
 
 
 
 
 
 

Evaluation of Agent Teamwork  
A High Performance Distributed Computing 

Middleware System 
 
 
 
 
 

 
Final Report 

 
 
 

 
 
 
 
 
 

Solomon Lane   
Agent Teamwork Research Assistant 

October 2006 – March 2007 
 
 
 
 

 



Evaluation of Agent Teamwork                             Page 2 of 28                                               Solomon Lane 

INTRODUCTION ........................................................................................................................................ 3 

TERMINOLOGY......................................................................................................................................... 3 

Grid vs. Cluster..................................................................................................................................... 3 
Platform ................................................................................................................................................ 4 
Framework............................................................................................................................................ 4 
Middleware ........................................................................................................................................... 4 

JOB DISPATCHING AND TERMINATION FUNCTION..................................................................... 5 

REFERENCE PLATFORM OVERVIEW............................................................................................................ 5 
Hardware Details.................................................................................................................................. 5 
Globus Grid .......................................................................................................................................... 6 
OpenPBS Clusters................................................................................................................................. 6 
Grid/Cluster Integration ....................................................................................................................... 7 
MPICH-G2............................................................................................................................................ 7 

REFERENCE PLATFORM DEVELOPMENT CHALLENGES ............................................................................... 7 
GTK Authentication .............................................................................................................................. 8 
Host Configuration & Cryptic Error Messages.................................................................................... 8 

PERFORMANCE EVALUATION ..................................................................................................................... 9 
Methodology ......................................................................................................................................... 9 
Challenges ............................................................................................................................................ 9 

EVALUATION RESULTS............................................................................................................................. 10 

FRAMEWORK/COMMUNICATION OVERHEAD............................................................................. 13 

THE BENCHMARK PROGRAMS .................................................................................................................. 13 
BENCHMARK DEVELOPMENT CHALLENGES ............................................................................................. 13 

Agent Teamwork Programming Model............................................................................................... 13 
Code Maturity ..................................................................................................................................... 14 

EVALUATION METHODOLOGY.................................................................................................................. 15 
EVALUATION RESULTS............................................................................................................................. 15 

FUTURE WORK ....................................................................................................................................... 16 

CONCLUSION........................................................................................................................................... 16 

APPENDIX A – DISPATCH & TERMINATION EVALUATION DETAILS .................................... 17 

APPENDIX B – DEPLOYMENT & TERMINATION EVALUATION RAW DATA........................ 18 

APPENDIX C – FRAMEWORK EVALUATION DETAILS................................................................ 21 

APPENDIX D – FRAMEWORK EVALUATION RAW DATA ........................................................... 22 

APPENDIX E – TEST.SH SHELL SCRIPT ........................................................................................... 23 

APPENDIX F – RUNWAVE2D.SH SHELL SCRIPT ............................................................................ 25 

 



Evaluation of Agent Teamwork                             Page 3 of 28                                               Solomon Lane 

Introduction 
I spent the last two quarters working as a research assistant for Professor Munehiro 
Fukuda as part of his Agent Teamwork project.  This final report documents the work I 
did, my experiences, and some of lessons I learned in the process.   
 
Agent Teamwork is a High Performance Distributed Computing (HPDC) middleware 
system under ongoing development.  Performance optimization is driving much of this 
work.  To support this effort my goal as a research assistant was to evaluate Agent 
Teamwork’s performance against a contemporary alternative. 
 
The Agent Teamwork middleware system provides two general functions, each of which 
introduce overhead into the system.  Firstly it provides a mechanism to dispatch jobs to 
the distributed computing resources and terminate them when they are finished.  
Secondly it provides a framework to programmatically coordinate theses resources.   
 
There is no single contemporary HPDC middleware that provides an exact match with 
the features of Agent Teamwork.  Instead there are several popular middleware 
components that provide different sets of features.  Therefore I had to evaluate Agent 
Teamwork’s two main functions against different contemporary products. 
 
In order to evaluate the Job Dispatch and Termination function, I built a reference 
platform that provided the same functions.  This platform however did not support a 
similar enough framework; therefore I had to evaluate Agent Teamwork’s framework 
performance against a different product which did not provide a comparable Job Dispatch 
and Termination function.  
 
I will begin by providing a brief overview of the terminology used within this paper and 
their definitions. I will then review the development of the reference platform 
development and the Job Dispatching and Termination performance evaluation, including 
some of the challenges I came across.  This will be followed by a description of the 
framework level performance evaluation and final conclusion. 
 

Terminology 
The following outlines the key concepts and terminology discussed within this paper. 

Grid vs. Cluster  
A computing grid is commonly distinguished from a computing cluster by the geographic 
distance between members.  A cluster would be a group of computers in the same room 
or building and connected to the same physical network, while the members of grid could 
be located anywhere and many members are likely connected over a wide area network. 
 
The distinction can also be compared with their relationships between the individual 
nodes.  For the purpose of this paper, a grid refers to a group of computers that are 



Evaluation of Agent Teamwork                             Page 4 of 28                                               Solomon Lane 

loosely connected in terms of awareness of peers.  Computers in the same grid may all 
run software that accepts individual job submissions, but there is nothing inherent in the 
grid to coordinate related jobs or even recognize jobs as being related. 
 
A cluster on the other hand will have a head node that is aware of the clusters members 
and their state.  Whereas a grid will provide infrastructure services such as authentication 
and authorization for job submission.  A cluster can dynamic schedule and allocate 
resources based on their current state.  

Platform 
For the purpose of this paper, a HPDC platform has software that provides infrastructure 
and scheduling services.  Infrastructure services include authentication and authorization, 
job submission, and file transfer for job deployment.  Scheduling services include 
dynamic resource identification and allocation, scheduling policies, and coordinating job 
execution. 

