
MASS	  C++:	  Parallel-‐Computing	  Library	  for	  Multi-‐Agent	  Spatial	  Simulation	  	  

UW	  Bothell	  Computing	  &	  Software	  Systems	   1	  

MASS C++: Parallel-Computing Library for Multi-Agent Spatial Simulation 
 

Munehiro Fukuda 
Edited by Jennifer Kowalsky, Kasey Cohen 

June 8th, 2016 
 
1. Introduction 
 
This document is written to define our on-going C++ version of the MASS library, a parallel-
computing library for multi-agent spatial simulation. As envisioned from its name, the design is 
based on multi-agents, each behaving as a simulation entity on a given virtual space. The library 
is intended to parallelize a simulation program that particularly focuses on multi-entity 
interaction in physical, biological, social, and strategic domains. For example, simulations could 
include major physics problems (including molecular dynamics, Schrödinger’s wave equation, 
and Fourier’s heat equation), neural network, artificial society, and battle games.  
 
2. Programming Model 
 
2.1. Components: Places and Agents 
“Places” and “agents” are keys to the MASS library. “Places” is a matrix of elements that are 
dynamically allocated over a cluster of computing nodes. Each element is called a place, is 
pointed to by a set of network-independent matrix indices, and is capable of exchanging 
information with any other places. On the other hand, “agents” are a set of execution instances 
that can reside on a place, migrate to any other places with matrix indices, (thus as duplicating 
themselves), and interact with other agents as well as multiple places. 
 
An example of places and agents in a battle game could be territories and military units 
respectively. Some applications may need only either places or agents. For instance, 
Schrödinger's wave simulation needs only two-dimensional places, each diffusing its wave 
influence to the neighbors. Molecular dynamics needs only agents, each behaving as a particle 
since it must collect distance information from all the other particles for computing its next 
position, velocity, and acceleration. 
 
Parallelization with the MASS library assumes a cluster of multi-core computing nodes as the 
underlying computing architecture, and thus uses a set of multi-threaded communicating 
processes that are forked over the cluster and managed under the control of typical message-
passing software infrastructure, such as sockets. The library spawns the same number of threads 
as that of CPU cores per node or per process. Those threads take charge of method call and 
information exchange among places and agents in parallel. 
	  
Places are mapped to threads, whereas agents are mapped to processes. Unless a programmer 
indicates his/her places-partitioning algorithm, the MASS library divides places into smaller 
stripes in vertical or in the X-coordinate direction, each of which is then allocated to and 
executed by a different thread. Contrary to places, agents are grouped into bags, each allocated to 
a different process where multiple threads keep checking in and out one after another agent from 
this bag when they are ready to execute a new agent. If agents are associated with a particular 
place, they are allocated to the same process whose thread takes care of this place. 
 



MASS	  C++:	  Parallel-‐Computing	  Library	  for	  Multi-‐Agent	  Spatial	  Simulation	  	  

UW	  Bothell	  Computing	  &	  Software	  Systems	   2	  

2.2. Programming Framework 
The following code shows a C++ programming framework that uses the MASS library to 
simulate a multi-agent spatial simulation. 
 
Example 1: 
 1: #include "MASS.h" 
 2: #include "Territory.h" 
 3: #include "Troop.h" 
 4: #include <vector> 
 5: #define MSG "argument\0" 
 6: 
 7: int main( int argc, char *args[] ) { 
 8:        char *arguments[4]; 
 9:        arguments[0] = args[1]; // username                                            
10:        arguments[1] = args[2]; // password                                            
11:        arguments[2] = args[3]; // machinefile                                         
12:        arguments[3] = args[4]; // port                                                
13:        int nProc = atoi( args[5] ); // # processes 
14:        int nThr = atoi( args[6] ); // # threads 
15:      
16:     // start a process at each computing node 
17:        MASS::init( args, nProc, nThr ); 
18:                                       
19:     // distribute places and agents over computing nodes 
20:     char *msg = MSG;                     
21:     Places *territories  
22:         = new Places( 1, "Territory", msg, sizeof( MSG ), 2, 100, 100 ); 
 
 



MASS	  C++:	  Parallel-‐Computing	  Library	  for	  Multi-‐Agent	  Spatial	  Simulation	  	  

