
Resource Agent & Commander Agent Reference Doc

Project AgentTeamwork

Author: Shane Rai

Advisor: Prof M Fukuda

Class: CSS 499 (Undergrad Research Project)

Table of Contents
XML Database (eXist).. 3

a. XML Database Concepts .. 3
b. Server Deployment ... 3
c. The XML DB API... 3

Resource Agent API ... 4
Commander Agent API... 8
Starting AgentTeamwork (A Demo Setup) .. 10

a. Injecting Commander Agent ... 10
b. Starting RMI Server.. 10
c. Starting UWPlace.. 10
d. Setting CLASSPATH ... 11
e. JAR Files... 11

Design Suggestions & Tips... 12
a. Probing Remote Computers .. 12
b. The Timer and TimerTask Classes ... 13
c. Using eXist Community Forum.. 13
d. FTP Server Directory as System Property .. 13
e. Handling Exceptions ... 14
f. Super Class for All Agents .. 14
g. Abstracting Central Repository... 14

Resources .. 15
a. eXist Home Page... 15
b. JavaDocs for eXist (XML DB API).. 15
c. About Writing Java Apps with XML DB API.. 15
d. eXist Server Deployment.. 15
e. eXist Forum... 15
f. Commons Net FTP JavaDocs.. 15

XML Database (eXist)
This section briefly describes how this XML database is used in the context of
AgentTeamwork. For more detailed information on eXist, please refer to the Resources
section at the end of this document.

 a. XML Database Concepts
When writing Java apps that accesses eXist, it is important to get an
understanding on how XML databases are organized. The concept of drivers,
collections, resources and services are important. Refer to the Resources section
of this document under “About Writing Java Apps with XML DB API”. You will
find some very useful boiler plate code that is illustrated there. Such code also is
available in \samples\org\exist\examples\xmldb under the root folder where you
install eXist. Many other sample codes are also present along this path. However,
in our case we will be mostly concerned with XML DB sample code.

b. Server Deployment
One of the interesting features of eXist is the possibility of running the database in
three alternatives. It may run either as a standalone process whereby it runs in its
own Java Virtual Machine. It may also be embedded into an application whereby
it is controlled by this app. It basically runs in the same JVM as the app itself. The
client app will have full access to the database. And lastly, it may run in a servlet
context.
For this project, it was decided that eXist will be used in the embedded instance.
The reason is that the database need not necessarily be accessed through the
network but instead will reside on the same machine as the community user.
Hence, the AgentTeamwork app itself will access the database whenever it is
needed.

c. The XML DB API
According to the documentation of the server, it has been suggested that the
preferred way to access the database from Java apps is via the XML DP API. This
API provides a common interface to native XML databases such as eXist. This
XML database has its own implementation of this interface. This is what has been
used in Resource Agent.

Resource Agent API

The following section describes the Application Programming Interface of the
ResourceAgent class.

Data Members

Note: Only the “major” data members of this class have been enumerated here. Some of
the others are common across all other Agent class definitions.

Member: private Hashtable rscArgsTable
Description: hash table that holds all the resource requirements of this task

Member: private int numRqdArgs = 5
Description: number of required arguments to construct a ResourceAgent object (set to

5)

Member: private transient Collection rsc_Col = null
Description: represents an instance of the resource collection that is stored in the local

XML database server

Member: private FTPClient ftp
Description: represents an instance of the FTP server where the XML resources are

stored

Member: private boolean isConnectedToFTPServer = false
Description: true if this ResourceAgent is connected to the FTP server, false otherwise

Member: private String rscXMLDir = "ResourceXML"
Description: name of the folder on the FTP site where the XML resource files reside

Member: private String osName
Description: operating system where this ResourceAgent is executing (see Design

Suggestions section in this doc for how this info can be utilized)

Member: private Timer probeTaskTimer
Description: a timer class to allow for periodic execution of ResourceAgent’s tasks (see

Design Suggestions for more info)

Member: private class remoteRscProbeTask
Extends: class TimerTask
Description: class whose run() method that will be responsible performing all the

periodic tasks required of the ResourceAgent (see Design Suggestions and
Unresolved Issues for more info)

Methods

Note: Only those methods that are specific to this agent have been enumerated here. The
other methods are common across all other Agent class definitions. However, some of
those common methods have also been listed here.

