CSS497 Undergraduate
Research

Performance Evaluation of Agent Teamwork

3/31/2008
CSS497 Final Report
Timothy Chuang

Contents

INEFOAUCTION <.ttt ettt et s e st st e et e bt e sbeesmeesaeesaneean saeesmeesnnenns 4
[o [=To A @Y =T VT Y PPNt 4
Reference Platform INStallationoooeei oot 5
CONAOT AN PVIM ...ttt ettt ettt e st e sa e s b e e e sabe e sbe e e sabeesbeeennbeesabeeeares 5
Implmentations of parallel aQPPlCAtIONScooviiiiiiiiiii e e 5
CONAOT = CHH/PVIM ettt ettt e et e ettt e eeeeesesas ettt eeessessssasaaaaeeeesssssesssaaaeeeeesssnenns 5
(e Lo o TU T oy A1, |] [O RTR 5
Agent TeamMWOIK — JAVA/MPI-JAVAcocriiiieeeceeee ettt ettt e v etaeeeareesreeesaeeesneeens 6
Y D\ KU1 L] o] L[Y o USSP 6
GIODBUS ettt b e bt s a e st ettt e b e e bt e sh e e sat e et e et e e beenbee s sabeenbeebean 6
AZENT TEAMWOIK w1veeiiiiiitieeiiieecette e sttt sttt e e e st be e e e ssteee e s abteeessabaeeesaaseeeeeaastaaessnssanesssnsesesnnnes 6
1Y ETaTe 11| o] o] A OO PRRPROUPPRPPPON 6
GIOBUS .ttt ettt e b e e et e bt e e s a bt e s e bt e e s a bt e e bt e e e beeebeeeabeeebe shreeebeeenne 6
ABENT TEAMWOIK ..eineiieiiieeiiiieetee ettt ettt ettt ste e ettt e st e e sabte e sttt e sabaessabeesabeessateesabeesbeeenabeesbeeanares 6
WAVE2D ...ttt a e e s e aae e e e enns 6
GIODBUS ettt e b e h e bt s a e sttt e b e e h e e e bt e sh b e eat e bt e bt et e e nbee s sabeenbeebean 6
AZENT TRAMWOIK .1eeeeiiiiiieeeiieeeeeitte e e ertee e e eetbeeeestbbeeeeseabeeeeeestsaeesaataaeeessseseeassteseesassaseessnssesesnnses 7
(DI] o T =T [G =Y o B PRSP 7
GIOBUS .ttt et e b et e e a e s bt e e sa bt e s bt e e s a bt e e bt e e e be e e bt e e nbeeeabe shbeesbaeenne 7
AZENT TEAMWOIK .1eeiiiitiitiieiiieeiritte e sttt e e ettt e e esb bt e e e ssate e e e s sabtaeessabbeeesssaeeeeasstaaessnsbaaessssssenssnnses 7
GIODUS STATUS .ttt ettt e st s et e s bt e e st e e s bt e e sabeesabeeeeabeesabaeenas sbaeen 7
[Tag]oTola = Yo} DT =Tt foT 4 [=E SO PRSP 7
Performance EValUGtioNcooiiiiiiiieeeee ettt s 8
Framework EVAlUGLIONoc.eoiiiiiiieeee ettt sttt aeas 8
MatriX MUIIPIICAtION. ... i e e e s e e s ssabe e e e s btaeessnanaeas 9
WWAVE2D ...ttt ettt ettt e e et e e s et e e s bt e e e e et e e s e ba et e e b bae e e teeesannaeas 9
IMANAEIDIOT .ttt ettt e s bt e e s b e e saee e sabee s saeeesan sabeeeas 11
(D113 a1 TUNA=Te I] T T PRSPPI 11
(6e] 0ol [V oo RSO PTPPU PP PP PP PP 12

