
MASS	 CUDA:	 Parallel-‐Computing	 Library	 for	 Multi-‐Agent	 Spatial	 Simulation	

UW	 Bothell	 Computing	 &	 Software	 Systems	 1	 	 	 	

MASS CUDA: Parallel-Computing Library for Multi-Agent Spatial
Simulation

Nathaniel Hart

1 Introduction

This document is written to define the existing features of the CUDA version of the MASS
library, a parallel computing library for Multi-Agent Spatial Simulation. As envisioned from its
name, the design is based on multi-agents, each behaving as a simulation entity on a given virtual
space. The library is intended to take advantage of the massive parallel computing capabilities of
GPUs to parallelize a simulation program that particularly focuses on multi-entity interaction in
physical, biological, social, and strategic domains. The examples include major physics problems
(including molecular dynamics, Schrödinger’s wave equation, and Fourier’s heat equation),
neural network, artificial society, and battle games.

2 Programming Model

2.1 Components: Places and Agents
“Places” and “agents” are keys to the MASS library. “Places” is a matrix of elements that are
allocated over a several GPUs on a single machine. Each element is called a place, is pointed to
by a set of matrix indices, and is capable of exchanging information with any other places. On
the other hand, “agents” is a set of execution instances that can reside on a place, migrate to any
other places with matrix indices, (thus as duplicating themselves), and interact with other agents
as well as multiple places.

An example of places and agents in a battle game could be territories and military units
respectively. Some applications may need only either places or agents. For instance,
Schrödinger's wave simulation needs only two-dimensional places, each diffusing its wave
influence to the neighbors. Molecular dynamics needs only agents, each behaving as a particle
since it must collect distance information from all the other particles for computing its next
position, velocity, and acceleration.

Parallelization with the MASS CUDA library assumes one or more NVidia GPUs with compute
capability 3.0 or better running on a single computer as the underlying computing architecture,
and thus uses a CUDA kernel functions to load data into available GPUs and perform parallel
processing. The library spawns a thread for each place and agent, and coordinates data transfer
and agent migration using barrier synchronization. In order to minimize divergence of flow of
control within warp execution units, Agents and Places will be executed by unique threads that
are created within separate calls to function specific kernel functions.
	 	 	 	
Places are mapped to CUDA threads on available GPUs, as specified by the user. The MASS
library divides places into smaller stripes in vertical or in the X-coordinate direction, each of

MASS	 CUDA:	 Parallel-‐Computing	 Library	 for	 Multi-‐Agent	 Spatial	 Simulation	

UW	 Bothell	 Computing	 &	 Software	 Systems	 2	 	 	 	

which is then allocated to and executed by a different GPU. Contrary to places, agents are
grouped into vectors, each being allocated to a different GPU where CUDA threads will execute
all active agent upon a call to Agent.callAll().

Figure 1 Place and Agent Distribution

MASS	 CUDA:	 Parallel-‐Computing	 Library	 for	 Multi-‐Agent	 Spatial	 Simulation	

UW	 Bothell	 Computing	 &	 Software	 Systems	 3	 	 	 	

2.2 Programming Framework
The following code shows a CUDA programming framework that uses the MASS library to
simulate a multi-agent spatial simulation.

