
Table of Contents
Introduction	...	1	

Section	1	...	1	

Goals	...	2	

Integration	..	2	

Debug	Data	Types	..	3	

User	Defined	Port	...	3	

Progress	..	3	

Integration	..	3	

Debug	Data	Types	..	4	

Issues	..	4	

Section	2	...	4	

Enabling	Debugging	Features	...	4	

Debug	interface	details	..	5	

debugInit()	..	5	

debugUpdate()	...	6	

The	GUI	...	8	

The	Interface	..	8	

Implementation	Details	..	12	

Work	to	be	completed	...	15	

C++	connection	...	Error!	Bookmark	not	defined.	

Grid	Resizing	...	15	

References	...	Error!	Bookmark	not	defined.	

	

Introduction
This	document	serves	to	describe	my	work	on	the	MASS	debugger	and	accompanying	GUI.	I	have	
separated	this	writing	into	two	main	sections.	The	first	describes	my	work	in	integrating	the	existing	
debugger,	written	by	Hongbin	Li,	into	the	MASS	library.	This	section	will	describe	in	detail	why	and	how	
this	was	done,	as	well	as	the	issues	I	encountered	in	doing	so.	I	was	ultimately	unable	to	complete	the	
integration	due	to	these	issues,	and	instead	created	my	own	implementation	of	a	debugger	and	GUI.	
The	second	section	fully	details	this	implementation.	

Section 1
This	sections	describes	my	work	in	integrating	Hongbin’s	debugger	into	the	MASS	library.	

Goals
The	following	outlines	the	goals	that	I	attempted	to	address.	

Integration
One	of	the	main	design	goals	of	the	MASS	library	is	to	abstract	the	complexities	of	parallel	programming	
and	to	minimize	the	user’s	effort	in	writing	efficient	spatial	simulations.	Prior	to	integrating	the	
debugger	into	the	MASS	library,	the	user	was	required	to	have	detailed	knowledge	of	the	library’s	
internals.	This	was	necessary	so	that	the	users	program	could	synchronize	itself	with	the	MASS	library	
and	provide	data	from	the	users	program	to	the	MASS	library.	This	placed	much	of	the	burden	of	
debugging	in	the	hands	of	the	user.	Highlighted	in	figure	1	is	the	code	users	would	be	required	to	add	in	
order	to	use	the	debugger.	

	

Figure	1	

In	addition	to	the	code	shown	in	figure	1,	the	user	was	required	to	place	a	file,	Debugger.java,	in	the	
same	directory	as	their	main	program,	exposing	even	more	aspects	of	the	MASS	library.		

Debug Data Types
Another	goal,	pertaining	to	the	way	in	which	a	user	is	able	to	send	data	from	their	program	to	the	GUI,	
was	set	in	order	to	allow	users	to	choose	the	type	of	data	sent.	Initially	the	user	was	required	to	
override	2	methods	in	Agents.java	and	Places.java	that	return	a	Double	to	be	displayed	in	the	GUI.	This	
is	shown	in	figure	2.		

	

Figure	2	

This	is	a	severely	limited	approach	that	assumes	the	user	data	has,	or	can	be	converted	to,	the	Double	
data	type.	In	addition	to	these	two	methods,	one	for	Agents,	and	one	for	places,	there	are	two	more	
methods	to	be	overridden	that	set	the	debug	data	for	Agents	and	Places	that	also	assume	the	Double	
data	type.	

User Defined Port
Another,	more	trivial	goal	was	to	allow	the	user	to	choose	which	port	to	use	when	connecting	their	
MASS	program	to	the	GUI.	Initially	this	was	set	in	Debugger.java	to	a	fixed	port.	If	this	port	ever	fails	or	is	
blocked	by	other	use,	the	user	must	wait	for	this	to	be	resolved	before	continuing	the	debugging	
process.	

Progress
The	following	describes	my	solutions	to	each	of	the	goals	outlines	in	the	Goals	subsection.	