UW	  Bothell	  Computing	  &	  Software	  Systems	   3	  

23:     Agents *troops  
24:         = new Agents( 2, "Troop", msg, sizeof( MSG ), territories, 4000 ); 
25:     // start cyclic simulation in parallel                                     
26:     vector<int*> destinations; 
27:     int north[2] = {0, 1};  destinations.push_back( north ); 
28:     int east[2]  = {1, 0};  destinations.push_back( east ); 
29:     int south[2] = {0, -1}; destinations.push_back( south ); 
30:     int west[2]  = {-1, 0}; destinations.push_back( west ); 
31:     for ( int time = 0; time < MaxTime - 10; time++ ) { 
32:         territories->callAll(Territory::compute_, (void *)&time, sizeof(time)); 
33:         territories->exchangeAll( Territory::exchange_, &destinations ); 
34:         troops->callAll( Troop::compute_, (void *)&time, sizeof(time) ); 
35:         troops->manageAll( ); 
36:     } 
37: 
38:     // terminate the processes                                                 
39:     MASS::finish( ); 
40: } 

 
The behavior of the above code is as follows: it synchronizes all processes with MASS::init( ) 
and has them spawn multiple threads (line 17). The code thereafter maps a matrix of 100 × 100 
“Territory” places as well as 4000 “Troop” agents over these processes (lines 19 – 24). Each 
process falls into a cyclic simulation (lines 31 – 36) where all its threads repeat calling the 
following four functions in a parallel fashion: 

- compute( ) of the “Territory” places to update each place object’s status 
- exchange( ) of the “Territory” places to exchange data among place objects 
- compute( ) of the “Troop” agents to update each agent’s status 

as well as control the “Troop” agents in manageAll( ) so as to move, spawn, terminate, suspend, 
and resume agents. At the end, all the processes are synchronized together for their termination 
(line 39). 
In the following sections, we will define the specification of “MASS”, “Places”, “Place”, 
“Agents”, and “Agent” 
	  
3. MASS 
 
All processes involved in the same MASS library computation must call MASS::init( ) and 
MASS::finish( ) at the beginning and end of their code respectively so as to get started and 
finished together. Upon a MASS::init( ) call, each process, running on a different computing 
node, spawns the same number of threads as that of its local CPU cores, so that all threads can 
access places and agents. Upon a MASS::finish( ) call, each process cleans up all its threads as 
being detached from the places and agents objects. 
public static 
void 

init( String[] args, int nProc, int nThr ) 
Involves nProc processes in the same computation and has each 
process spawn nThr threads. 

public static 
void 

init( String[] args ) 
Is not implemented yet. 
It involves as many processes as requested in the same computation 
and has each process spawn as many threads as the number of CPU 
cores. 

public static 
void 

finish( ) 
Finishes computation. 

	  
	  



MASS	  C++:	  Parallel-‐Computing	  Library	  for	  Multi-‐Agent	  Spatial	  Simulation	  	  

UW	  Bothell	  Computing	  &	  Software	  Systems	   4	  

4. Places 
 
“Places” is a distributed matrix whose elements are allocated to different computing nodes. Each 
element, (termed a “place”) is addressed by a set of network-independent matrix indices. Once 
the main method has called MASS::init( ), it can create as many places as needed, using the 
following constructor. Unless a user supplies an explicit mapping method in his/her “Place” 
definition (see 4.2 Place Class), a “Places” instance (simplified as “places” in the following 
discussion) is partitioned into smaller stripes in terms of coordinates[0], and is mapped over a 
given set of computing nodes, (i.e., processes). 
	  
4.1. public class Places 
The class instantiates an array shared among multiple processes. Array elements are accessed 
and processed by multi-processes in parallel. 
public Places( int handle, string className, void *argument, int 

argument_size, int dimension, int size[] ) 
Instantiates a shared array with “size[]” from the “className” class as 
passing an argument to the “className” constructor. This array is 
associated with a user-given handle that must be unique over 
machines. 

public Places( int handle, string className, void *argument, int 
argument_size, int dimension, ... ) 

Is the same as the 1st constructor except dimensions are numerated in 
the “…” format. 

public Places( int handle, string className, int boundary_width, 
void *argument, int argument_size, int dimension, int 
size[] ) 

Instantiates a shared array with “size[]” from the “className” class as 
passing an argument to the “className” constructor. This array is 
associated with a user-given handle that must be unique over 
machines. This constructor also allocates the left and right shadow 
places whose with is given by boundary_width. These left and right 
shadows are a copy of the right boundary places of the left neighbor 
and a copy of the left boundary places of the right neighbor. 

public Places( int handle, string className, int boundary_width, 
void *argument, int argument_size, int dimension, ... ) 

Is the same as the 1st constructor except dimensions are numerated in 
the “…” format. This constructor also allocates the left and right 
shadow places whose with is given by boundary_width. These left and 
right shadows are a copy of the right boundary places of the left 
neighbor and a copy of the left boundary places of the right neighbor. 

public int getDimension( ) 
Not yet implemented 
It returns the dimension of this multi-dimensional array. 

public int* size( ) 
Not yet implemented 
Returns the size of this multi-dimensional array. 

public void callAll( int functionId ) 
Calls the method specified with functionId of all array elements. Done 
in parallel among multi-processes/threads. 