Example 1:
1: #include <cstdio> // fprintf()
2: #include <cmath> // ceil(), floor()
3: #include <unistd.h> // getopt()
4: #include <sys/time.h> // gettimeofday(), timeval
5:
6: #include "cudaUtil.h" // CATCH(), CHECK(), syncDevices(), getDevices()
7: #include <string> // string
8:
9: #include "grid2d.h" // Grid2D
10: #include "stripe2d.h" // Stripe2D
11: #include "range2d.h" // Range2D
12:
13: include "mass.h"
14: #include "places.h"
15: #include "place.h"
16:
17: int main(int argc, char *argv[]) {
18:
19: Parameters_t parms;
20: processParms(argc, argv, &parms);
21: int n = parms.size; // system size
22: int t = parms.time; // simulation time
23: char *filename filename = parms.filename; // output filename
24:
25: Mass mass;
26: mass.init(parms.ngpu, parms.devices);
27;
28: // build arguments to pass to each place
29: int *args = new int[n * n * 1];
30: for (int i = 0; i < n * n; i++) {
31: args[i] = 1;
32: }
33:
34: dim3 bounds(n, n, 1);
35: Places *waves = new Places<DerivedPlace>(0, size, nGpu, params.devices,
 (void *)args, sizeof(*args), params.streams, params.events);
36:
37: // start simulation
38: for (int tick = 0; tick < t; tick++) {
39: int funcId = 0;
40: waves->callAll(funcId, (void *)args, sizeof(*args));
41: waves->updateAll();
42:
43: elements = waves->getElements();
45:
46: printPlaces2D(stdout, elements, n);
47: }
48:
49: // print results
50: elements = waves->getElements();

MASS	 CUDA:	 Parallel-‐Computing	 Library	 for	 Multi-‐Agent	 Spatial	 Simulation	

UW	 Bothell	 Computing	 &	 Software	 Systems	 4	 	 	 	

51: printf("Places after simulation:\n");
52: printPlaces2D(stdout, elements, n);
53:
54: if (filename != NULL) {
55: FILE *fp = fopen(filename, "wb");
56: if (fp == NULL) {
57: fprintf(stderr, "error opening file.\n");
58: } else {
59: printPlacesCsv(fp, elements, n);
60: fclose(fp);
61: }
62: }
63:
64: mass.finalize();
65:
66: return(EXIT_SUCCESS);
67: }

The behavior of the above code is as follows: defines all available GPUs with MASS::init() (line
26). The code thereafter maps a matrix of n x n “Waves” places and distributes them over the
available GPUs (lines 34 – 35). The host process then falls into a cyclic simulation (lines 38 –
47) where all GPU threads repeat calling the following four functions in a parallel fashion:

- callAll() of the “Waves” places to update each place object’s status
- updateAll() of the “Waves” places to exchange data among place objects

At the end, all the threads are terminated and GPU and memory resource reclaimed get (line 64).

In the following sections, we will define the specification of “MASS”, “Places”, “Place”,
“Agents”, and “Agent”
	 	 	 	
3 MASS

All processes involved in the same MASS library computation must call MASS::init() and
MASS::finish() at the beginning and end of their code respectively so as to get started and
finished together. Upon a MASS::init() call, each GPU, running on the local machine, is
discovered, enumerated, and communication streams to and from each are opened up to facilitate
cross-GPU data transmission. Upon a MASS::finish() call, all devices are released, streams
destroyed, and memory released.

public void init(int ngpu, int* devices)

Initializes the MASS environment. Must be called prior to all other
MASS methods.

public static
void

finish()
Shuts down the MASS environment, releasing all resources. Finishes
computation.

public static
Places*

getPlaces(int handle)

Retrieves a “Places” object that has been created by a user-specified
handle and mapped over multiple GPUs.

MASS	 CUDA:	 Parallel-‐Computing	 Library	 for	 Multi-‐Agent	 Spatial	 Simulation	

UW	 Bothell	 Computing	 &	 Software	 Systems	 5	 	 	 	

public static
Agents*

getAgents(int handle)

Retrieves an “Agents” object that has been created by a user-specified
handle and mapped over multiple GPUs.

public static
void

createLaunchDimensions(dim3 &calcArea, dim3 &bd, dim3 &gd)
Creates CUDA launch dimensions for the given calculation area.

public static
void

printLaunchDimensions(dim3 bd, dim3 gd)
Prints out the given launch dimensions (mainly for debugging and
optimization).