Framework 
Framework has a related set of software libraries that are used to implement a 
programming model.  The Single Program Multiple Data (SPMD) programming model is 
commonly used to achieve data level parallelism in HPDC.  MPIJava is a Java 
implementation of the Message Passing Interface standard.  MPIJava provides a 
framework for programming in the SPMD model. 

Middleware 
A system that provides both a platform and a framework for developing and running 
HPDC applications. 
 
 



Evaluation of Agent Teamwork                             Page 5 of 28                                               Solomon Lane 

Job dispatching and termination function 
This section will review the performance evaluation of Agent Teamwork’s job 
dispatching and termination function, including a discussion of the development of the 
reference platform that it was evaluated against. 
 
Because the Globus Toolkit (GTK) is, according to the New York Times, considered the 
de facto standard in grid computing, I was tasked with evaluating Agent Teamwork’s job 
dispatching and termination performance against a GTK based reference platform.  
However the GTK is only a toolkit and it does not provide a complete middleware system.  
Therefore in order to build a reference platform with services comparable to Agent 
Teamwork I had to integrate the GTK with the OpenPBS scheduler and the MPICH-G2 
MPI framework.  This turned out to be a significant challenge. 

Reference Platform Overview 
This section describes the reference platform that I built on the lab computers that make 
up our test environment. 

Hardware Details 
The test environment consists of 66 computers, 32 of these machines come from a shared 
student Linux lab and 34 dedicated machines come from the distributed systems lab.  
These machines are divided into two clusters, each with one head node and 32 members.  
The individual cluster nodes are interconnected at 1 or 2GBps within a cluster and the 
head nodes are connected to the campus backbone at 100MBps.  The specifics of each 
cluster are summarized below in Table 1.  I built the reference platform and evaluated the 
performance of Agent Teamwork using the same 66 computers. 
 
  

Medusa Cluster  Phoebe Cluster 
a 32-node cluster for research use  a 32-node cluster for instructional use 
Head Node: 
specification outbound 
1.8GHz Xeon x2, 512MB memory, and 
70GB HD 100Mbps 
 

 Head node: 
specification outbound 
1.5GHz Xeon, 256MB memory, and 
40GB HD 100Mbps 
 

Computing nodes: 
#nodes specification inbound 
24 3.2GHz Xeon, 512MB memory, and 
36GB HD 1Gbps 
8 2.8GHz Xeon, 512MB memory, and 
60GB HD 2Gbps 
 

 Computing nodes: 
#nodes specification inbound 
16 1.5GHz Xeon, 512MB memory, and 
30GB HD 100Mbps 
16 1.5GHz Xeon, 512MB memory, and 
30GB HD 1Gbps 
 

 
Table 1: Cluster Comparison 



Evaluation of Agent Teamwork                             Page 6 of 28                                               Solomon Lane 

Globus Grid 
The GTK primarily provides grid level infrastructure services, such as authentication and 
authorization for job submission and dispatch.  My first step to build the reference 
platform was to install the GTK on all 66 machines.  This involved, building GTK from 
source, installing and configuring it.  I also had to configure a local certificate authority 
in order to support the grid security services.  The GTK provides no hierarchy or implicit 
cooperation between the machines.  From any machine with the proper credentials, I 
could submit random or related jobs to any of the machines in the grid.  There is nothing 
inherent in the grid to coordinate related jobs or even recognize jobs as being related. 
 
When a job submission is accepted a Job Manager is started to handle the job.  Fork is the 
default Job Manager provided by the GTK and it simply executes the job on the local 
machine. After successfully installing, configuring and debugging GTK, the next step in 
building the reference platform was to integrate the Open PBS schedule. 

OpenPBS Clusters 
PBS stands for Portable Batch System.  I used the free version, OpenPBS.  It can be used 
to manage computing resources by defining resource types, such as time sharing or 
cluster nodes, and policy based work queues for allocating those resources.  A number of 
parameters can be used to determine a node’s suitability for allocation to a particular job. 
 
OpenPBS consists of three daemons which I built from source.  They are pbs_server, 
pbs_sched and pbs_mom.  The pbs_mom daemon was installed on 64 computers that 
would act as cluster nodes.  I divided these machines into two clusters by configuring 
their respective pbs_mom’s to be managed by one of the cluster head nodes.  I installed 
and configured pbs_server and pbs_sched on each of remaining two machines, Medusa 
and Phoebe, so they could act as cluster heads, each managing 32 nodes.  As Figure 1 
below indicates, the head nodes are running pbs_server and pbs_sched daemons while the 
cluster nodes run the pbs_mom daemon. 



Evaluation of Agent Teamwork                             Page 7 of 28                                               Solomon Lane 

 
Figure 1 – PBS Clusters 

 
Note that while these machines are all members of the same GTK grid, the PBS cluster 
configuration is unaware of the grid and has no dependency on it.  

Grid/Cluster Integration 
Initial OpenPBS integration is simply a matter of configuring the GTK to use the PBS job 
scheduler and then specifying the cluster head node when submitting a job.  Running and 
coordinating the same job across multiple clusters is bit more complex. 
 
First of all the coordination must be programmatically orchestrated using the GTK’s 
DUROC library.  Fortunately this can be handled by integrating the MPICH-G2 
framework into platform.  Secondly multi-cluster jobs must be described in the GTK 
Resource Specification Language, which I had to learn how to use. 

MPICH-G2 
MPICH-G2 is a globus/DUROC aware framework that implements the MPI standard.  I 
built it from source which required configuring it to integrate with the local GTK 
installation.  After configuring the installation I learned how to write c++ code using the 
framework and to build the necessary Makefiles to compile it.  At this point the reference 
platform was complete. 