Integration
The	first	steps	were	to	integrate	the	as	much	of	the	debugging	code	into	the	MASS	library.	This	includes	
the	code	written	by	users	in	their	main	method,	as	well	as	the	Debugger.java	that	currently	resides	in	
the	user’s	directory.	My	solution	was	to	separate	this	code	into	three	methods	that	reside	in	MASS.java.	
One	to	initialize	the	debugger,	one	to	synchronize	the	users	program	with	the	GUI,	and	the	last	to	send	
the	user’s	data	to	the	GUI.	The	resulting	integration	allows	the	users	main	program	to	be	simplified	from	
the	code	shown	in	figure	1,	to	the	code	shown	in	figure	3.	

	

Figure	3	

Highlighted	in	figure	3	shows	the	three	MASS	method	calls	required	to	debug	MASS	applications.	This	
new	implementation	hides	all	implementation	and	eases	the	user’s	effort	in	debugging.	The	port	
number	is	specified	in	the	MASS.debugInit()	call,	resolving	the	issue	of	allowing	the	user	to	choose	the	
port	of	communication	as	well.	The	first	two	parameters	of	the	MASS.debugInit()	refer	to	the	Agents	
and	Places	handles	respectively.	Note	that	in	this	program,	there	are	no	agents,	and	thus	a	handle	of	0	is	
passed.	

Debug Data Types
In	an	attempt	to	resolve	the	issue	of	the	GUI	only	accepting	a	Double	data	type	from	the	user,	as	shown	
in	figure	2,	I	changed	the	return	type	to	Number.	Number	is	a	java	abstract	class	in	which	Double,	Float,	
Long,	Integer,	Byte	etc.,	all	extend.	This	allows	the	user	to	choose	one	of	many	types	that	best	fit	their	
implementation.	The	GUI	is	then	able	to	use	reflection	to	display	the	user’s	data	independently	of	the	
type	they	chose	to	use	so	long	as	it	extends	Number.	Note	that	this	will	also	allow	a	user	to	create	their	
own	class	that	extends	Number	in	the	case	that	none	of	the	existing	java	Number	subclasses	will	do.	

Issues
In	testing	the	debugger	with	user	programs	in	which	Agents	are	implemented,	the	debugger	would	crash	
in	attempting	to	retrieve	its	debug	data.	I	attempted	to	resolve	this	issue	and	was	unable	to	do	so	due	to	
lack	of	documentation	in	Debugger.java	and	lack	of	communication	with	its	author.	My	solution	was	to	
re-write	the	debugger	and	GUI	myself	which	is	describes	in	Section	2.	Note	that	all	debugging	code	
relating	to	this	section	still	exists	in	the	MASS	library.	

Section 2
This	section	details	my	own	implementation	of	debugging	utilities	and	accompanying	GUI	

Enabling Debugging Features
Similar	to	my	integration	of	the	debugging	code	from	figure	1	to	figure	3,	the	newest	integration	is	
shown	in	figure	4.	

	

Figure	4	

The	only	difference	in	MASS	interface	is	the	removal	of	the	MASS.debugSync()	method.	Java	
synchronization	is	not	necessary	in	my	implementation.	This	allows	the	user	to	write	one	less	line	of	
code	in	order	to	use	the	debugging	features	of	MASS.	The	port	number	is	still	specified	by	the	user	and	
the	debugging	data	type	is	still	specified	in	the	overridden	methods	of	Agents	and	Places.	

Debug interface details
The	users	debugging	interface	consists	of	the	two	methods	shown	in	figure	4.	The	details	of	each	of	each	
are	described	in	the	following	to	subsections.	

debugInit()
Intuitively,	this	method	is	designed	to	initialize	the	debugging	capabilities	of	the	MASS	library.	First	a	
connection	is	attempted	to	be	made	with	the	GUI.	This	is	a	blocking	procedure,	meaning	the	users	
program	will	halt	until	a	connection	is	made	to	the	GUI.	This	allows	the	user	to	execute	their	program	
and	the	GUI	in	any	order,	where	as	previously	the	user	was	required	to	start	their	program	before	
execution	of	the	GUI.	After	a	connection	is	made	to	the	GUI,	data	is	gathered	into	an	InitialData	object	
that	is	then	sent	to	the	GUI.	This	initial	data	includes	the	following:	

• The	class	names	of	the	user	defined	Agent	and	Place.	
• Booleans	representing	whether	or	not	the	user	has	overridden	the	get	and	set	debug	data	

methods.	
• The	data	type	of	the	overloaded	get	and	set	debug	data	methods	in	each,	Agent	and	Place,	

objects.	
• The	number	of	Places	and	Agents.	
• The	dimensions	of	the	Places	grid.	