	 	 	 	
4 Places

“Places” is a distributed matrix whose elements are allocated across different GPUs, and to
independently executing thread blocks within each GPU. Each element, (termed a “place”) is
addressed by a set of device independent matrix indices. Once the main method has called
MASS::init(), it can create as many places as needed, using the MASS::createPlaces() function.
A “Places” instance (simplified as “places” in the following discussion) is partitioned into
smaller stripes in terms of coordinates[0], and is mapped over a given set of GPUs and thread
blocks. Places is a template class that is designed to handle the class type Place or any class that
extends Place. Any other class type will result in undefined behavior.
	 	 	 	
4.1 template<typename T> public class Places

The class represents an array of Place objects distributed across available GPUs. Array elements
are accessed and processed by GPUs in parallel. The type represented by ‘T’ must be derived
from Place or this will result in undefined behavior

template<
typename T>
public

Places<T>(int handle, dim3 dimensions, int nGpu, int*
devices, void* args, int argSize, cudaStream_t streams,
cudaEvent_t *events)

Constructs a Places object with the given identifier ‘handle’ and size
‘dimensions’ across the specified number of GPUs. nGpu must match
the number of elements in devices. The remaining parameters may be
NULL if there are no arguments required for place creation or use of
CUDA streams and events is not necessary. Type ‘T’ must extend
Place.

template<
typename T>
public T*

getElements()
Returns an array of the Place elements contained in this Places object.
This is an expensive operation since it requires memory transfer from
the GPU.

public int getHandle()
Returns the handle associated with this Places object that was set at
construction.

MASS	 CUDA:	 Parallel-‐Computing	 Library	 for	 Multi-‐Agent	 Spatial	 Simulation	

UW	 Bothell	 Computing	 &	 Software	 Systems	 6	 	 	 	

public dim3 getDimensions()
Returns the 3D size of this Places object.

public void callAll(int funcId)
Executes the given funcId on each Place element within this Places.

public void callAll(int funcId, void *args, int argSize)
Executes the given funcId on each Place element within this Places.
Args is the arguments for this given function.

public void updateAll()
Executes the update() function on each Place element within this
Places.

public void eschangeAll(int handle, int functionId, Vector<int*>
*destinations)

Calls the method specified with functionId of all destination cells, each
indexed with a different Vector element. Each vector element of
destination[] is an array of integers where destination[i] includes a
relative index (or a distance) of the coordinate i from the current caller
to the callee cell. The caller cell’s outMessage is a continuous set of
arguments passed to the callee’s method. The caller’s inMessages[]
stores values returned from all callees. More specifically,
inMessages[i] maintains a set of return values from the ith callee.

4.2 public class Place

“Place” is the abstract class from which a user can derive his/her application-specific matrix of
places. An actual matrix instance is created and maintain within a “Places” class, so that the user
can obtain parallelizing benefits from Places’ callAll() and updateAll() methods that invoke a
given method of each matrix element and exchange data between each element and others. All
functions defined in this class are preceded with the flag “__device__” which means that this is
code that can be called from within a GPU. This is the class to derive from in order to obtain a
type ‘T’ to use in the Places template class.

__device__
public

Place(dim3 dimensions, Point2D coordinates, Place*
neighbors, int index)

This is the device constructor. It will only execute on a GPU. DO NOT
MODIFY.

__device__
public void

update()
Called by MASS while executing Places.updateAll(). Also called when
creating Places, immediately following init. When overridden, this
method must use fence synchronization to prevent repeated sharing of
place state. Each place must get and store their neighbors’ state in local
variables, and only once ALL places have done so, should each Place’s
internal state be modified with that data.

MASS	 CUDA:	 Parallel-‐Computing	 Library	 for	 Multi-‐Agent	 Spatial	 Simulation	

UW	 Bothell	 Computing	 &	 Software	 Systems	 7	 	 	 	

__device__
public void*

getMessage()
Returns the message that this Place is publishing. DO NOT MODIFY.

__device__
public Point2D

getCoordinates()
Returns this Place's global coordinates. DO NOT MODIFY.