Function: ResourceAgent (String[] args)
Description: Constructor
Arguments: args : array containing all the resource requirements for this task
Calls: getAllConstrArgs
Return: void

Function: getAllConstrArgs (String[] args)
Description: adds all the required constructor requirements to rscArgsTable from args
Arguments: args : array containing all the resource requirements for this task
Calls: N/A
Return: void

Function: init ()
Description: initializes this ResourceAgent and also starts a Thread to receive all

incoming messages from other agents
Arguments: none
Calls: initDB() and mainMethod()
Return: void

Function: initDB ()
Description: starts an embedded instance of the XML database (eXist) on the local

machine. Checks to see if a Collection called “resources” exists in t he
database. If not, creates one.

Arguments: none
Calls: the XMLDB API of eXist
Return: void
Note: this is mostly boiler plate code and has been copied from the sample code

available with the database download

Function: mainMethod ()
Description: performs operations such as updating the XML database with the latest

resource XML files and starting the timer for executing the periodic tasks.
The main thread is put to sleep while the main thread’s data member
(main_thread_cont) is true. Also responsible for calling the function to
stop the message thread when this data member is set to false i.e. the main
thread needs to exit.

Arguments: none
Calls: updateDB(), scheduleProbingTasks() and stopSubThreads()
Return: void

Function: updateDB ()
Description: responsible for calling functions that connect to the remote FTP server,

compares the resource XML files on the server with the local database and
downloads those resources that are either have a newer copy on the FTP
server or not present on the local database.

Arguments: none
Calls: connectToFTPServer (), getResourcesListFromFTPServer (),

downLoadXMLResourcesFromFTPServer () and
getResourcesListFromDatabase().

Return: true if all operations are executed without any exceptions, false if any
operation fails.

Function: connectToFTPServer ()
Description: responsible for connecting to the remote FTP server where the resource

XML files are uploaded by the community members.
Arguments: none
Calls: Commons FTP API
Return: isConnectedToFTPServer i.e. true if the Agent got connected to the FTP

server (or was connected in the first place) and false if failed to connect.

Function: getResourcesListFromFTPServer ()
Description: responsible for obtaining a list of XML resource files that are stored on the

FTP server
Arguments: none
Calls: Commons FTP API for getting a list of the files needed
Return: array of FTPFile where each element is the name of the resource file on

the FTP server

Function: getResourcesListFromDatabase ()
Description: responsible for obtaining a list of XML resource files that are stored on the

local XML database’s resources Collection
Arguments: none
Calls: XML DB API for getting a list of the files stored
Return: a vector of XML resource names that reside in the local database’s

resources Collection

Function: downLoadXMLResourcesFromFTPServer ()
Description: responsible for comparing the last modified date of the XML resource

files on the FTP server and local database and downloading those
resources that are either newer on FTP site or not available on the database

Arguments: FTPFile[] ftpRscXMLFilesList: array of XML resources on the FTP
server
Vector dbRscXMLFilesList: array of XML resources on the local database

Calls: addResourceFromFtpServerToDB() to download XML resource from
FTp server to local database

Return: true if all operations executed successfully else false if any exception
occurred

Function: addResourceFromFtpServerToDB ()
Description: responsible for performing the download of ftpResourceFile to the local

machine and adding it to the local XML database
Arguments: String ftpResourceFile: the XML resource file to download from the FTP

server
Calls: XML DB API and Commons FTP API
Return: void

Function: scheduleProbingTasks ()
Description: responsible for creating a Timer class instance and scheduling it with an

instance of the remoteRscProbeTask class. The latter class’ run() method
will perform the needed periodic operations that this agent needs to
execute.