Reference Platform Development Challenges 
I had to overcome several challenges in order to complete the reference platform.  This 
section highlights some of the major issues. 



Evaluation of Agent Teamwork                             Page 8 of 28                                               Solomon Lane 

GTK Authentication 
The cluster machines are under the administrative control of the university’s systems 
administrators which introduced logistical challenges when administrative access was 
needed (e.g. access to the root account).  To minimize this dependency I decide to run the 
globus software with a regular user account instead of running it under the root account.  
Unfortunately this approach resulted in a problem that was difficult to debug. 
 
Specifically, the globus-gatekeeper must run with a host certificate that cannot be read by 
the user submitting a job. Because I ran both the gatekeeper and submitted jobs as the 
globus user, the host certificate remained readable by both the submitter and the 
gatekeeper. The actual problem was extremely subtle. The following steps take place in a 
Globus job submission: 

1. The job submission connects to the gatekeeper and they mutually authenticate 
each other using the following certificates: 

a. Gatekeeper presents it’s host certificate 
b. Submitter presents it’s user certificate 

2. After mutual authentication, the gatekeeper checks authorization. If authorized, 
the gatekeeper receives a delegated user proxy certificate from the submitter to be 
used for callbacks to the submitter. 

3. The gatekeeper starts a job manager with the submitter’s uid and provides the job 
manager with the location of the delegated user proxy. 

4. The job manager establishes a call back to the submitter and must present the 
delegated user proxy certificate for authentication. 

 
However, in step 4 the job manager actually performs a credential search using the 
standard globus credential search order which searches for host certificates before 
delegated proxy certificates. Because the host certificate was readable by globus, the job 
manager tried to use the host certificates for the call back, which was rejected. 
 
The solution was to make the host certificate read only by root and run the gatekeeper as 
root which has authority to start the job manager with the globus user uid.  Due to the 
subtle nature of the problem and logistical overhead of coordinating with the systems 
administrators it took several weeks and 10’s of hours of straces, tcpdumps, gdb sessions, 
and message board postings to figure out the problem. 

Host Configuration & Cryptic Error Messages 
There was wide variance in the system and network level configurations both on the 
individual hosts and networking equipment and dns servers.  For example: 
 

1. Some hosts had A-records in dns while others only existed in hosts files.   
2. Some the hosts files were inconsistent 
3. Some of the hosts in dns some had ptr records while others did not 
4. Many hosts had different port acls between different groups of machines 
5. Many hosts had different local port acls, for example many hosts could connect to 

localhost:port but not “the local hostname”:port 
6. General variance in file system permissions and sudoers file propragation 



Evaluation of Agent Teamwork                             Page 9 of 28                                               Solomon Lane 

 
I only discovered the many inconsistencies because the GTK and OpenPBS had 
dependencies on these configurations.  Futhermore these dependencies manifested 
themselves in cryptic error messages that often required extensive strace analysis to 
uncover.  For example the following error occurs due to the local port acl describe in 
example 5 above:   
: globus_init: failed 
globus_module_activate(GLOBUS_DUROC_RUNTIME_MODULE) 
 
As I debugged these individual issues, I would then coordinate with the systems 
administrators to make the necessary configuration changes.  

Performance Evaluation  
This section describes the performance evaluation technique and discusses the results. 

Methodology  
My objective was to evaluate the performance of the job dispatch and termination 
overhead of the platform, not the job execution performance.  Therefore I could not 
measure performance from within a test program.  Instead I needed to measure how long 
it took a job submission to be deployed, executed and cleaned up.  By using a test 
program that would have a negligible impact on overall runtimes, I was able to evaluate 
dispatch and termination performance by starting a timer when the job was submitted and 
stopping when the results were returned. 
 
The professor had already created and used such a program to measure Agent 
Teamwork’s performance in this area.  However this program was not compatible with 
MPICH-G2 framework which is c++ based so I ported the test program to the MPICH-
G2 framework.  The program designates one host as a master and the rest as slaves and 
sends a single byte of data between the master and each slave.  In each test program the 
algorithms are identical. 
 
The test program was run with 2-64 nodes across the two clusters in a depth-first node 
distribution series and a breadth-first node distribution series.  The runs in the depth-first 
series used all 32 nodes in the first cluster before using any additional nodes from the 
second cluster.  The runs in the breadth-first series always used the same number of 
nodes from each cluster. 
 
After running several evaluations I observed that roughly 1 of every 5 runs would vary 
wildly from the rest of the times.  Therefore I decided to run each series 5 times, throw 
out the outlier and average the remaining times.  These averages were compared to the 
professors published performance data for Agent Teamwork. 

Challenges 
When I compiled the first evaluation we noticed that globus (GTK) performance seemed 
to be the same at several node counts and would then jump by 10 seconds, and repeat the 



Evaluation of Agent Teamwork                             Page 10 of 28                                               Solomon Lane 

pattern.  After tracing the jobs in more detail I discovered that this was due to the way 
globus monitored the OpenPBS job managers. 
 
In order to run a job in the GTK/OpenPBS environment, the globusrun command is used 
to submit the job to the globus gatekeeper, which coordinates dispatch of the job to the 
OpenPBS clusters.  Once the job is dispatched to the OpenPBS clusters, the GTK job 
manager polls the OpenPBS clusters every ten seconds to check on the job status.  Once 
the job is complete, globusrun exits.   
 
By simply timing how long it took for a globusrun submission to exit my results were off 
by almost ten seconds.  Fortunately the OpenPBS logs record the exact time that the job 
completes.  Therefore I changed the measurement to start the timer when globusrun is 
launched, and use the end time from the OpenPBS logs.  This allowed me to accurately 
time the job completion within one second, which is the resolution of the OpenPBS logs. 

