
  
  
  
  
  
  

PPaarraalllleell  PPrrooggrraammmmiinngg    
  

wwiitthh  MMPPIIJJaavvaa  
 
 
 
 
 
 
 
 
 
 
 
 

Solomon Lane



Table of Contents
Introduction................................................................................................................................................3 
Molecular Dynamics ..................................................................................................................................3 
Wave2D (Schroedinger Equation) .............................................................................................................3 
Performance Evaluation.............................................................................................................................4 

Molecular Dynamics Performance........................................................................................................4 
Wave2D Performance ...........................................................................................................................5 

Conclusions................................................................................................................................................7 
Citations .....................................................................................................................................................7 
Appendix 1 – Molecular Dynamics Simulation Details ...........................................................................8 
Appendix 2 – Wave2D Simulation Details ...............................................................................................9
 
 



Introduction 
In preparation for working on AgentTeamwork, my goal this term was to familiarize myself with 
parallel programming and MPIJava.  To this end I parallelized two programs that were, in the words of 
Professor Fukuda, not embarrassingly parallel.  This also provided the opportunity to  evaluate the 
performance improvements of parallelization as well as the communication overhead. 
The first program is a molecular dynamics simulation of a 2-D Lennard-Jones fluid implemented by 
Daniel V. Schroeder.  The second program is a two-dimensional wave simulation based on the 
Schroedinger Equation.  The author of the Java implementation is not known to me.  But the source 
came from http://www.geocities.jp/supermisosan/secondwaveequationjava.html 

In addition to parallelizing these applications I also added modifications to improve their user 
friendliness.  I back ported these features to the original versions as none of these features affected the 
core algorithms. 

Molecular Dynamics 
This simulation calculates the force affection/collision among N particles1 using an arbitrary force cut-
off of 3 units.  I created two parallel versions of the program using different strategies.  The first 
version simply divided the particles between the number of nodes available for the program to run on.  
Because each particle is potentially affected by every other particle, each node needed knowledge of all 
the particles in order to independently calculate the new values for it's particles.  This divides the 
O(n^2) algorithm by the number of nodes(p) resulting in O(n^2/p).  However, the parallelization adds 
communication overhead(h) because each node must be updated with the new values of all the particles 
for each calculation, resulting in  O(n^2/p + h) 
The second parallelization approach partitions the simulation space into stripes and assigns one node to 
each stripe.  Each node is only responsible for calculating the force for the molecules in it's stripe.  
Because each molecule has to be compared to molecules within the force cutoff radius,  each stripe 
must be at least as wide as the force cutoff radius.  Each node must be aware of the molecules in it's 
neighbors stripes. 

With N molecules and p nodes each stripe will average N/p molecules which must be compared with 
each molecule in the current stripe plus each molecule in the left and right neighbors which is roughly 
3(N/p).  This changes the O(n^2) algorithm to O(N/p*3N/p) =  O(3N^2/p^2).  Adding communication 
overhead(h) we have O(3N^2/p^2 + h). 

Wave2D (Schroedinger Equation) 
Wave2D starts with a cube located in a simulation space, and simulates the destruction of the cube, a 
wave caused by the destruction, and the dissemination of the wave2.  I modified the program to take 
arguments for the simulation and cube size, and to automatically generate and display the results. 
The main computation algorithm is O(n^2) .  The parallelization approach partitions the simulation 
space and assigns one node to each partition.  Each node independently calculates the change in its 
space.  Each portion of space is affected by the space adjacent to its edge so each node needs 
knowledge of the edge that is shares with it's neighbor.  This adds communication overhead(h) for each 
computation cycle.  This approach reduces the computational complexity of the algorithm to O(N/p*N 
+ h) = O(N^2/p + h). 

Performance Evaluation 
For the purposes of evaluating performance I ran each simulation 10 times and took the average times.  



For the MD variants, drawing to the screen was disabled to remove that overhead, allowing a more 
accurate comparison of the algorithms.  Runtime was divided into initialization time and computation 
time.  Again to allow for a more accurate comparison of the actual algorithms.    

Molecular Dynamics Performance 
MD simulations where run for 10,000 computation cycles with either 100 molecules or 625 molecules.  
The simulations where run on the serial version of the program to create a baseline, and on each of the 
parallel versions with 4 nodes and 9 nodes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As chart 1 illustrates initialization time increases with parallelization and computation time decreases.  
Computation time continues to decrease when increasing from 4 nodes to 9 nodes as would be 
expected.  However,  for the Molecule Partitioned version,  the decrease is rather small reflecting the 
increased communication overhead with additional nodes.  In the case of the Stripe Partitioned version 
the decrease in computation time is more impressive, despite the increased communication overhead 
because each additional node has greater affect on the overall complexity of the algorithm with this 
partitioning approach.    

Chart 1: Molecular Dynamics Simulation - 625 Molecules/10,000 Cycles 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chart 2 shows the same simulation with a relatively small number of molecules.  This illustrates that 
the algorithmic performance increases do not outweigh the communication overhead with small values 
of N. 
 