FUTUIE WOTK ettt e e s e e e e e e e e e e eeaeaaaeessaeeseeeseeasesaraeaes 12

RAW Data ceeeiiiiiiiieeteee e s e s st e e e e e e e s seeeeeeees 13
Y T Te [=11 o] o | AR O P TP PO PUSPUPR PRI 13
(D113 a1 TULA=Te I] T T SRRSO PPTOTPP 13
WAVE2D ...ttt s e e se e s naes 13
Y = D\ IV L] o] o= Y i o] s PRSPPI 14

Introduction

| spent the last two quarters working as an undergraduate research assistant for Professor
Munehiro Fukuda on the on-going enhancement and evaluation of Agent Teamwork project.
This final report documents the work | completed, the process of framework installation and
debugging, my experience and lessons | learned.

Agent Teamwork is a high through-put grid computing middleware system that employs
mobile agents for job dispatching. To support the on-going enhancement project of Agent
Teamwork, my task was to evaluate performance of Agent Teamwork against two
contemporary alternatives.

Although there is no single framework that provides an exact match of Agent Teamwork'’s
functionalities, Condor is a good target platform due to its fault-tolerant features. Globus, on
the other hand, provides no fault-tolerance features, but serves as a good performance
benchmark due to its popularity.

For the purpose of performance evaluation, | built Condor reference platform on the machines
in Professor’s Distributed Systems Laboratory (DSL), and maintained Globus reference
platform which was installed by a former student and attempted to conduct performance
evaluation.

However, certain problems arose during the project and as a result, Condor was dropped from
the project, and Globus performance evaluation has not been completed. | will go into detail
on the problems | encountered.

I will begin by providing a brief overview of the project and then review the installation of the
reference platform and parallel applications used in the performance evaluation.

Project Overview

This section provides an overview of the project
O Establish reference platform
B Condor Installation
B PVM installation
O Implement parallel applications
Several parallel applications were implemented on three different frameworks for the
purpose of performance evaluation. The following applications were coded in
C++/PVM, C++/MPICH and Java/MPlJava.
B Matrix Multiplication
B Wave2D Simulation
B Mandelbrot Set Simulation
Distributed Grep
O Check previous Globus installation status
O Conduct performance evaluation

Reference Platform Installation

The installation of Condor and PVM has been covered in detail in my intermediate report.
Therefore, | will simply summarize the process in this section.

Condor and PVM

The installation of Condor was met with many challenges, both technical and logistical.
However, after working with UWB's Linux system adminstrators, Mrs. Meryll Larkin and Mr.
David Grimmer, | was able to get Condor to run on all machines in the Distrubted Systems
Laboratory (DSL). Due to version incompatibility, current Condor installation only runs on
machines in DSL.

The installation of PVM went rather smoothly, with some minor issues with connection
between hosts. After working with Mrs. Larkin to determine the cause, it appears that PVM
requires UDP port to be open. Currently, PVM runs on all machines in DSL (Medusa and
mnodes, Priam, Perseus, Tarvos, and lo) and all machines in the UW1-320-lab.

Implmentations of parallel applications

In order to evaluate performance, | implemented and ported several parallel applications to
different frameworks and languages. | attempted to preserve the basic syntax of original java
applications in order to create a fair environment for performance evaluation. This section
contains implementation detail of different versions of parallel applications used in
performance evaluation. Since the PVM versions of those parallel applications have already
been covered in detail in my intermediate report, the PVM section will only provide a summary
of those applications.

Condor - C++/PVM

The original applications, Matrix Multiplication, Mandelbrot and Wave2D, were written in Java
using MPI-java framework. My first task was to port those applications to C++ and PVM. The
basic syntax was preserved with minor changes due to the fundamental differences between
Java /C++ and MPI/PVM. | also implemented a very simple distributed grep application to
measure the file application performance.

Globus - C++/MPICH

In order to run the same applications on Globus, | had to port the existing applications over to
C++/MPICH. The process involved changing the C++ code | had written with PVM framework
to MPICH framework.