MASS	  C++:	  Parallel-‐Computing	  Library	  for	  Multi-‐Agent	  Spatial	  Simulation	  	  

UW	  Bothell	  Computing	  &	  Software	  Systems	   5	  

public void callAll( int functionId, void *argument, int argument_size) 
Calls the method specified with functionId of all array elements as 
passing an argument to the method. Done in parallel among multi-
processes/threads. 

public void* callAll( int functionId, void *arguments[], int 
argument_size, int return_size ) 

Calls the method specified with functionId of all array elements as 
passing arguments[i] to element[i]’s method, and receives a return 
value from it into (void *)[i] whose element’s size is return_size. Done 
in parallel among multi-processes/threads. In case of a multi-
dimensional array, “i” is considered as the index when the array is 
flattened to a single dimension. 

public void callSome( int functionId, int dim, int index[] ) 
Is not implemented yet. 
Calls the method specified with functionId of one or more selected 
array elements as passing. If index[i] is a non-negative number, it 
indexes a particular element, a row, or a column. If index[i] is a 
negative number, say –x, it indexes every x element. Done in parallel 
among multi-processes/threads. 

public void callSome( int functionId, void *argument, int 
argument_size, int dim, int index[] ) 

Is not implemented yet. 
Calls the method specified with functionId of one or more selected 
array elements as passing an argument to the method. The format of 
index[] is the same as the above callSome( ). Done in parallel among 
multi-processes/threads. 

public void* callSome( int functionId, void *arguments[], int 
argument_size, int dim, int index[] ) 

Is not implemented yet. 
Calls the method specified with functionId of one or more selected 
array elements as passing arguments[i] to element[i]’s method, and 
receives a return value from it into (void *)[i] whose element’s size is 
return_size. The format of index[] is the same as the above callSome( 
). Done in parallel among multi-processes. In case of a multi-
dimensional array, “i” is considered as the index when the array is 
flattened to a single dimension. 

public void exchangeAll( int handle, int functionId, Vector<int*> 
*destinations ) 

Calls from each of all cells to the method specified with functionId of 
all destination cells, each indexed with a different Vector element. 
Each vector element, say destination[] is an array of integers where 
destination[i] includes a relative index (or a distance) on the coordinate 
i from the current caller to the callee cell. The caller cell’s outMessage 
is a continuous set of arguments passed to the callee’s method. The 
caller’s inMessages[] stores values returned from all callees. More 
specifically, inMessages[i] maintains a set of return values from the ith 
callee. 

public void  exchangeSome( int handle, int functionId, Vector<int*> 



MASS	  C++:	  Parallel-‐Computing	  Library	  for	  Multi-‐Agent	  Spatial	  Simulation	  	  

UW	  Bothell	  Computing	  &	  Software	  Systems	   6	  

*destinations, int dim, int index[] ) 
Is not implemented yet. 
It calls from each of the cells indexed with index[] (whose format is 
the same as the above callSome( )) to the method specified with 
functionId of all destination cells, each indexed with a different Vector 
element. Each vector element, say destination[] is an array of integers 
where destination[i] includes a relative index (or a distance) on the 
coordinate i from the current caller to the callee cell. The caller cell’s 
outMessages is a contiguous set of arguments passed to the callee’s 
method. The caller’s inMessages[] stores values returned from all 
callees. More specifically, inMessages[i] maintains a set of return 
values from the ith callee. 

public void exchangeBoundary( ) 
Exchanges the boundary places with the left and right neighboring 
nodes. The remote boundary places are stored in the left and right 
shadow spaces. 

 
4.2. public class Place 
 
“Place” is the abstract class from which a user can derive his/her application-specific matrix of 
places. An actual matrix instance is created and maintain within a “Places” class, so that the user 
can obtain parallelizing benefits from Places’ callAll( ) , callSome( ), exchangeAll( ), and 
exchangeSome( ) methods that invoke a given method of each matrix element and exchange data 
between each element and others. 
 
public Place( void *args ) 

Is the default constructor. A contiguous space of arguments is passed 
to the constructor. 

public 
vector<int> 

size 
Defines the size of the matrix that consists of application-specific 
places. Intuitively, size[0], size[1], and size[2] correspond to the size 
of x, y, and z, or that of i, j, and k. 