Evaluation Results 
I made two interesting observations with regards to the reference platform.  First of all, 
when running the same test, depth first, on the phoebe cluster multiple times, rouglhy one 
out of five of the results would vary wildly while the other three or four tended to cluster 
towards a same result.  For example in five runs with two nodes on the phoebe cluster, I 
measured two seconds twice, one second twice, and seven seconds once.  There was also 
some variation in multiple depth first runs on the Medusa cluster, but it was far lest 
pronounced. 
 
The second thing I noticed is that the variations were far wider when running a breadth 
first series on the reference platform.  This leads me to suspect that the reference platform 
is far more sensitive to something network related, though I was unable to determine the 
root cause.  Since the majority of values tended to cluster, I decided to run each test five 
times and take the median value.  The results were plotted against the professors 
published values for Agent Teamwork performance. 
  
The following three graphs compare the results of Agent Teamwork’s performance 
against the median of five runs using Breadth First, Medusa Depth First and Phoebe 
Depth First.  The raw data can be found in Appendix B. 



Evaluation of Agent Teamwork                             Page 11 of 28                                               Solomon Lane 

 
Graph 1:  Breadth First evaluation.  

 
 

 
Graph 2:  Medusa Depth First Evaluation 

 

 
Graph 3: Phoebe Cluster Depth First Evaluation 



Evaluation of Agent Teamwork                             Page 12 of 28                                               Solomon Lane 

 
As the results show, Agent Teamwork’s job dispatch and termination performance was 
comparable with the reference platform in a depth first configurations.  And agent 
teamwork tended to outperform the reference platform with a large number of nodes in a 
breadth first configuration. 
 
 



Evaluation of Agent Teamwork                             Page 13 of 28                                               Solomon Lane 

Framework/Communication Overhead 
Agent Teamwork is completely implemented in java and it provides an MPI 
implementation called MPJ.  MPI is supported on the reference platform by the c++ 
MPICH-G2 implementation.  Because we did not want the framework performance 
results skewed by performance differences between c++ and java, I was asked to 
compare Agent Teamwork’s framework level execution performance against MPIJava. 
 
MPIJava is a popular Java implementation of the MPI.  MPIJava does not provide 
platform services for dynamic node allocation, instead MPIJava requires the user to 
provide a static list of computers to use at runtime.  
 
These MPI frameworks primarily provide standard communication mechanisms such as 
initialization, barrier, broadcast, scatter, gather, and point-to-point messages.  To evaluate 
the framework execution performance I was asked to write three benchmark programs 
that have framework communication intensive algorithms. 

The Benchmark Programs 
The three benchmark programs are MD, a molecular dynamics simulation; Wave2D, a 
wave dissemination simulation; and Mandelbrot, a Mandelbrot generator.  With the 
exception of Mandelbrot I had to code each program twice, once for MPIJava and once 
for Agent Teamwork MPJ.  Mandelbrot had already been written in MPIJava by Josh 
Phillips so I only had to port it to Agent Teamwork MPJ. 

Benchmark Development Challenges 
MPIJava is mature framework that was relatively straightforward to code in.  However it 
is important to remember that MPIJava does not provide any of the platform level 
services provided by Agent Teamwork.  Because of Agent Teamwork’s advanced 
features and its earlier stage of development it presents more challenges to the 
programmer.  

Agent Teamwork Programming Model 
The main difficulty with the Agent Teamwork programming model is due to a side affect 
of its job snapshot feature.  Agent Teamwork takes regular runtime snapshots of a 
program and is capable of migrating a running job from one node to another for load 
balancing and dynamic failure recovery.  Professor Fukuda summarizes the issue as 
follows: 
 
The problem is that Java does not serialize an application’s program counter and a stack. 
To handle this problem, we decided to partition a user program into a collection of 
func_n methods. In this scheme, the user program wrapper schedules the invocation of 
these functions and takse a snapshot at the end of each function call. 
 
This requires each function to return an int representing the name of the next function to 
call.  Because functions are called by returning an int, you cannot pass parameters to 



Evaluation of Agent Teamwork                             Page 14 of 28                                               Solomon Lane 

functions and you cannot directly return from a function call.  This requires setting 
globals for any parameters that need to be passed and results in the following general 
programming model: 
 
func_0( ) { 
   statement_1; 
   statement_2; 
   statement_3; 
   return 1; 
} 
func_1( ) { 
   statement_4; 
   statement_5; 
   statement_6; 
   return 2; 
} 
 
Furthermore snapshots need to be taken frequently, especially in the case of large ‘for 
loops’ or the snapshot images can become too large.  This requires converting a ‘for loop’ 
into a series of functions such as: 
 
    public int func_2( ) { 
        if ( i < max ) { 
            // for loop; 
            return 3; 
        } 
        else { 
            // move on 
            return 4; 
        } 
    } 
 
    public int func_3( ) { 
        ….. 
        // leave function for snapshot every 50 iterations 
            if (i % 50 == 0) { 
                i++; 
                return 2; 
            } 
            i++; 
            return 2; 
    } 
 
The other main challenge had to do with the maturity of code base. 

Code Maturity 
Because Agent Teamwork is still under ongoing development, programming for 
performance evaluation has also provided useful real world testing of the code. Through 
the process of coding and debugging these test applications I uncovered several bugs and 
race conditions in the framework.   