__device__
public void

init(void *args)
Called by MASS immediately following the constructor. This is the
user's chance to perform any initialization and setup. Neighbors should
not be accessed yet. ABSTRACT FUNCTION.

__device__
public void

callMethod* int funcID, void* args)
Called by MASS while executing Places.callAll(). This is intended to
be a switch statement where each user implemented function (in
addition to those listed here) is mapped to a funcID, and is passed
‘args’ when called.

__device__
public
vector<Place*>

getAgents()
The agents residing locally on this place

4.3 A Framework of Application-Specific Place-Derived Class
	 	 	 	
An application-specific “Place”-derived class, (thus whose objects are instantiated upon a Places
instantiation), should have the following programming framework as shown in example 2. First
of all, it must include “Place.h” and inherits the Place class (lines 5 and 7). The constructor must
be defined to receive a void pointer as its argument (line 13). The place-derived class must then
implement callMethod() that receives an int-type functionId to invoke the corresponding method
and to pass a void pointer to it as its argument (lines 19 – 26). The actual functions invoked from
callMethod() and should be implemented as private method members (lines 29 – 33).

All functions in the derived class must be preceded by the flag ‘__device__’ in order to function
properly. See sample code for guidance. Functions should be defined within the header file.

Example 2:
1. #ifndef DERIVEDPLACE_H
2. #define DERIVEDPLACE_H
3.
4. #include <iostream>
5. #include "Place.h"
6.
7. class DerivedPlace : public Place {
8. public:
9. // 0: FUNCTION IDS
10. static const int FUNC_NAME = 0;
11.
12. // 1: CONSTRUCTOR DESIGN
13. __device__ DerivedPlace(void *argument) : Place(argument) {
14. // START OF USER IMPLEMENTATION
15. // END OF USER IMPLEMENTATION
16. }

MASS	 CUDA:	 Parallel-‐Computing	 Library	 for	 Multi-‐Agent	 Spatial	 Simulation	

UW	 Bothell	 Computing	 &	 Software	 Systems	 8	 	 	 	

17.
18. // 2: CALLALL DESIGN
19. __device__ void *callmethod(int functionId, void *argument) {
20. switch(functionId) {
21. // START OF USER IMPLEMENTATION
22. case FUNC_NAME: return func_name(argument);
23. // END OF USER IMPLEMNTATION
24. }
25. return NULL;
26. };
27.
28. private:
29. // 3: EACH FUNCTION DESIGN
30. // START OF USER IMPLEMENTATION
31. __device__ void *func_name(void *argument) {
32. return NULL;
33. }
34.
35. // END OF USER IMPLEMENTATION
36. };
37.
38. #endif
	 	 	 	
Example 3 shows how to instantiate a 100 by 100 objects from the above DerivedPlace class
(line 8) and to call the function() of each object in parallel (line 9).

Example 3:
1. #include "MASS.h"
2. #include "DerivedPlace.h"
3.
4. int main(int argc, char *argv[]) {
5. Parameter_t params;
6. processParms(argc, argv, ¶ms);
7. MASS mass;
8. mass.init(params.ngpu, params.devices);
9. int *args; // initialize program specific args her
10. dim3 size(100, 100, 1);
11. Places *places = new Places<DerivedPlace>(0, size, nGpu, params.devices,
12. (void *)args, sizeof(*args), params.streams, params.events);
13.
14. places->callAll(Wave2.FUNC_NAME, "message", 7);
15. Mass.finalize();
16. }

5 Agents

“Agents” is a set of execution instances, each capable of interacting with a place, migrating or
cloning themselves to any other place(s) with matrix indices, and interacting with any other
agents indirectly through a shared place interaction.

