RMI)

UWPlace.java: Used as a stationary object that the mobile agent
comes and goes.

4. How to use

This is based on the example directory structure I explained on Section 3. This
explains step-by-step instruction for a practice. You might want to shorten it in
the future for your convenience.

I updated the final codes in “uwmessenger” directory (login as uwagent)

a. rmiregistry %port_number%

Open command line.

Ssh —1 hyonkim mnodel
%your password%

Go to //root directory/mnodel
rmiregistry 35563

Open command line.

Ssh —1 hyonkim mnode2
%your password%

Go to //root directory/mnode2
rmiregistry 35563

Open command line.

Ssh —1 hyonkim mnode4
%your password%

Go to //root directory/mnode4
rmiregistry 35563

b. UWPlace %place_name% %port_number%

Open command line.

Ssh —1 hyonkim mnodel
%your password%

Go to //root directory/mnodel
java UWPIlace mnodel 35663

Open command line.

Ssh —1 hyonkim mnode2
%your password%

Go to //root directory/mnode2
java UWPIlace mnode2

Open command line.
Ssh —1 hyonkim mnode4
%your password%

Go to //root directory

java UWPlace mnode4

c. Inject agent

Open command line.

Ssh —1 hyonkim mnode4

%your password%

Go to //root directory

java Inject %place name% %port number% %class name%
%owner name% %func_argl% %func_arg2% %func arg3%

ex)java Inject mnode4 35663 TestAgent Justin 2 2 3

5. Improvement

e C(lassLoader

o Version 1 : I made “FileClassLoader” that loads classes from files in
the hard drive.

o Version 2 : I directly copied the class file into the remote computer’s
root directory and instantiated the class. I did not need a special class
loader to accomplish this.

o Version 3 : Finally I made “ByteClassLoader” that loads classes from
byte array. In order to hop around the UWMessenger, I moved around
the byte array and stored it in vector.

e The incoming UWMessengers will populate in vector array as byte array.
e Port number can be specified by the use. However, all the UWPlace and Inject
Place have to have the same port number to communicate each other