Arguments: none
Calls: schedule method of the Timer class instance
Return: void
Note: Currently, the following run time error occurs when the schedule method

is called of the Timer class’ instance:
UWPlace#run : java.lang.reflect.InvocationTargetException
agent name: ResourceAgent
Cause : java.lang.IllegalAccessError: tried to access class
ResourceAgent$remoteRscProbeTask from class ResourceAgent

Please refer to the Unresolved Issues section of this document for some
possible workarounds.

Commander Agent API
Please note that only a part of this agent’s source was changed so as to implement the
features of the Resource Agent. Only those methods and data members that were added
for that purpose have been documented in this section.

Data Members

Member: private int numRqdArgs = 11
Description: the number of required arguments to construct this agent

Member: private Hashtable rscHashTable
Description: Hashtable that contains all the resource requirements for the current task
Note: THIS IS NOT NEEDED ANYMORE; PLEASE SEE NEXT DATA

MEMBER

Member: private String[] rscAgentArgs
Description: string array containing all the resource requirements for the current task

Member: private List rscAgentIds = new ArrayList()
Description: a list of id’s of all resource agents spawned by this Commander Agent

Methods

Function: CommanderAgent (String[] args)
Description: this agent’s constructor where the resource agent’s arguments are parsed,

the user program is extracted along with its arguments as well as required
classes

Arguments: String [] args: arguments needed to construct this agent
Calls: getAllRscTypes() (this function is no longer needed), usage()
Return: void

Function: getAllRscTypes ()
Description: THIS METHOD IS NOT NEEDED ANY MORE
Arguments: N/A
Calls: N/A
Return: N/A

Function: init ()
Description: this agent’s init method where (similar to other agent’s init method)

initialization occurs. Code that was added was the call to
spawnInitAgents().

Arguments: none

Calls: spawnInitAgents () in addition to the previously existing calls to other
methods

Return: void

Function: spawnInitAgents ()
Description: responsible for spawning the agents that are needed during initialization of

this agent such as spawning the Resource Agent
Arguments: none
Calls: spawnChildAtPlace (String destHost, String type, String[] args)
Return: void

Function: spawnChildAtPlace (String destHost, String type, String[] args)
Description: responsible for spawning the agent specified by type with its arguments

given by args at destHost. This method was edited to include the switch for
spawning the Resource Agent.

Arguments: String destHost: location to spawn the agent
String type: type of agent to spawn
String[] args: arguments of the spawned agent

Calls: UWAgent.spawnChild (String type, String[] args, String destHost) and
other methods

Return: void

Function: respondToMessage(UWMessage message)
Description: responsible for deciding what action is to be taken based on the

UWMessage message recieved by this agent. Please note that messages
from Resource Agent will have to be added here. Only one message
(“rsc_itenarary_for_new_task”) has been added here but it does not have
any corresponding response action.

Arguments: UWMessage message: the message received by this agent
Calls: functions depending on message
Return: void

Starting AgentTeamwork (A Demo Setup)
This section briefly describes, via an example, the procedures needed to be followed to
start the program.

 a. Injecting Commander Agent

 The following command line input is needed:

java UWInject localhost CommanderAgent -u "C:\Documents and
Settings\Shane R\My
Documents\CSSClasses\CSS499(UnderGradResearch)\Summer2004\agents"
-p UWPlace -n 35353 -c myClient -m 100 ip 123 cpu_speed 456
cpu_count 5 memory 45 os win disk 45 total 5 time 0 cpu_arch win
rscAgent ftp.tripod.com$agentTeamWork$test0.125C:\eXist prog
shane$arg1$arg2$arg3 r class1$class2$class3

Please refer to Prof Fukuda’s documentation on the “original” arguments for this
agent. Arguments that were added as a result of the Resource Agent’s resource
requirements are as follows:

rscAgent ftp.tripod.com$agentTeamWork$test0.125C:\eXist

where:

ftp.tripod.com is the FTP server being used to store the community users XML
resource files

 agentTeamWork is the user name to log into this FTP server
test is the password for the above user name
0.125 is the probe frequency in minutes
C:\eXist is the location where the XML database eXist was installed

b. Starting RMI Server
The RMI server needs to be started on another command window at the port
35353 since the Commander Agent was injected at the same port (look at above
inject command’s –n switch). Type out the following command:

rmiregistry 35353

c. Starting UWPlace
A UWPlace also needs to be started on another command window. Simply type in
the command:

java UWPlace

d. Setting CLASSPATH
This Java environment variable need to be set correctly otherwise numerous run-
time or compile time errors might be generated. Below is a snapshot of what
CLASSPATH might look like. Please note that this example is valid for a
particular machine. Use it as a guideline as to which JAR files are needed to setup
the infrastructure.