5.1 template<typename T> public class Agents
Once the main method has called MASS.init(), it can create as many agents as needed. Unless a
user supplies an explicit mapping method in his/her “Agent” definition (see 5.2 public class

MASS	 CUDA:	 Parallel-‐Computing	 Library	 for	 Multi-‐Agent	 Spatial	 Simulation	

UW	 Bothell	 Computing	 &	 Software	 Systems	 9	 	 	 	

Agent), “Agents” distribute instances of a given “Agent” class (simplified as agents in the
following discussion) uniformly over different GPUs. The type ‘T’ must be a derived class of
Agent (see section 5.2).

template<typename
T> public

Agents(int ngpu, int *devices, void *args, int argSize,
cudaStream_t *streams, cudaEvent_t *events, int
initPopulation)

Instantiates a set of agents from the “className” class, passes the
“argument” object to their constructor, associates them with a given
“Places” matrix, and distributes them over these places, based the
map() method that is defined within the Agent class. If a user does
not overload it by him/herself, map() uniformly distributes an
“initPopulation” number of agents. If a user-provided map() method
is used, it must return the number of agents spawned at each place
regardless of the initPopulation parameter. Each set of agents is
associated with a user-given handle that must be unique over GPUs.

public int getHandle()
Returns the handle associated with this agent set.

public int nAgents()
Returns the total number of active agents.

public void callAll(int functionId)
Calls the method specified with functionId of all agents. Done in
parallel among all GPU threads.

public void callAll(int functionId, void *argument, int argument_size)
Calls the method specified with functionId of all agents as passing a
(void *) argument to the method. Done in parallel among all GPU
threads.

public *void getValues (void *arguments[], int argument_size, int
return_size)

Receives a return value from all agents into (void *) arguments[i]
whose elements’ size is return_size. Done in parallel. The order of
agents depends on the index of a place where they reside and starts
from the place[x][y][z], and gets increased with the right-most index
first and the left-most index last.

public void manageAll()
Updates each agent’s status, based on each of its latest migrate(),
spawn(), and kill() calls. These methods are defined in the Agent
base class and may be invoked from other functions through callAll
and exchangeAll. Done in parallel among all GPU threads.

	
	
	 	 	 	

MASS	 CUDA:	 Parallel-‐Computing	 Library	 for	 Multi-‐Agent	 Spatial	 Simulation	

UW	 Bothell	 Computing	 &	 Software	 Systems	 10	 	 	 	

5.2 public class Agent

“Agent” is the abstract class from which a user can derive his/her application-specific agent that
migrates to another place, spawns copies, suspends/resumes activity, and terminates itself. All
Agents template classes must use a class derived from this class in order to function properly.

__device__
public

Agent(void *args)
Is the default constructor. A contiguous space of arguments is passed to
the constructor.

protected
Place*

place
Points to the current place where this agent resides.

protected dim3 index
Is a dim3 that maintains the coordinates of where this agent resides.
Intuitively, index.x index.y, and index.z correspond to coordinates of x, y,
and z, or those of i, j, and k.

protected int agentId
Is this agent’s identifier. It is calculated as: the sequence number * the size
of this agent’s belonging matrix + the index of the current place when all
places are flattened to a single dimensional array.

protected int parented
Is the identifier of this agent’s parent.

protected int newChildren
Is the number of new children created by this agent upon a next call to
Agents.manageAll().

protected
vector<void*>

arguments
Is an array of arguments, each passed to a different new child.

protected
bool

alive
Is true while this agent is active. Once it is set false, this agent is set to
inactive upon a next call to Agents.manageAll().

protected int agentsHandle
Maintains this handle of the agents class to which this agent belongs.

protected int placeHandle
Maintains this handle of the agents class with which this agent is
associated.

MASS	 CUDA:	 Parallel-‐Computing	 Library	 for	 Multi-‐Agent	 Spatial	 Simulation	

UW	 Bothell	 Computing	 &	 Software	 Systems	 11	 	 	 	

__device__
public int

map(int maxAgents, vector<int> size, vector<int> coordinates)
Returns the number of agents to initially instantiate on a place indexed
with coordinates[]. The maxAgents parameter indicates the number of
agents to create over the entire application. The argument size[] defines
the size of the “Place” matrix to which a given “Agent” class belongs. The
system-provided (thus default) map() method distributes agents over
places uniformly as in:

 maxAgents / size.length
The map() method may be overloaded by an application-specific method.
A user-provided map() method may ignore maxAgents when creating
agents.