public 
vector<int> 

index 
Is an array that maintains each place’s coordinates. Intuitively, 
index[0], index[1], and index[2] correspond to coordinates of x, y, and 
z, or those of i, j, and k. 

public 
vector<MObject*> 

agents 
Includes all the agents residing locally on this place. 

public virtual 
void* 

callMethod( int functionId, void *arguments ) 
Is called from Places.callAll( ), callSome( ), exchangeAll( ), and 
exchangeSome( ), and invoke the function specified with functionId as 
passing arguments to this function. A user-derived Place class must 
implement this method. 

public void* outMessage 
Stores a set arguments to be passed to a set of remote-cell functions 
that will be invoked by exchangeAll( ) or exchangeSome( ) in the 
nearest future. The argument size must be specified with 
outMessage_size. 



MASS	  C++:	  Parallel-‐Computing	  Library	  for	  Multi-‐Agent	  Spatial	  Simulation	  	  

UW	  Bothell	  Computing	  &	  Software	  Systems	   7	  

protected int  outMessage_size 
Defines the size of outMessage. 

public 
vector<void*>  

inMessages 
Receives a return value in inMessages[i] from a function call made to 
the i-th remote cell through exchangeAll( ) and exchangeSome( ). 
Each element size must be specified with inMessage_size. 

public int  inMessage_size 
Defines the size of inMessage. 

protected void *getOutMessage( int handle, int index[] ) 
Returns a pointer to the outMessage of a remote place specified with 
handle and index[]. The values of index[] must be relative index from 
the current place. 

 
4.3. A Framework of Application-Specific Place-Derived Class 
	  
An application-specific “Place”-derived class, (thus whose objects are instantiated upon a Places 
instantiation), should have the following programming framework as shown in example 2. First 
of all, it must include “Place.h” and inherits the Place class (lines 5 and 7). The constructor must 
be defined to receive a void pointer as its argument (line 13). The place-derived class must then 
implement callMethod( ) that receives an int-type functionId to invoke the corresponding method 
and to pass a void pointer to it as its argument (lines 19 – 26). The actual functions invoked from 
callMethod( ) and should be implemented as private method members (lines 30 – 32).  Since this 
application-specific “Place”-derived class is internally dynamic-linked to the MASS library, 
using dlopen( ) and dlsym( ) that understand C programs, it must define instantiate( ) and 
destroy( ) for object creation and deletion (lines 38-44). 
 
Example 2: 
1. #ifndef DERIVEDPLACE_H 
2. #define DERIVEDPLACE_H 
3.  
4. #include <iostream> 
5. #include "Place.h"                                                                            
6.  
7. class DerivedPlace : public Place { 
8. public: 
9.   // 0: FUNCTION ID 
10.   static const int function_ = 0; 
11.  
12.   // 1: CONSTRUCTOR DESIGN                                                                                    
13.   DerivedPlace( void *argument ) : Place( argument ) { 
14.     // START OF USER IMPLEMENTATION                                                                           
15.     // END OF USER IMPLEMENTATION                                                                             
16.   } 
17.  
18.   // 2: CALLALL DESIGN                                                                                        
19.   virtual void *callmethod( int functionId, void *argument ) { 
20.     switch( functionId ) { 
21.       // START OF USER IMPLEMENTATION                                                                         
22.     case function_: return function( argument ); 
23.       // END OF USER IMPLEMNTATION                                                                            
24.     } 
25.     return NULL; 
26.   }; 
 
 
27. private: 



MASS	  C++:	  Parallel-‐Computing	  Library	  for	  Multi-‐Agent	  Spatial	  Simulation	  	  

UW	  Bothell	  Computing	  &	  Software	  Systems	   8	  

28.   // 3: EACH FUNCTION DESIGN                                                                                  
29.   // START OF USER IMPLEMENTATION                                                                             
30.   void *function( void *argument ) { 
31.     return NULL; 
32.   } 
33.   // END OF USER IMPLEMENTATION                                                                               
34. }; 
35.  
36. #endif 
37.  
38. extern "C" Place* instantiate( void *argument ) { 
39.   return new DerivedPlace( argument ); 
40. } 
41.  
42. extern "C" void destroy( Place *object ) { 
43.   delete object; 
44. } 

 
Example 3 shows how to instantiate a 100 by 100 objects from the above DerivedPlace class 
(line 14) and to call the function( ) of each object in parallel (line 18).  
 