The	initial	data	that	is	sent	can	be	expanded	by	adding	data	members	to	the	InitialData	class.	Once	the	
GUI	received	this	InitialData,	it	displays	the	user	relevant	data	such	as	Agent/Place	names	and	sizes.	The	
other	data	is	saved	and	accessed	when	needed,	such	as	the	user	defined	data	types,	which	are	needed	
when	sending	user	injected	data	back	to	the	Agents	and	Places.	

debugUpdate()
This	method	is	used	to	transfer	data	between	the	users	program	and	the	GUI.	The	type	of	data	sent	is	
dependent	upon	the	user’s	action	in	the	GUI.	For	example	if	the	user	presses	the	“next”	button,	a	packet	
of	data	pertaining	to	current	Agents	and	Places	state	is	sent	to	the	GUI	to	be	displayed	in	the	
visualization	grid.	A	complete	description	of	each	type	of	transfer	than	can	be	completed	by	calling	the	
debugUpdate()	method	is	as	follows:	

1. As	stated	above,	if	the	user	has	pressed	the	“next”	button	or	the	“play”	button,	data	is	gathered	
pertaining	to	the	current	state	of	Agents	and	Places	into	an	UpdatePackage	object.	This	object	
contains	the	following	member	fields	which	may	be	extended	by	adding	members	to	this	class:	

• An	array	of	PlaceData	objects,	each	of	which	contain:	
a) This	places	data,	as	defined	by	the	user	overridden	getDebugData().	
b) The	index	in	which	this	place	exists	in	the	array	of	Places	held	by	the	MASS	

library.	
c) A	Boolean	representing	whether	this	place	contains	agents.	
d) An	array	of	AgentData	objects,	each	of	which	contain:	

i. This	agents	data,	as	defined	by	the	user	overridden	getDebugData().	
ii. This	agent’s	index	corresponding	to	the	index	of	the	place	in	which	it	

resides.	
iii. This	agent’s	id	number	as	assigned	by	the	MASS	library.	

2. If	the	user	injects	Place	or	Agent	data	using	the	GUI,	an	AgentData	or	PlaceData	object	is	sent	
back	to	the	MASS	library.	The	contents	of	each	are	described	above.	This	data	is	then	set	using	
the	Agents/Places	setDebugData()	method.	

3. When	the	user	chooses	to	end	the	connection	between	their	program	and	the	GUI	or	when	the	
user	closes	the	application	a	Disconnection	object	is	sent	from	the	GUI	to	MASS	in	order	to	do	
clean	up	(closing	sockets	and	streams	etc.).	This	is	not	yet	implemented	at	this	time.	When	it	is	a	
complete	description	of	this	object	and	its	contents	will	be	shown	here.	

The	following	is	a	diagram	showing	the	above	inheritance	hierarchy:	

	

Figure	5	

MASSPacket	is	the	top	level	abstract	class	in	this	hierarchy	and	exists	as	a	wrapper	class	so	that	all	
subclasses	may	be	sent	via	java	Socket	to	and	from	the	users	program	and	the	GUI.	MASSPacket	also	
ensures	that	all	subclasses	are	serializable.	Figures	6	and	7	show	an	example	of	two	different	types	of	
data	transfer	between	the	users	program	and	GUI	that	utilizes	this	inheritance	hierarchy.	

	

Figure	6	

Figure	6	shows	the	data	transfer	that	occurs	when	the	user	has	used	the	GUI	to	inject	new	Place	data	
into	the	users	program	using	the	“injectPlace”	button.	First	a	PlaceData	object	is	constructed	with	the	
new	data	to	be	injected	and	the	index	in	which	this	place	exists	within	the	Places	array	held	by	the	MASS	
library.	A	request	to	send	the	data	to	MASS	is	made	with	the	Connection	class’	makeRequest()	method.	
This	method	takes	a	MASSRequest	object	containing	an	enum	representing	the	type	of	request,	and	the	
PlaceData	object	created	earlier.	Once	this	code	is	executed,	the	appropriate	data	from	the	GUI	has	
been	sent	the	MASS	library	where	it	interprets	the	data	based	on	the	type	of	request.	