Evaluation of Agent Teamwork                             Page 15 of 28                                               Solomon Lane 

Evaluation Methodology  
As of this writing Agent Teamwork versions of MD and Mandelbrot cannot be run across 
the clusters due to outstanding bugs in the framework.  The Agent Teamwork version of 
Wave2D does not rely on the same framework elements with the outstanding issues and 
can therefore run across the clusters.  However other framework issues still prevent 
Wave2D from completing successfully when run on more than a handful of nodes with 
anything more than a trivial workload.  Therefore I was unable to perform a complete 
evaluation with any of the benchmark programs.  However I have included some partial 
results with Wave2D. 
 
These partial results were obtained by running the Agent Teamwork and MPIJava 
versions in a depth first series on the Medusa cluster and a limited breadth first series 
with both clusters.  

Evaluation Results 
As the following partial results show in the two graphs below, the Agent Teamwork 
version is two orders of magnitude slower than MPIJava.  In the course of testing I 
observed that the Agent Teamwork seemed to get slower and slower with each iteration 
of the main algortihm.  I suspect that this is related to the snapshots which are taken at 
each iteration.  At this point however framework debugging is ongoing. 
 

 
Graph 4: Wave2D Depth First Evaluation 



Evaluation of Agent Teamwork                             Page 16 of 28                                               Solomon Lane 

 
Graph 5: Wave2D Breadth First Evaluation 

Future Work 
Framework debugging must certainly continue.  The professor also plans to develop a 
pre-processor to convert conventionally programmed code into the snapshot-able func_n 
model.  In my opinion this pre-processor will be critical to allow Agent Teamwork to 
move from running in the lab to becoming a publicly available middleware.  

Conclusion 
My goal was to evaluate Agent Teamwork’s performance against a contemporary 
alternative.  To accomplish this goal I created an evaluation of the system’s two general 
functions.  For the job dispatching and termination function, I created a reference 
platform by installing and integrating globus, open PBS and MPICH-G2.  For the 
framework function evaluation, I wrote three benchmark programs that have framework 
communication intensive algorithms in order to compare Agent Teamwork’s framework 
level execution performance against MPIJava. 
 
My work showed that Agent Teamwork provides solid job dispatch and termination 
performance, while there is still work to be done at the framework layer.  While I 
encountered some challenges, especially in the development of the reference platform, I 
feel that I have gained significant experience with globus, openPBS and the mpi during 
my time as a research assistant.  This project provided me with extensive debugging 
experience with advanced tools such as tcpdump, strace, and gdb.  I also gained 
experience with performance analysis and writing parallel programs.  Working with both 
the current popular technologies and the cutting edge Agent Teamwork has provided me 
with new insights and understanding of HPDC. 
 



Evaluation of Agent Teamwork                             Page 17 of 28                                               Solomon Lane 

Appendix A – Dispatch & Termination Evaluation Details 
To measure the Job Dispatch & Termination performance on the reference platform I 
wrote a shell script that perfomed the following functions: 

• Generated an RSL file for the particular job requirements (breadth or depth first 
and number of nodes) 

• Recorded the current time and submitted the job. 
• Obtained the pbs jobid from the globus logs and located the job termination time 

from the pbs logs 
The full text of the shell script, test.sh, is located in Appendix F.  The raw data in 
Appendix B was generated by running the script with corresponding options for 
distribution type and node count. 

 



Evaluation of Agent Teamwork                             Page 18 of 28                                               Solomon Lane 

Appendix B – Deployment & Termination Evaluation Raw 
Data 

Breadth First 
Nodes Globus/PBS Execution 

Time 
Globus/PBS 

Median 
Agent Teamwork Execution 

Time 
2 2     
2 12     
2 3     
2 7     
2 7 7 2.663 
4 3     
4 3     
4 8     
4 3     
4 3 3 3.245 
8 4     
8 4     
8 4     
8 4     
8 4 4 4.678 

16 98     
16 11     
16 11     
16 16     
16 11 11 7.385 
24 99     
24 13     
24 17     
24 13     
24 17 17 10.034 
32 107     
32 10     
32 25     
32 11     
32 19 19 13.621 
40 104     
40 18     
40 13     
40 21     
40 21 21 16.93 
48 111     
48 26     
48 31     
48 45     
48 44 44 20.206 
64 34     
64 44     
64 73     
64 31     
64 42 42 22.603 

 
 



Evaluation of Agent Teamwork                             Page 19 of 28                                               Solomon Lane 

 
Medusa Depth First 

Nodes Globus/PBS Execution 
Time Globus/PBS Median Agent Teamwork Execution 

Time 
1 2   
1 2   
1 2   
1 2   
1 2 2 1.678 
2 2   
2 2   
2 2   
2 2   
2 2 2 2.104 
4 3   
4 3   
4 2   
4 3   
4 2 3 2.778 
8 4   
8 4   
8 5   
8 4   
8 5 4 4.09 

16 8   
16 7   
16 8   
16 7   
16 7 7 6.276 
24 11   
24 10   
24 11   
24 10   
24 10 10 8.652 
32 14   
32 14   
32 14   
32 14   
32 14 14 10.591 
40 16   
40 18   
40 16   
40 23   
40 23 18 11.952 
48 20   
48 16   
48 24   
48 22   
48 18 20 14.039 
64 23   
64 22   
64 26   
64 27   
64 17 23 22.608 

 



Evaluation of Agent Teamwork                             Page 20 of 28                                               Solomon Lane 

Phoebe Depth First 

Nodes Globus/PBS Execution 
Time Median Agent Teamwork 

1 8   
1 2   
1 12   
1 2   
1 7 7 1.867 
2 2   
2 7   
2 2   
2 1   
2 1 2 2.492 
4 4   
4 8   
4 3   
4 3   
4 3 3 3.666 
8 10   
8 9   
8 5   
8 10   
8 5 9 5.554 