Example 3: 
1. #include "MASS.h" 
2. #include "DerivedPlace.h" 
3. #include <vector> 
4.  
5. int main( int argc, char *argv[] ) { 
6.   int nProc = 4, nThr = 4;  // define the number of processes and threads 
7.   MASS.init( argv, nProc, nThr ); // initialize MASS with a list of args that  
8.   // includes hostname information, username, password, ect; and the number of  
9.   // threads and processes. 
10.   
11.   // initialize places with our derived class. 
12.   // Arguments are, in order: 
13.   //    handle, className, boundary_width, argument, argument_size, dim, ... 
14.   Places *places = new Places( 1, "DerivedPlace", "args", 4, 2, 100, 100 ); 
15.   
16.   // call the DerivedPlace class's implementation of callAll  
17.   // with the message “message” and the length of the message. 
18.   places->callAll( DerivedPlace::function_, "message", 7 ); 
19.   
20.   // Finished with MASS. 
21.   MASS.finish( ). 
22. } 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



MASS	  C++:	  Parallel-‐Computing	  Library	  for	  Multi-‐Agent	  Spatial	  Simulation	  	  

UW	  Bothell	  Computing	  &	  Software	  Systems	   9	  

5. Agents 
 
“Agents” is a set of execution instances, each capable of residing on a place, migrating to another 
place with matrix indices, cloning, and interacting with any other agents indirectly through the 
currently residing place. 
 
5.1 public class Agents  
Once the main method has called MASS::init( ), it can create as many agents as needed, using 
the Agents( ) constructor. Unless a user supplies an explicit mapping method in his/her “Agent” 
definition (see 5.2 public class Agent), “Agents” distribute instances of a given “Agent” class 
(simplified as agents in the following discussion) uniformly over different computing nodes. 
 
Public Agents( int handle, string className, void *argument, int 

argument_size, Places *places, int initPopulation ) 
Instantiates a set of agents from the “className” class, passes the 
“argument” object to their constructor, associates them with a given 
“Places” matrix, and distributes them over these places, based the 
map( ) method that is defined within the Agent class. If a user does not 
overload it by him/herself, map( ) uniformly distributes an 
“initPopulation” number of agents. If a user-provided map( ) method is 
used, it must return the number of agents spawned at each place 
regardless of the initPopulation parameter. Each set of agents is 
associated with a user-given handle that must be unique over 
machines. 

public int getHandle( ) 
Not yet implemented. 
Returns the handle associated with this agent set. 

public int nAgents( ) 
Returns the total number of agents over the sytem. 

public void callAll( int functionId ) 
Calls the method specified with functionId of all agents. Done in 
parallel among multi-processes/threads. 

public void callAll( int functionId, void *argument, int argument_size) 
Calls the method specified with functionId of all agents as passing a 
(void *)argument to the method. Done in parallel among multi-
processes/threads. 

public *void callAll( int functionId, void *arguments[], int 
argument_size, int return_size ) 

Calls the method specified with functionId of all agents as passing 
arguments[i] to agent[i]’s method, and receives a return value from it 
into (void *)[i] whose element’s size is return_value. Done in parallel 
among multi-processes/threads. The order of agents depends on the 
index of a place where they resides, starts from the place[0][0]…[0], 
and gets increased with the right-most index first and the left-most 
index  last.  



MASS	  C++:	  Parallel-‐Computing	  Library	  for	  Multi-‐Agent	  Spatial	  Simulation	  	  

UW	  Bothell	  Computing	  &	  Software	  Systems	   10	  

public void manageAll( ) 
Updates each agent’s status, based on each of its latest migrate( ), 
spawn( ), and kill( ) calls. These methods are defined in the Agent base 
class and may be invoked from other functions through callAll and 
exchangeAll. Done in parallel among multi-processes/threads. 
Collision Free Migration: MASS C++ library has implemented 
collision free Agent migration. This allows MASS applications to 
easily limit one Agent to a Place. To use collision free Agent migration 
Agents must have a handle value greater than 100 and the user’s 
MASS application cannot use the Place’s outMessage. 

5.2 public class Agent 
 
“Agent” is the abstract class from which a user can derive his/her application-specific agent that 
migrates to another place, forks their copies, suspends/resumes their activity, and terminate 
themselves. 
 
public Agent( void *args ) 

Is the default constructor. A contiguous space of arguments is passed to 
the constructor. 

protected 
Place* 

place 
Points to the current place where this agent resides. 

protected 
vector<int> 

index 
Is an array that maintains the coordinates of where this agent resides. 
Intuitively, index[0], index[1], and index[2] correspond to coordinates of 
x, y, and z, or those of i, j, and k. 

protected int agentId 
Is this agent’s identifier. It is calculated as: the sequence number * the size 
of this agent’s belonging matrix + the index of the current place when all 
places are flattened to a single dimensional array. 