.C:\Program
Files\Java\j2re1.4.2_05\bin;C:\eXist\exist.jar;C:\eXist\lib\core\
xmldb.jar;C:\eXist\lib\core\resolver-
20030708.jar;C:\eXist\lib\core\jakarta-oro-
2.0.6.jar;C:\eXist\lib\core\antlr.jar;C:\eXist\lib\core\xmlrpc-
1.2.jar;C:\eXist\lib\core\commons-pool-
1.1.jar;C:\eXist\lib\endorsed\xerces-
2.6.1.jar;C:\eXist\lib\endorsed\xalan-
2.5.2.jar;C:\eXist\lib\endorsed\xml-
apis.jar;C:\eXist\lib\core\log4j.jar;C:\eXist\commons-httpclient-
2.0.1\commons-httpclient-2.0.1.jar;c:\eXist\lib\core\commons-net-
1.2.2.jar;C:\Documents and Settings\Shane R\My Documents\CSS
Classes\CSS499(UnderGradResearch)\Summer2004\UWAgent\UWAgent.jar;
C:\Documents and Settings\Shane R\My Documents\CSS
Classes\CSS499(UnderGradResearch)\Summer2004\GridTcp\GridTcp.jar;
C:\Documents and Settings\Shane R\My Documents\CSS
Classes\CSS499(UnderGradResearch)\Summer2004\agents;C:\Documents
and Settings\Shane R\My Documents\CSS
Classes\CSS499(UnderGradResearch)\Summer2004\UWAgent;c:\eXist

Please note that some JAR files might not be needed but were added for possible
future need. Also note that the JAR file names might also be different for a newer
distribution.

e. JAR Files
The JAR files that are needed are those relating to the XML database (eXist), FTP
client and of course, the AgentTeamwork JAR files as well.

The JAR files of the database are mostly found in lib\core directory off the root
folder of the database installation. Some are also found in lib\endorsed.

The FTP client related JAR file (commons-net-1.2.2.jar) is also found in lib\core.
If it is not, it can be found on: http://jakarta.apache.org/site/binindex.cgi
Scroll down till you find Commons Net.

The JAR files for AgentTeamwork can be downloaded off Medusa.

Design Suggestions & Tips
This section briefly discusses some suggestions that can be utilized to implement those
requirements of the Resource Agent which remain to be implemented.

a. Probing Remote Computers
For the Resource Agent to add a remote node’s actual resource availability (such
as available disk space, available memory, etc) to its copy on the local database,
this agent will need to get this information from potentially different operating
systems of the community members. One solution would be to spawn a child of
the parent Resource Agent for each remote computer. Each of these child agents,
based on the OS of the remote machine (osName data member of
ResourceAgent), will execute OS specific commands to get the resource
information. E.g. to get a memory snapshot on a Windows machine, you can use
the “mem” DOS command. Of course, the output will have to be parsed to extract
the relevant resource information.

Hence, a parser class might have to be written that considers the output of each
resource information that is needed for each platform.

For some information on relevant Linux commands, check:
http://www.sibbald.com/linux/admin01.html

Furthermore, to check the network availability of a remote node, the ping utility
can be used for this purpose. However, once again a parser needs to be written for
each OS to determine this availability. For example,

On a UNIX machine:
ping -c 5 -q -W 10 192.168.0.100

where:
-c is the number of packets to send
-q is quiet mode
-W is timeout in seconds

The subset of the output that is of importance is:
--- 192.168.0.100 ping statistics ---
5 packets transmitted, 0 received, 100% packet loss, time 3999ms

On a Windows machine:
ping -n 5 127.0.0.1

where:
-n is number of packers to send

A demo program called Ping1.java has been written that briefly demonstrates this
parsing. It is located on /home/uwagent/shane/Proof_Of_Concept on Medusa.

b. The Timer and TimerTask Classes
These classes can be used for executing the periodic tasks of probing the remote
computers and updating the availability of those nodes that needs to be performed
by the Resource Agent.