16 13   
16 8   
16 8   
16 12   
16 8 8 9.495 
24 19   
24 11   
24 19   
24 11   
24 26 19 11.763 
32 14   
32 18   
32 24   
32 15   
32 27 18 14.066 
40 17   
40 22   
40 31   
40 21   
40 26 22 14.938 
48 42   
48 17   
48 24   
48 22   
48 27 24 17.591 
64 27   
64 32   
64 23   
64 22   
64 27 27 22.603 

 



Evaluation of Agent Teamwork                             Page 21 of 28                                               Solomon Lane 

Appendix C – Framework Evaluation Details 
In order to measure agent teamworks framework performance I wrote a shell script to run 
the Wave2D program across the cluster nodes in a depth or breadth first distribution.  The 
text of the shell script, runWave2D.sh is located in Appendix F.  The raw data for Agent 
Teamwork in Appendix D was generated by running the script with the following 
program options for the corresponding distribution type and node count:  
 
runWave2D.sh ‐t <type> ‐n <nodes> ‐r 1000 ‐N 500 ‐xmin 200 ‐ymin 200 ‐xmax 300 –ymax 
300                               

 
In order to measure Wave2D using MPIJava, I ran it with the prunjava script which 
presumably came with the mpijava distribution.  The raw data for MPIJava in Appendix 
D was generated by running the script with the following program options for the 
corresponding node count: 
 
prunjava <nodes> Wave2D ‐n 1000 ‐xmin 200 ‐xmax 300 ‐ymin 200 ‐ymax 300 ‐r 1000 

 
The distribution was controlled by placement of hostnames in the machines file. 



Evaluation of Agent Teamwork                             Page 22 of 28                                               Solomon Lane 

Appendix D – Framework Evaluation Raw Data 
Wave2D Breadth First 

Node AgentTeamwork MPIJava 
2 1210.748 75.602
4 1126.522 52.691
8 1839.943 37.087

 
 

Wave2D Depth First 
Node AgentTeamwork MPIJava 

2 263.484 75.969
4 294.93 49.252
8 362.238 31.385

14 390.763 24.521
 



Evaluation of Agent Teamwork                             Page 23 of 28                                               Solomon Lane 

Appendix E – test.sh shell script 
#!/bin/bash 
 
DIR="/home/globus/src/eval1" 
EXE="/home/globus/src/eval1/InterCluster" 
ARGS='"‐m" "1"' 
 
CLUSTERS=$1 
EXPECTED_ARGS=2 
 
usage () { 
    cat <<USAGE 
 
Description: 
This script generates a temporary rsl file and runs an mpi job 
on one or more pbs clusters accesible to a contact running the 
Globus Gatekeeper with a properly configured pbs JobManager. 
 
The script times the total job duration from submission to 
completion and returns the time in seconds and the total number  
nodes involved to standard out.  All other 
output is sent to standard error. 
 
Usage: 
$0 <cluster count> <contact1>,<count1> [... <contactN>,<countN> ] 
 
Example: 
$0 2 phoebe:2119,32 medusa:2119,32 
 
Other important settings are controlled by variables located 
at the top of this script.  The current values are: 
 
DIR="/home/globus/src/eval1" 
EXE="/home/globus/src/eval1/InterCluster" 
ARGS='"‐m" "1"' 
 
USAGE 
exit 1 
} 
 
write_rsl_block () { 
cat <<JOB_RSL_BLOCK >> $$.rsl 
( &(resourceManagerContact="$1") 
   (count=$2) 
   (label="subjob $3") 
   (environment=(GLOBUS_DUROC_SUBJOB_INDEX $3) 
                (LD_LIBRARY_PATH /home/globus/globus/lib/)) 
   (directory="$DIR") 
   (executable="$EXE") 
   (arguments= $ARGS) 
   (stdout=/home/globus/std.out$3) 
   (stderr=/home/globus/std.err$3) 
) 
JOB_RSL_BLOCK 
} 
 
if [ ! ‐n "$1" ]; then 
    usage 
fi 
 
if [ "$1" ‐gt 0 ];then 
    EXPECTED_ARGS=$(($CLUSTERS+1)) 
    if [ $# ‐ne $EXPECTED_ARGS ]; then 
        usage 
    fi 
else 



Evaluation of Agent Teamwork                             Page 24 of 28                                               Solomon Lane 

    usage 
fi 
 
# start the job rsl file 
echo '+' > $$.rsl 
 
TOTAL_COUNT=0 
SUBJOB=0 
# shift off the cluster count 
shift 
for arg in "$@"; do 
    CLUSTER=`echo $arg |awk ‐F ',' '{print $1}'` 
    PCOUNT=`echo $arg |awk ‐F ',' '{print $2}'` 
    TOTAL_COUNT=$(($TOTAL_COUNT+PCOUNT)) 
    write_rsl_block $CLUSTER $PCOUNT $SUBJOB 
    SUBJOB=$(($SUBJOB+1)) 
done 
 
START=`date +%D" "%T` 
globusrun ‐f $$.rsl 1>&2 
 
#‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
# Mad log parsing 
#‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
# In a multicluster job, we want to parse the PBS logs for the cluster with 
# rank0.  That way we get the full run time because rank0 exits after recieving 
# data from all other ranks.  Rank0 is always in the first cluster in the rsl 
# 
# Gram should be configured on the first cluster to not delete the log so it 
# can be parsed to obtain the PBS jobid. 
# globus/etc/globus‐job‐manager.conf:         ‐save‐logfile always 
#                                             ‐save‐logfile on_error 
# 
# Becuase we use nfs, the gram logs for both clusters will exist.  Wait until 
# only one log remains before parsing 
sleep 15 
logs=`ls |grep gram_job_mgr_|wc ‐l` 
while [ $logs ‐eq 2 ]; do 
    logs=`ls |grep gram_job_mgr_|wc ‐l` 
done 
GRAM_LOG=`ls gram_job_mgr_*` 
PBS_SUB_MARKER="JM_SCRIPT: job submission successful, setting state to PENDING" 
PBS_SUB_TIME=`grep "$PBS_SUB_MARKER"  $GRAM_LOG | awk '{print $4}'` 
 