 

Wave2D Performance 
The Wave2D image processing time should be identical for each version of the program and it was 
disabled when running these simulations.  Each simulation was run for 1,000 computation cycles.  The 
simulation space was set to either 100 or 1,000 units.  The simulations where run on the serial version 
of the program to create a baseline, and on the parallel version with 4 nodes and 9 nodes. 

Chart 2: Molecular Dynamics Simulation - 100 Molecules/10,000 Cycles 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Chart 3 illustrates the dramatic performance improvements with the space partitioned algorithm.  
Communication overhead appears minimal with 4 nodes and the small amount of data that each node 
needs to exchange with its neighbors on each cycle.  However the rate of improvement diminishes 
when the number of nodes is increased to nine.  This indicates that the increased communication 
overhead for additional nodes increases at a greater rate regardless of the amount of data that is being 
communicated. 

Chart 3: Wave2D Simulation - 1000 unit2 simulation space/1,000 cycles 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Chart 4 shows the same simulation with a small simulation space.  The space partitioned algorithm still 
reduces computation time despite communication overhead, but it doesn't offset the increased 
initialization time. 

Conclusions 
Parallelization with Mpijava improved the performance of these algorithms once they scaled to larger 
values of N.  The performance improvements are most dramatic when communication overhead is 
minimized.  There seems to be sweet spot with regards to the number of nodes after which we see 
diminishing returns in performance improvement even when communication is limited to small 
amounts of data. 

Citations 
1 Professor Fukuda, “CSS499 statement of work” 
2 Professor Fukuda, “CSS499 statement of work” 

 

Chart 4: Wave2D Simulation - 100 unit2 simulation space/1,000 cycles 



Appendix 1 – Molecular Dynamics Simulation Details  
Serial Baseline 
source code: /home/uwagent/MA/applications/Molecules/mpj/MD625.java 
details: Line 154 was commented out so the program would not draw to the screen 
Simulation 1 execution: java MD 
Lines 45-48 set the following runtime parameters: 

     static       int N = 625;             // number of molecules 
     static final int pixelDiameter = 6;  // molecule diameter in pixels 
     static final int boxWidth = 100;       // in units of the molecular diameter 
     static final int boxHeight = 100; 

Simulation 2 execution: java MD 
Lines 49-52 set the following runtime parameters: 

    static       int N = 100;             // number of molecules 
    static final int pixelDiameter = 10;  // molecule diameter in pixels 
    static final int boxWidth = 40;       // in units of the molecular diameter 
    static final int boxHeight = 40; 
 

Molecule Based Partitioning 
source code: /home/uwagent/MA/applications/Molecules/mpj/MD.java.finalMolecule 
details: Line 319 was commented out so the program would not draw the results to the screen 
Simulation 1 execution: 
4 Nodes:  prunjava 4 MD -n 625 -d 6 -w 100 -h 100 -r 10000 
9 Nodes: prunjava 4 MD -n 625 -d 6 -w 100 -h 100 -r 10000 
Simulation 2 execution: 
4 Nodes:  prunjava 4 MD -n 100 -d 10 -w 100 -h 40 -r 10000 
9 Nodes: prunjava 4 MD -n 100 -d 10 -w 100 -h 40 -r 10000 
 
Stripe Based Partitioning 
source code: /home/uwagent/MA/applications/Molecules/mpj/MD.java.finalStripes 
details: Line 449 was commented out so the program would not draw the results to the screen 
Simulation 1 execution: 
4 Nodes:  prunjava 4 MD -n 625 -d 6 -w 100 -h 100 -r 10000 
9 Nodes: prunjava 4 MD -n 625 -d 6 -w 100 -h 100 -r 10000 
Simulation 2 execution: 
4 Nodes:  prunjava 4 MD -n 100 -d 10 -w 100 -h 40 -r 10000 
9 Nodes: prunjava 4 MD -n 100 -d 10 -w 100 -h 40 -r 10000 
 



Appendix 2 – Wave2D Simulation Details  
Serial Baseline 
source code: /home/uwagent/MA/applications/Wave2D/mpj/Wave2D.java.gui 
Simulation 1 execution:  
java Wave2D -n 1000 -xmin 400 -xmax 600 -ymin 400 -ymax 600 -r 1000 
Simulation 2 execution:  
java Wave2D -r 1000 
 

 
Space Based Partitioning 
source code: /home/uwagent/MA/applications/Wave2D/mpj/Wave2D.java.final 
Simulation 1 execution: 
4 nodes – prunjava 4 Wave2D -n 1000 -xmin 400 -xmax 600 -ymin 400 -ymax 600 -r 1000 
9 nodes - prunjava 9 Wave2D -n 1000 -xmin 400 -xmax 600 -ymin 400 -ymax 600 -r 1000 
Simulation 2 execution: 
4 nodes – prunjava 4 Wave2D -r 1000 
9 nodes –  prunjava 9 Wave2D  -r 1000 