	

Figure	7	

Figure	7	shows	another	type	of	data	transfer	that	occurs	when	a	user	has	pressed	the	“play”	or	“next”	
buttons.	When	this	happens,	the	user	is	requesting	and	update	regarding	the	latest	state	of	all	Places	
and	Agent	objects.	This	request	is	done	in	a	similar	fashion	as	shown	in	figure	6.	A	request	is	made	via	

the	Connection	class’	makeRequest()	method	that	is	passed	a	MASSRequest	object	containing	an	enum	
representing	that	we	are	requesting	an	UpdatePackage	from	the	MASS	library.	The	null	value	indicates	
to	MASS	that	the	GUI	is	not	attempting	to	send	data	to	MASS,	but	instead	is	requesting	data	from	MASS.	
In	this	case	the	connection	object	returns	the	data	that	was	requested	as	a	MASSPacket	that	can	then	be	
cast	into	an	UpdatePackage.	The	updates	can	now	be	displayed	appropriately	to	the	user.	

This	hierarchy	was	designed	to	allow	many	types	of	requests	of	data	transfer.	This	hierarchy	can	be	
extended	to	allow	for	any	conceivable	types	of	transfers	between	the	GUI	and	MASS	in	a	polymorphic	
manner.	Details	of	the	Connection	class	will	be	described	later	in	this	section.	

The GUI
This	section	will	be	divided	into	two	sections.	The	first	describes	the	interface	and	the	second	will	
discuss	the	implementation	details.	

The Interface
The	first	time	a	user	opens	the	GUI	a	form	will	appear	that	asks	the	user	to	enter	host	and	port	
information	corresponding	to	the	host	that	their	MASS	application	is	running	on	and	the	port	of	their	
choice.	The	form	also	asks	whether	the	user	is	using	the	Java	or	the	C++	implementation	of	MASS,	as	
well	as	an	option	to	auto-connect	the	GUI	to	their	MASS	application.	These	last	two	options	are	not	
implemented	at	this	time.	The	form	is	shown	in	figure	8.	

	

Figure	8	

Once	the	user	enters	the	host	and	port	and	clicks	the	save	button,	the	main	GUI	form	opens.	Host	and	
port	information	is	saved	from	here	on	out	and	the	user	will	not	have	to	enter	it	again	unless	they	wish	
to	change	it.	

At	this	point	the	GUI	informs	the	user	that	there	is	not	yet	a	connection	between	the	GUI	and	the	user’s	
program.	This	is	shown	in	figure	9.	The	connection	state	will	be	displayed	here.	At	this	point	all	buttons	
and	field	are	disabled	except	for	the	“connect”	button.	

	

Figure	9	

Once	the	connect	button	has	been	clicked,	a	connection	will	be	made	to	the	users	program.	If	successful	
the	displayed	connection	state	will	change	from	figure	9	to	figure	10	or	an	error	message	will	be	
displayed	in	this	space.	

	

Figure	10	

The	names	and	sizes	of	Agents	and	Places	will	be	displayed	to	the	user	as	well.	From	here	the	user	has	a	
couple	options.	The	user	may	click	the	play	button	or	the	next	button	shown	in	figure	11.	

	

Figure	11	

The	play	button	runs	through	the	users	entire	simulation	loop	with	1.5	seconds	between	each	iteration.	
The	user	may	pause	the	simulation	at	any	time	during	this	loop	by	clicking	the	“pause”	button.	The	
“next”	button	on	the	other	hand,	will	run	just	one	iteration	of	the	simulation	and	immediately	pause	it	
so	the	user	may	iterate	at	their	own	pace.	Figure	12	shows	the	GUI’s	state	after	the	user	has	pressed	
either	the	“play”	or	the	“pause”	buttons.	