JOBID_MARKER="GRAM_SCRIPT_JOB_ID =" 
JOBID=`grep "$JOBID_MARKER" $GRAM_LOG  |awk '{print $9}'` 
 
PBS_LOG_DATE=`date +%Y%m%d` 
PBS_NQ_MARKER="PBS_Server;Job;$JOBID;enqueuing into batch" 
PBS_START=`grep "$PBS_NQ_MARKER" /usr/local/openpbs/spool/server_logs/$PBS_LOG_DATE |awk ‐F ';' 
'{print $1}'` 
PBS_DQ_MARKER="PBS_Server;Job;$JOBID;dequeuing from batch" 
PBS_STOP=`grep "$PBS_DQ_MARKER" /usr/local/openpbs/spool/server_logs/$PBS_LOG_DATE |awk ‐F ';' 
'{print $1}'` 
 
rm gram_job_mgr_* 
#‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
 
START_T=`date ‐d "$START" +%s` 
PBS_SUB_TIME_T=`date ‐d "$PBS_SUB_TIME"  +%s` 
PBS_START_T=`date ‐d "$PBS_START"  +%s` 
PBS_STOP_T=`date ‐d "$PBS_STOP"  +%s` 
 
TIME=$(($PBS_STOP_T‐$START_T)) 
echo ‐e "$TOTAL_COUNT \t$TIME \tSTART:$START \tPBS_SUB:$PBS_SUB_TIME \tPBS_START:$PBS_START 
\tPBS_STOP:$PBS_STOP" 
rm $$.rsl 
 



Evaluation of Agent Teamwork                             Page 25 of 28                                               Solomon Lane 

Appendix F – runWave2D.sh shell script 
#!/bin/bash 
 
# breadth first 
# while i <= hostcount 
# build hoststring, mnode2_ 
# build hoststring, uw1‐320‐00_uw1‐320‐01 
 
. /etc/rc.d/init.d/functions 
 
# globals 
CL_medusa="CL_medusa" 
CL_priam="CL_priam" 
COMMANDER="localhost" 
SENTINEL="perseus" 
BOOKKEEPER="phoebe" 
 
# MD default params 
runCycles="1000"    # the of computation cycles to run for.  0 == forever 
N="100"             # simulation_size^‐2 
xmin="40" 
xmax="60" 
ymin="40" 
ymax="60" 
 
#‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
# FUNCTIONS 
#‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
function usage { 
    cat<<HERE 
 
usage: $0 ‐t [b|d|u] ‐n #nodes Optional_UPargs 
 ex: $0 b 10 
 
 ‐t   type of distribution: 
      b(breath first) uses medusa and uw1‐320 equally 
      d(depth first) uses up medusa first thereafter uw1‐320 
      u(depth first) uses up uw1‐320 first thereafter medusa 
 
 ‐n   the number of nodes to be used for the execution 
 
 Optional_UPargs (user program arguments) 
 ‐r     the of computation cycles to run for.  0 == forever 
 ‐N     the simulation size: N*N. default=100*100 
 ‐xmin  cube size limit 
 ‐xmax  cube size limit 
 ‐ymin  cube size limit 
 ‐ymax  cube size limit 
 
Where cube size defaults to xmin=ymin=40, xmax=ymax=60 
 
HERE 
    exit 
} 
 
function runningUWPlace { 
    status=`ssh ‐o BatchMode=yes ‐o StrictHostKeyChecking=no $1 'source 
/etc/rc.d/init.d/functions;status runUWPlace.sh > /dev/null 2>&1;echo $?'` 
    if [ $? ‐ne 0 ]; then 
        return 1 
    fi 
    if [ $status ‐ne 0 ]; then 
        ssh ‐o BatchMode=yes ‐o StrictHostKeyChecking=no $1 'cd ~solomonl/MA/agents ; 
~solomonl/MA/agents/runUWPlace.sh > ~solomonl/`hostname`‐UWPlace.log 2>&1 &' 
    else 
        ssh ‐o BatchMode=yes ‐o StrictHostKeyChecking=no $1 'killall ‐g runUWPlace.sh' 



Evaluation of Agent Teamwork                             Page 26 of 28                                               Solomon Lane 

        sleep 8 
        ssh ‐o BatchMode=yes ‐o StrictHostKeyChecking=no $1 'cd ~solomonl/MA/agents ; 
~solomonl/MA/agents/runUWPlace.sh > ~solomonl/`hostname`‐UWPlace.log 2>&1 &' 
    fi 
    status=`ssh ‐o BatchMode=yes ‐o StrictHostKeyChecking=no $1 'source 
/etc/rc.d/init.d/functions;status runUWPlace.sh > /dev/null 2>&1;echo $?'` 
    return $status 
} 
 
function medusaCluster { 
    echo "Initializing Medusa Cluster" 
    currentNode=$1 
    nodeCount=$2 
    i=0 
    while [ $currentNode ‐lt $nodeCount ];do 
        if [ $i ‐gt 31 ]; then 
            echo "Failed to run UWPlace on enough nodes in the medusa cluster" 
            exit 1 
        fi 
 
        runningUWPlace mnode$i 
        if [ $? ‐eq 0 ]; then 
            CL_medusa=$CL_medusa"_mnode$i" 
            currentNode=$(($currentNode+1)) 
        fi 
        i=$(($i+1)) 
    done 
} 
 
function priamCluster { 
    echo "Initializing Priam Cluster" 
    currentNode=$1 
    nodeCount=$2 
    i=0 
 