Agent Teamwork - Java/MPI-Java

The Agent Teamwork versions of those parallel applications were modified to take advantage
of Agent Teamwork’s fault tolerance features that include check-pointing and recovery in the
event of a server crash.

Matrix Multiplication

Globus

There are several differences between MPI-java and MPICH that | had to overcome during the
porting process. MPICH has the same syntax as PVM for send and receive. Copying of an array
cannot be done by appointing an offset in the send and receive functions. The same work
around was applied in C++/MPICH version by creating a temporary array that holds the
elements that are to be sent to slave nodes.

Agent Teamwork

This version of Matrix Multiplication uses the exact same syntax of the original Java version.
The program was modified to take advantage of Agent Teamwork’s fault tolerance features.
The program check-points itself once every 1,000 iterations within the main computation loop.

Mandelbrot

Globus

Due to the fact that C++ does not provide a similar API for image manipulation, such
functionality was dropped from this version of Mandelbrot. Array dimensions are hard-coded
and require further modification if the user wishes to increase the program’s capacity.

Agent Teamwork

Buffered Image class is not a serialization class. In order to incorporate Agent Teamwork’s
fault tolerance features, all objects within the class must be serializable. As a result, the
functionality for displaying a jpeg image as output was disabled. The program was then
modified to incoporate Agent Teamwork’s checkpointing and resumption features. The main
computation loop check-points itself once every 1,000 iterations.

Wave2D

Globus

Wave2D also utilizes Java’s abstract windowing toolkit class to create a real time graphical
display of the result. This functionality was dropped from this version. Array dimensions are

6

hard-coded and require further modification if the user wishes to increase the program’s
capacity.

Agent Teamwork

The syntax of this version remains the same as the original Java/MPI-java version. The real
time graphical display functionality was disabled for performance evaluation purpose.

Distributed Grep

Globus

There is virtually no difference between this version of distributed grep and C++/PVM version.

Agent Teamwork

The basic syntax of this version remains the same as its C++ counterpart, with the exception of
Agent Teamwork’s own fault-tolerance features.

Globus Status

As of 3/26/08, | verified that Globus can be run as globus account user. Due to logistical
challenges the installation imposed, it was difficult to check system status. The help of a root
account user was required in order to create valid certificates and run several root-level
binaries that came with the installation of Globus. With the help of Mrs. Larkin, the files that
required root-access were modified so that globus account user can execute those binaries
without root-access. A working certificate has also been signed by Mrs. Larkin and Globus
installation should be in good condition and ready for performance evaluation.

This section documents details of Globus platform.

Important Directories

Mpich — contains mpich-g2 binaries and examples
Globus — this is a symbolic link to globus actual installation location. All system level binaries
can be found inside.

| obtained most of Globus job execution details from http://www3.niu.edu/mpi/ which
contains useful documentation on MPICH-G2.

Performance Evaluation

About half way into the project, | learned from the Condor team that PVM is no longer
supported by Condor and there was no reliable way to run PVM parallel application using
Condor. Therefore, Condor was dropped from the project. Globus test required the help of a
root-account user and | was not able to perform full evaluation in time for this report. Asa
result, this section focuses mainly on the evaluation of Agent Teamwork’s fault-tolerance
performance.

Framework Evaluation

To get a good understanding of the impact of various APl on the performance evaluation,
performace tests were conducted using the Matrix Multiplcation program.

APl Comparison

140

. 120
g 100 //\\
S 80 +—MPICH
@ / \
ﬁ ?18 / — _w —— VIPIJAVA
= 20 W*" e D/ [\

0

2 8 16 24 32

The result showed that all three APIs have comparable performance. PVM exihibited
abnormal behavior with 24 copmuting nodes, but the rest of the results is very similar to the
other two APIs.

Matrix Multiplication

Matrix size = 1000x1000
It is really difficult to go any higher than 1,000,000 elements, since the master program
instantiates three 1,000,000 element arrays.