protected int parented 
Is the identifier of this agent’s parent. 

protected int newChildren 
Is the number of new children created by this agent upon a next call to 
Agents.manageAll( ). 

protected 
vector<void*> 

arguments 
Is an array of arguments, each passed to a different new child. 

protected 
bool 

alive 
Is true while this agent is active. Once it is set false, this agent is killed 
upon a next call to Agents.manageAll( ). 

protected int agentsHandle 
Maintains this handle of the agents class to which this agent belongs.  

protected int placeHandle  
Maintains this handle of the agents class with which this agent is 
associated. 

public int map(int maxAgents, vector<int> size, vector<int> coordinates ) 
Returns the number of agents to initially instantiate on a place indexed 
with coordinates[]. The maxAgents parameter indicates the number of 
agents to create over the entire application. The argument size[] defines 
the size of the “Place” matrix to which a given “Agent” class belongs. The 



MASS	  C++:	  Parallel-‐Computing	  Library	  for	  Multi-‐Agent	  Spatial	  Simulation	  	  

UW	  Bothell	  Computing	  &	  Software	  Systems	   11	  

system-provided (thus default) map( ) method distributes agents over 
places uniformly as in: 

            maxAgents / size.length  
The map( )  method may be overloaded by an application-specific method. 
A user-provided map( ) method may ignore maxAgents when creating 
agents. 

protected 
bool 

migrate( vector<int> index ) 
Initiates an agent migration upon a next call to Agents.manageAll( ). More 
specifically, migrate( ) updates the calling agent’s index[]. 

protected 
void 

spawn( int numAgents, vector<void*> arguments, int arg_size ) 
Spawns a “numAgents’ of new agents, as passing arguments[i] (with 
arg_size) to the i-th new agent upon a next call to Agents.manageAll( ). 
More specifically, spawn( ) changes the calling agent’s newChildren. 

public void kill( ) 
Terminates the calling agent upon a next call to Agents.manageAll( ). 
More specifically, kill( ) sets the “alive” variable false. 

public Object callMethod( int functionId, void *arguments ) 
Is called from Agents.callAll. It invokes the function specified with 
functionId as passing arguments to this function. A user-derived Agent 
class must implement this method. 

protected 
void* 

migratableData 
Is a pointer to a user-allocated space that will be carried 
with the agent when it migrates to a different space. 

Protected int migratableDataSize 
Indicates the size of the migratableData space. 

 
5.3. A Framework of Application-Specific Agent-Derived Class 
	  
An application-specific “Agent”-derived class, (thus whose objects are instantiated upon a 
Agents instantiation), should have the following programming framework as shown in example 
4. First of all, it must include “Agent.h” and inherits the Agent class (lines 5 and 7). The 
constructor must be defined to receive a void pointer as its argument (line 13). The agent-derived 
class must then implement callMethod( ) that receives an int-type functionId to invoke the 
corresponding method and to pass a void pointer to it as its argument (lines 19 – 26). The actual 
functions invoked from callMethod( ) and should be implemented as private method members 
(lines 31 – 40). They may call the “Agent” base class’ migrate( ), spawn( ), and kill( ) methods to 
control the invoking agents (lines 34 and 38). Note that actual migration, spawning, and 
termination will be performed with the following Agents.manageAll( ) invocation.  Similar to the 
“Place”-derived class definition, an “Agent”-derived class must define instantiate( ) and 
destroy() for object creation and deletion (lines 46 – 52). 
 
Example 4: 
1. #ifndef DERIVEDAGENT_H 
2. #define DERIVEDAGENT_H 
3.  
4. #include <iostream> 
5. #include "Agent.h"                                                                            
6.  
7. class DerivedAgent : public Agent { 
8. public: 
9.   // 0: FUNCTION ID 
10.   static const int function_ = 0; 



MASS	  C++:	  Parallel-‐Computing	  Library	  for	  Multi-‐Agent	  Spatial	  Simulation	  	  