    # init the cluster head 
    runningUWPlace priam 
 
    while [ $currentNode ‐lt $nodeCount ];do 
        if [ $i ‐lt 10 ];then 
            node="uw1‐320‐0$i" 
        else 
            node="uw1‐320‐$i" 
        fi 
 
        runningUWPlace $node 
        if [ $? ‐eq 0 ]; then 
            CL_priam=$CL_priam"_$node" 
            currentNode=$(($currentNode+1)) 
        fi 
        i=$(($i+1)) 
 
        # exit if we can't find enough nodes runningUWPlace 
        if [ $i ‐gt 31 ]; then 
            echo "Failed to run UWPlace on enough nodes in the priam cluster" 
            exit 1 
        fi 
    done 
} 
 
function breadthFirst { 
    # $1 == node count 
    count=`expr $1 / 2` 
    if [ `expr $1 % 2` ‐eq 0 ]; then 
        medusaCluster 0 $count 
        priamCluster 0 $count 
    else 
        medusaCluster 0 `expr $count + 1` 
        priamCluster 0 $count 



Evaluation of Agent Teamwork                             Page 27 of 28                                               Solomon Lane 

    fi 
} 
 
#‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
# MAIN 
#‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
 
if [ $# ‐lt 4 ];then 
    usage 
fi 
 
# process args 
for ARG in $*; do 
case "$ARG" in 
    ‐t) 
        shift 
        type=$1 
        ;; 
    ‐n) 
        shift 
        nodes=$1 
        ;; 
    ‐r) 
        shift 
        runCycles=$1 
        ;; 
    ‐N) 
        shift 
        N=$1 
        ;; 
    ‐xmin) 
        shift 
        xmin=$1 
        ;; 
    ‐xmax) 
        shift 
        xmax=$1 
        ;; 
    ‐ymin) 
        shift 
        ymin=$1 
        ;; 
    ‐ymax) 
        shift 
        ymax=$1 
        ;; 
     *) 
        shift 
        ;; 
esac 
done 
 
echo "type = " $type " #nodes = " $nodes 
 
 
# initialize the AgentTeamwork team 
echo "Initializing the Commander: $COMMANDER" 
runningUWPlace $COMMANDER 
if [ $? ‐ne 0 ];then 
  echo "Failed to start UWPlace on Commander: $COMMANDER" 
  exit 1; 
fi 
 
echo "Initializing the Bookkeeper: $BOOKKEEPER" 
runningUWPlace $BOOKKEEPER 
if [ $? ‐ne 0 ];then 
  echo "Failed to start UWPlace on Bookkeeper: $BOOKKEEPER" 
  exit 1; 
fi 



Evaluation of Agent Teamwork                             Page 28 of 28                                               Solomon Lane 

 
echo "Initializing the Sentinel: $SENTINEL" 
runningUWPlace $SENTINEL 
if [ $? ‐ne 0 ];then 
  echo "Failed to start UWPlace on Sentinel: $SENTINEL" 
  exit 1; 
fi 
 
# prepare run commands 
UPARGS="runCycles_"$runCycles"_simSize_"$N"_xmin_"$xmin"_xmax_"$xmax"_ymin_"$ymin"_ymax_"$ymax 
inject="java ‐cp UWAgent.jar:GridTcp.jar:MPJ.jar:. UWInject ‐p 20000 $COMMANDER CommanderAgent 
S_$SENTINEL" 
userprog="B_$BOOKKEEPER ‐m 4 ‐j agents.jar,GridTcp.jar,MPJ.jar ‐s Wave2D U_Wave2D_dummy_2000_‐
np_"$nodes"_"$UPARGS" 
C_Wave2D_Communicator_DataLoc_Datatype_ExecStreamReaderThread_GridComm_IRecvThread_ISendThread_Jav
aComm_MPJBAndOp_MPJBool_MPJBOrOp_MPJBXorOp_MPJByte_MPJChar_MPJ_MPJDouble_MPJFloat_MPJInt_MPJLAndOp
_MPJLong_MPJLOrOp_MPJLXorOp_MPJMaxLocOp_MPJMaxOp_MPJMessage_MPJMinLocOp_MPJMinOp_MPJObject_MPJProd
Op_mpjrun_MPJShort_MPJSumOp_Op_Request_Status" 
 
# execute the appropriate cluster configuration 
case "$type" in 
    b) 
        echo "type: breadth first" 
        breadthFirst $nodes 
        echo "Injecting Program" 
        $inject $CL_medusa $CL_priam $userprog 
        ;; 
    d) 
        echo "type: depth first (medusa)" 
        if [ $nodes ‐lt 33 ]; then 
            medusaCluster 0 $nodes 
            echo "Injecting Program" 
            $inject $CL_medusa $userprog 
        else 
            medusaCluster 0 32 
            priamCluster 32 $nodes 
            echo "Injecting Program" 
            $inject $CL_medusa $CL_priam $userprog 
        fi 
        ;; 
    u) 
        echo "type: depth first (uw1‐320)" 
        if [ $nodes ‐lt 33 ]; then 
            priamCluster 0 $nodes 
            echo "Injecting Program" 
            $inject $CL_priam $userprog 
        else 
            priamCluster 0 32 
            medusaCluster 32 $nodes 
            echo "Injecting Program" 
            $inject $CL_priam $CL_medusa $userprog 
        fi 
        ;; 
     *) 
        usage 
        ;; 
esac 