In a nutshell, you need to extend the TimerTask class and this new subclass’ run()
method will be responsible for executing the periodic tasks. Essentially, a separate
thread is spawn for this task.

For more information on how to use these classes, check out sample code at:
http://java.sun.com/docs/books/tutorial/essential/threads/timer.html

Please note that a run time error currently takes place:
UWPlace#run : java.lang.reflect.InvocationTargetException
agent name: ResourceAgent
Cause : java.lang.IllegalAccessError: tried to access class
ResourceAgent$remoteRscProbeTask from class ResourceAgent

The root cause seems to be class remoteRscProbeTask. Perhaps this class needs to
be moved elsewhere and not be kept nested. This needs further investigation.

c. Using eXist Community Forum
The XML database (eXist) has a somewhat resourceful forum to get your
questions answered. The author of this program, Wolfgang Meier, is quite prompt
in getting back to one’s queries. Use this resource freely since the very fact that
this program is open source, bugs or limited documentation might be common.

Queries can be emailed to: exist-open@lists.sourceforge.net

d. FTP Server Directory as System Property
Instead of specifying the Resource XML directory on the FTP server as a data
member of the ResourceAgent class (private String rscXMLDir =
"ResourceXML"), perhaps this could be set as a System property of the
application itself. From a architectural point of view, this is more elegant and
feasible if in the future some System properties need to be read in from a file (for
example).
This can be achieved using the API System.setProperty(…).

e. Handling Exceptions
An exception handling framework along with rules needs to be defined as to how
exceptions need to be handled by the various agents and other utility classes. For
example, how will exceptions be handled higher up in the code and under what
circumstances will the application need to bail from the current Java Virtual
Machine. Such a framework will bring about a unified, consistent and predictable
approach to exception handling.

f. Super Class for All Agents
Currently, the class UWAgent serves as a super class for all other agents derived
from it. However, there are many methods whose code is duplicated across many
agents. For example, the method init() of most agents typically starts a message
retrieval thread. Such methods can be easily derived as well from UWAgent.
This thinking also extends to the common data members of the derived as well as
UWAgent.

g. Abstracting Central Repository
Currently, an FTP server (ftp.tripod.com) is used to store all the XML resource
documents of all the community members. However, other repositories types that
could be used by other community groups include an internet group, HTTP
server, etc. Hence, it might be efficient if an abstract class can be written that will
abstract all the logic for accessing such repositories for downloading all the XML
resources.

Resources

The following is a list of web resources that might be useful for further enhancing the
agent’s requirements.

a. eXist Home Page
The XML database’s home page can be located at: http://exist.sourceforge.net/

b. JavaDocs for eXist (XML DB API)
The API documentation for using the XML DB interface of the database can be
found at: http://exist.sourceforge.net/api/index.html

c. About Writing Java Apps with XML DB API
To get an understanding on how to write Java apps that query and access the
XML database, refer to:
http://exist.sourceforge.net/devguide.html#N10315

d. eXist Server Deployment
This XML database can be deployed under three different scenarios. For
information on these, refer to:
http://exist.sourceforge.net/deployment.html

Since we are concerned with the embedded instance, refer to in particular:
http://exist.sourceforge.net/deployment.html#N101DA

e. eXist Forum
A forum exists which at times is useful to search for solutions to any issues. This
is located at: http://sourceforge.net/mailarchive/forum.php?forum_id=3154

f. Commons Net FTP JavaDocs
The API for this package is located at:
http://jakarta.apache.org/commons/net/apidocs/org/apache/commons/net/ftp/FTP
Client.html#listFiles(java.lang.String)
This is needed to for using the FTPClient class.