Matrix Multiplication

4000
3500
3000
2500
2000
1500
1000

500

=—Total

Time{seconds)

=r=Program

Wave2D
Size = 1500, time = 1500, interval = 500,000

Time({seconds)

600

500

400

300

200

100

Wave2D Simulation

16

—l—Total

=se=Program

10

Mandelbrot
Arguments =0, 0, 0, xRes 1000, yRes 1000, maxIteration 150,000

Time(seconds)

2000
1800
1600
1400
1200
1000
800
600
400
200

Mandelbrot

—B—Total
—dr=Program

Distributed Grep
Textfile size = 546, 319, 436 bytes

Time(seconds)

800

700

600

500

400

300

200

100

Distributed Grep

—l=Total
=r=Program

11

Conclusion

My goal was to evaluate Agent Teamwork’s performance against contemporary alternatives
such as Condor and Globus. However, due to unforeseen circumstances and difficulties,
Condor was dropped from the project, and Globus execution was delayed due to
complications in the way Globus was set up — most accesses require root-account.

My work showed that Agent Teamwork provides a fully fault-tolerant execution environment.
The performance hit from check-pointing is within tolerable margin, usually 10%, and it is up to
the programmer to decide how fault-tolerant his/her application is to be, by deciding how
often the program’s execution state should be backed up, which in turn, slightly affects the
performance of the application.

Future Work

Performance evaluation will be continued to take Globus performance into account to give a
better sense of the performance of Agent Teamwork’s job-dispatch, resumption and
checkpointing features. | hope to conduct performance evaluation as time allows, and include
the result as appendix to this report in the future.

12

This section contains raw data obtained during performance evaluation process. Certain cells
are marked as NA due to the performance suffering from saturation and are omitted.

Mandelbrot
Time (seconds)
run 1 run 2 run 3
Nodett Total Program Total Program Total Program
1 NA NA NA NA NA NA
2 1875.123 1754.323 1820.84 1753.88 1901.002 1825.403
4 998.253 964.354 1020.45 940.644 1012.543 966. 043
8 635.506 549.567 644.555 551.35 639.08 548.094
16 387.761 341.523 400.008 360.221 392.943 349. 01
24 336.593 297.512 330.001 300.422 331.049 299.403
32 334.504 296.5 315.405 281.401 320.455 282.111
Distributed Grep
Time (seconds)
run 1 run 2 run 3
Node#t Total Program Total Program Total Program
1 NA NA NA NA NA NA

2 715.879 705.893 720. 889 711.98 717.443 706. 11
4 366.765 357.499 370.004 366.57 381.39 370.001
8 220.245 179.837 215.034 174.555 218.333 176. 451
16 142.133 115.86 141.033 117.809 144.693 116.913
24 152.241 123.067 149.894 120.987 151.089 121.78
32 200. 229 162.6 199.23 160.331 201.478 163. 004

Wave2D
Time (seconds)
run 1 run 2 run 3
Node# Total Program Total Program Total Program

1 443.914 267.63 534.916 267.211 540.144 268. 001
2 270.923 148.483 265.524 147.099 266.041 148. 041
4 180. 211 99.25 180.038 97.145 180.016 98. 91
8 146. 567 69.262 129.467 13.031 127.885 66. 044
16 116. 812 73.021 120.058 66.053 119.011 64. 476
24 NA NA NA NA NA NA

32 NA NA NA NA NA NA

13

Matrix Multiplication

Nodett
1
2
4
8
16
24
32

run 1

Total
356. 338
689. 598
1041. 735
1397. 822
3711.09
NA
NA

Program
318. 489
615. 658
933. 63
1251.16
3462. 45
NA
NA

Time (seconds)

run 2

Total Program
361.774 321.889
690.002 617.044
1030.038 921. 981
1395.085 1254.094
3701.001 3504.54

NA NA

NA NA

run 3

Total Program
360.399 322.884
689.439 614.966
1049. 455 930. 54
1401.043 1260. 45
3705. 049 3498. 847

NA NA

NA NA

14