	

Figure	12	

The	grid	generated	in	the	center	of	the	screen	is	based	on	the	debug	data	of	all	Places	and	Agents	
modulus	20.	Meaning	there	are	21	colors	that	can	be	displayed,	each	of	which	representing	a	difference	
in	the	state	of	Place	objects.	Agents	are	always	displayed	black.	If	a	user	wishes	to	view	this	exact	data	
instead	of	differentiating	based	on	the	color,	they	may	click	on	any	of	the	grid	spaces.	This	will	display	all	
Place/Agent	data	residing	on	this	square	on	the	left	side	panel	as	shown	in	figure	13.	

	

Figure	13	

If	Agents	exist	on	the	selected	Place,	each	will	be	displayed	in	a	list.	The	user	may	click	on	each	agent	in	
the	list	to	view	its	specific	data	in	the	Agents	section	beneath	the	list.	The	blue	“inject”	buttons	will	
become	enabled	only	if	the	user	has	overloaded	the	Place	and	Agent	setDebugData()	methods.	When	
enabled	the	user	may	change	the	current	Place/Agent	data,	click	the	“inject”	button,	and	send	that	data	
to	their	MASS	program.	The	data	will	be	injected	and	can	be	viewed	in	the	GUI	grid	on	the	next	iteration	
of	the	simulation.	An	example	of	this	can	be	seen	in	figure	14	in	which	a	new	wave	has	been	injected	
into	the	Wave2D	simulation	underneath	the	original	wave.	The	colors	represent	varying	wave	heights.	

	

Figure	14	

Once	the	user	is	done	debugging	their	simulation	they	may	click	the	“disconnect”	button	which	will	
close	the	connection.	This	is	not	yet	implemented.	The	user	may	then	close	the	application	or	create	
another	connection	to	a	MASS	program.	

Implementation Details
The	GUI	was	created	using	the	NetBeans	GUI	Editor.	It	is	recommended	that	NetBeans	is	the	IDE	used	to	
perform	future	additions/edits	to	avoid	incompatibilities	between	IDE’s.	

Connection Class/Subclasses
As	shown	above	in	figures	6	and	7,	the	Connection	class	is	used	to	make	data	transfers	between	the	
users	program	and	the	GUI	using	the	makeRequest()	method.	The	Connection	class	also	contains	utilities	
for	validating	hosts	and	ports,	and	opening	and	closing	Socket	connections.	Connection	is	an	abstract	
class	with	two	subclasses,	one	for	connecting	to	a	MASS	java	(MASSJavaConnection.java),	and	one	for	
connecting	to	MASS	C++	(MASSCppConnection.java).	Connections	and	data	transfers	must	be	
implemented	differently	depending	on	which	version	of	MASS	the	user	is	using.	Because	of	these	
differences,	Connection	contains	abstract	methods	connect(),	makeRequest(),	and	endConnection()	to	
be	implemented	by	each	subclass.	A	diagram	of	this	relationship	is	shown	in	figure	15.	

	

Figure	15	

Figure	16	illustrates	how	the	Connection	class	is	used	to	make	connections	and	perform	validation	of	
hosts	and	ports.	

	

Figure	16	

User Preferences
From	figure	16	you	can	see	that	we	can	tell	whether	the	user	prefers	MASS	java	or	MASS	C++,	and	what	
their	preferred	host	and	port	is	from	the	preferences	object.	This	object	is	an	instance	of	the	
Preferences	class	and	exists	persistently,	even	when	the	GUI	closes.	The	object	is	first	created	when	the	
user	first	runs	the	GUI	and	enters	their	preferences	in	the	form	presented	in	figure	8.	The	Preferences	
class	was	created	to	avoid	the	user	re-entering	their	preferences	each	time	the	GUI	is	executed.	The	
following	details	all	members	of	the	Preferences	class:	

• URI	uri	-	this	member	holds	host	and	port	information.	It	is	used	primarily	for	its	
validation	utilities	so	that	I	do	not	have	to	do	so	on	my	own.		

• boolean	autoConnect	–	(to	be	implemented)	contains	whether	or	not	the	user	would	
like	to	connect	automatically	to	the	host	and	port	upon	execution	of	the	GUI.	