UW	  Bothell	  Computing	  &	  Software	  Systems	   12	  

11.  
12.   // 1: CONSTRUCTOR DESIGN                                                                                    
13.   DerivedAgent( void *argument ) : Agent( argument ) { 
14.     // START OF USER IMPLEMENTATION                                                                           
15.     // END OF USER IMPLEMENTATION                                                                             
16.   } 
17.  
18.   // 2: CALLALL DESIGN                                                                                        
19.   void *callmethod( int functionId, void *argument ) { 
20.     switch( functionId ) { 
21.       // START OF USER IMPLEMENTATION                                                                         
22.     case function_: return function( argument ); 
23.       // END OF USER IMPLEMNTATION                                                                            
24.     } 
25.     return NULL; 
26.   }; 
27. private: 
28.   // 3: EACH FUNCTION DESIGN                                                                                  
29.   // START OF USER IMPLEMENTATION                                                                             
30.   void *function( void *argument ) {  // Here’s a sample user implementation 
31.     vector<void*> arguments; 
32.     arguments.push_back( "hello" );   // give the message “hello” to each agent. 
33.     spawn( 1, arguments, 5 );  // spawn one child agent, with the message hello. 
34.     vector<int*> destinations; 
35.     int next[2] = { place->index[0] + 1, place->index[1] – 1 } // go NW 
36.     destinations.push_back( next ); 
37.     migrate( ); 
38.     return NULL; 
39.   } 
40.   // END OF USER IMPLEMENTATION                                                                               
41. }; 
42. #endif 
43.  
44. extern "C" Place* instantiate( void *argument ) { 
45.   return new DerivedAgent( argument ); 
46. } 
47. extern "C" void destroy( Agent *object ) { 
48.   delete object; 
49. } 
 

Example 5 shows how to uniformly distribute 4000 agents from the above DerivedAgent class 
over a Places array (line 14), to call the function( ) of each object (line 23), and to control these 
agents in parallel (line 27) 
 
Example 5: 
1. #include "MASS.h" 
2. #include "DerivedPlace.h" 
3. #include <vector> 
4.  
5. int main( int argc, char *argv[] ) { 
6.   int nProc = 4, nThr = 4;  // define the number of processes and threads 
7.   MASS.init( argv, nProc, nThr ); // initialize MASS with a list of args that  
8.   // includes hostname information, username, password, ect; and the number of  
9.   // threads and processes. 
10.   
11.   // initialize places with our derived class. 
12.   // Arguments are, in order: 
13.   //    handle, className, boundary_width, argument, argument_size, dim, ... 
14.   Places *places = new Places( 1, "DerivedPlace", "args", 4, 2, 100, 100 ); 
15.  
16.   // initialize agents with our derived class. 
17.   // Arguments are, in order: 
18.   //    handle, className, *argument, argument_size, initPopulation 
19.   Agents *agents = new Agents( 2, "DerivedAgent", "hello", 5, 4000 ); 
20.  



MASS	  C++:	  Parallel-‐Computing	  Library	  for	  Multi-‐Agent	  Spatial	  Simulation	  	  

UW	  Bothell	  Computing	  &	  Software	  Systems	   13	  

21.   // Perform the Agent's callAll with the  
22.   // agent implementation's function, msg, and message size. 
23.   agents->callAll( DerivedAgent.function_, "message", 7 ) 
24.  
25.   // Updates each agent’s status, based on each of its latest migrate( ),  
26.   // spawn( ), and kill( ) calls. 
27.   agents->manageAll( ); 
28.   MASS.finish( ). // we’re done 
29. } 
	  
6. Compilation and Execution 
 
MASS C++ is currently available from metis.uwb.edu, the CSS Linux file server at University of 
Washington Bothell. 
6.1 Directory Structure 
 
The MASS directory structure is as follows: 
/net/metis/home3/dslab/MASS/c++/source MASS C++ source code 
/net/metis/home3/dslab/MASS/c++/ubuntu MASS C++ executable library for Ubuntu 
/net/metis/home3/dslab/MASS/c++/ubuntu/ssh2 SSH2 library compiled for Ubuntu 
/net/metis/home3/dslab/MASS/c++/redhat MASS C++ executable library for Redhat 
/net/metis/home3/dslab/MASS/c++/redhat/ssh2 SSH2 library compiled for Redhat 
/net/metis/home3/dslab/MASS/c++/libssh2.tar SSH2 source code 
/net/metis/home3/dslab/MASS/c++/ubuntu/samples MASS C++ sample test program 

 
Note that, unless you want to install the MASS and SSH2 libraries into your own directory, you 
do not have to copy any files from the above directories except make a symbolic link to the 
mprocess daemon and the killMProcess.sh shell script (see below for the details).   
 
6.2 Working Directory Set-Up and Compilation 
 

(1) To develop MASS application programs, set up a working directory and create a 
symbolic link to the mprocess daemon and the killMProcess.sh. 
ln –s ~dslab/MASS/c++/ubuntu/mprocess mprocess 
ln –s ~dslab/MASS/c++/ubuntu/killMProcess.sh killMProcess.sh 
 

or 
ln –s ~dslab/MASS/c++/redhat/mprocess mprocess 
ln –s ~dslab/MASS/c++/redhat/killMProcess.sh killMProcess.sh 

 
(2) Create machinefile.txt that lists remote computing nodes you want to use: 

uw1-320-01 
uw1-320-02 
uw1-320-03 
uw1-320-04 

 
Please do not include the local IP name. In other words, you must start your MASS 
application from any other machine than these four computing nodes, (e.g., uw1-320-00). 
This in turn means that the above example indicates that you will use five computing 
nodes, including your local machine. 
 