• boolean	java	–	(to	be	implemented)	if	the	user	is	using	MASS	java	or	MASS	C++	so	that	
the	appropriate	Connection	subclass	can	be	instantiated.	

• String	programDirectory	–	(to	be	implemented)	the	directory	of	the	users	MASS	
program	to	be	used	in	conjunction	with	autoConnect	in	order	to	start	the	users	
application	automatically.	

The	Preferences	class	is	sure	to	be	extended	as	GUI	development	continues.	The	preferences	object	is	
serialized	to	a	file	and	saved	in	the	Preferences	package	in	the	Debugger	directory.	Each	time	the	GUI	is	
opened,	preferences	are	deserialized	into	a	preferences	object	and	preferences	are	loaded	
appropriately.	The	user	has	the	ability	to	adjust	their	host	and	port	preferences	using	the	“hostField”	in	
the	GUI	shown	in	figure	17.	

	

Figure	17	

In	the	future	the	user	will	be	able	to	click	the	connection	image	shown	in	figures	9	and	10,	a	form	will	
pop	up	in	which	the	user	has	full	editing	ability	of	all	preferences.	

The Visualization Grid
The	grid	can	be	seen	in	figures	12	and	14.	One	of	the	main	problems	with	the	original	GUI	grid	was	its	
extremely	slow	refresh	rate.	Each	rectangle	in	the	grid	could	be	seen	to	be	drawn	one	at	a	time.	In	a	grid	
of	100	by	100	the	grid	took	several	seconds	to	completely	display	one	iteration	of	data.	My	solution	was	
to	create	the	custom	class	GridPanel.java	that	extends	JPanel.	The	result	is	instant	refresh	rates	for	each	
iteration.	When	the	GridPanel	is	instantiated,	a	number	of	CellPanels	are	added	to	it	corresponding	to	
the	number	of	Place	objects	specified	by	the	user’s	MASS	program.	CellPanel.java	is	another	custom	
class	that	extends	JPanel	that	has	listeners	attached	to	detect	user	clicks.	Each	CellPanel	also	has	
listeners	to	detect	which	cell	is	being	hovered	in	order	to	display	the	corresponding	Place	object’s	index	
in	MASS’s	Places	array.	The	display	of	this	index	is	shown	in	figure	18.	

	

Figure	18	

Work to be completed
During	the	quarter	I	spent	the	first	7	weeks	working	on	Hongbin	Li’s	debugger.	The	last	week	was	spent	
on	my	own	implementation.	Given	that	I	only	had	one	week	to	work	on	this,	there	are	a	few	features	
that	are	left	incomplete.	The	following	subsections	detail	each	feature/function	to	be	completed.	

Grid Resizing
Resizing	the	visualization	grid	was	a	known	issue	in	Hongbin	Li’s	GUI	implementation	as	well.	The	issue	
arises	when	the	user	has	roughly	more	than	10,000	Places	in	their	simulation,	which	is	very	common.	
After	this	point	the	GUI	has	only	a	few	choices,	each	with	severe	drawbacks.	One	solution	is	to	maximize	
GridPanel	as	much	as	possible	and	minimize	each	CellPanel	to	fit	within	the	GridPanel.	The	problem	with	
this	solution	is	that	one	each	CellPanel	become	less	than	one	by	one	pixels,	the	grid	becomes	useless	to	
the	user	as	action	listener	accuracy	fails	at	this	point.	Ideally,	the	user	would	be	able	to	zoom	in	and	drag	
the	grid	around,	similar	to	the	features	of	Google	Maps.	The	issue	with	implementing	these	features	are	
the	limitations	of	the	Java	Swing	library.	Although	possible,	my	research	indicates	this	task	would	be	
difficult	and	time	consuming.	In	the	future	I	would	like	to	switch	from	Swing	to	JavaFX.	JavaFX	is	java’s	
newest	graphics	library	that	has	built	in	utilities	for	implementing	zoom	and	drag	features.	JavaFX	would	
also	allow	for	3D	grids,	allowing	debugging	capabilities	for	3D	MASS	Places,	which	is	currently	not	
supported.	