(3) Set up the following two shell variables: 
export MASS_DIR=/net/metis/home3/dslab/MASS/c++ 



MASS	  C++:	  Parallel-‐Computing	  Library	  for	  Multi-‐Agent	  Spatial	  Simulation	  	  

UW	  Bothell	  Computing	  &	  Software	  Systems	   14	  

export 
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/net/metis/home3/dslab/MASS/c++/ubuntu/ssh2/li
b:/net/metis/home3/dslab/MASS/c++/ubuntu 
 

You might want to add the above two statements in your ~/.bash_profile or include them 
in compile.sh and run.sh that you create for automating compilation and execution of 
your application programs. 

 
 

(4) Compile your main program as well as all your Agents/Places-derived classes. 
To compile your program that includes main( ), say main.cpp, type: 
g++ -Wall main.cpp -I$MASS_DIR/source -L$MASS_DIR/ubuntu -lmass -
I$MASS_DIR/ubuntu/ssh2/include -L$MASS_DIR/ubuntu/ssh2/lib -lssh2 -o main 

 
To compile your Agents/Places-derived class, say Land.cpp, type: 
g++ -Wall Land.cpp -I$MASS_DIR/source -shared -fPIC -o Land 

 
 Note that you must compile all your Agents/Places-derived classes whose executable is 
dynamic-linked to mprocess whenever your main program invokes new Places( ) or new 
Agents( ). 

 
6.3 Execution of Your MASS Program 
 
Simply type your executable file name and arguments. Please note that MASS::init( ) needs to 
receive three arguments, of which the first argument *char[] must include: 

  arguments[0] // username                                            
  arguments[1] // password                                            
  arguments[2] // machinefile name                                         
  arguments[3] // port   

To use CSS Linux machines, you must specify your UNetID and its password in arguments[0] 
and arguments[1]. Please don’t keep these pieces of information in your shell script such as 
run.sh or type in from your keyboard input without disabling “echo”. To disable and enable 
“echo” of your Unix terminal, type the following commands respectively. 
 

stty –echo 
stty echo 

 
6.4 Abnormal Termination and Clean-up 
 
To stop an execution of your MASS program, just simply type ^c, (i.e., control c). However, 
please note the following MASS daemon behavior: 
 
Once your program invokes MASS::init( ), all the remote machines you declared in 
machinefile.txt starts an mprocess daemon. All the daemons then dynamically link your code to 
it and execute MASS functions such as callAll, exchangeAll, and manageAll. Upon an 
invocation of MASS::finish( ), these daemon processes will be terminated automatically. This in 
turn means that they may stay alive if your program get finished without MASS::finish( ), (i.e., a 
program crash or termination with ^c). In that case, run killMProcess.sh to kill all remote 
mprocess daemons. 
 
 
 



MASS	  C++:	  Parallel-‐Computing	  Library	  for	  Multi-‐Agent	  Spatial	  Simulation	  	  

UW	  Bothell	  Computing	  &	  Software	  Systems	   15	  

 
 
 
 
 
 
 
7. Outputs from Places and Agents 
 
Although your main program can use cout and cerr as usual, you cannot use them from each of 
place/agent objects. This is because they may reside on a remote computing node. All remote 
processes use their cin and cout/cerr for their communication with the MASS library running on 
your local machine. Therefore, using cout/cerr in a place or an agent corrupts inter-process 
communication and hangs the MASS library execution. 
 
To catch outputs from a place or an agent, please use MASS_base::log( string msg ) function. If 
you need to pass any other data types in addition to a string, use ostringstream: 
 

ostringstream convert; 
convert.str( "" ); 
convert << "Message from agent[" << agentId << "] = " << message; 
MASS_base::log( convert.str( ) ); 

 
The message is written to the file named MASS_logs/PID_X_IPresult.txt, where X is the remote 
process ID and IP is the remote IP name. Assuming that you use uw1-320-01, uw1-320-02, and 
uw1-320-03 remotely from uw1-320-00, all the messages written from uw1-320-01 will be 
written to MASS_logs/PID_1_uw1-230-01result.txt. 
 
8. Contact Point 
	  
For any bug reports or technical questions, please contact Munehiro Fukuda at 
mfukuda@uw.edu. 
 