__device__
protected bool

migrate(vector<int> index)
Initiates an agent migration upon a next call to Agents.manageAll(). More
specifically, migrate() updates the calling agent’s index[].

__device__
protected void

spawn(int numAgents, vector<void*> arguments, int arg_size)
Spawns a “numAgents’ of new agents, as passing arguments[i] (with
arg_size) to the i-th new agent upon a next call to Agents.manageAll().
More specifically, spawn() changes the calling agent’s newChildren.

__device__
public void

kill()
Terminates the calling agent upon a next call to Agents.manageAll().
More specifically, kill() sets the “alive” variable false.

__device__
public Object

callMethod(int functionId, void *arguments)
Is called from Agents.callAll. It invokes the function specified with
functionId as passing arguments to this function. A user-derived Agent
class must implement this method.

5.3 A Framework of Application-Specific Agent-Derived Class
	 	 	 	
An application-specific “Agent”-derived class, (thus whose objects are instantiated upon an
Agents instantiation), should have the following programming framework as shown in example
4. First of all, it must include “Agent.h” and inherits the Agent class (lines 5 and 7). The
constructor must be defined to receive a void pointer as its argument (line 13). The agent-derived
class must then implement callMethod() that receives an int-type functionId to invoke the
corresponding method and to pass a void pointer to it as its argument (lines 19 – 26). The actual
functions invoked from callMethod() and should be implemented as private method members
(lines 31 – 40). They may call the “Agent” base class’ migrate(), spawn(), and kill() methods to
control the invoking agents (lines 34 and 38). Note that actual migration, spawning, and
termination will be performed with the following Agents.manageAll() invocation.

Example 4:
1. #ifndef DERIVEDAGENT_H
2. #define DERIVEDAGENT_H
3.
4. #include <iostream>
5. #include "Agent.h"

MASS	 CUDA:	 Parallel-‐Computing	 Library	 for	 Multi-‐Agent	 Spatial	 Simulation	

UW	 Bothell	 Computing	 &	 Software	 Systems	 12	 	 	 	

6.
7. class DerivedAgent : public Agent {
8. public:
9. // 0: FUNCTION ID
10. static const int function_ = 0;
11.
12. // 1: CONSTRUCTOR DESIGN
13. __device__ DerivedAgent(void *argument) : Agent(argument) {
14. // START OF USER IMPLEMENTATION
15. // END OF USER IMPLEMENTATION
16. }
17.
18. // 2: CALLALL DESIGN
19. __device__ void *callmethod(int functionId, void *argument) {
20. switch(functionId) {
21. // START OF USER IMPLEMENTATION
22. case function_: return function(argument);
23. // END OF USER IMPLEMNTATION
24. }
25. return NULL;
26. }
27.
28. private:
29. // 3: EACH FUNCTION DESIGN
30. // START OF USER IMPLEMENTATION
31. __device__ void *function(void *argument) {
32. vector<void*> arguments;
33. arguments.push_back("hello");
34. spawn(1, arguments, 5); // spawn one child agent.
35. vector<int*> destinations;
36. int next[2] = { place->index[0] + 1, place->index[1] – 1 } // go NW
37. destinations.push_back(next);
38. migrate();
39. return NULL;
40. }
41. // END OF USER IMPLEMENTATION
42. };
43.
44. #endif
	 	 	 	
Example 5 shows how to uniformly distribute 4000 agents from the above DerivedAgent class
over a Places array (line 9), to call the function() of each object (line 10), and to control these
agents in parallel (line 11).

Example 5:
1. #include "MASS.h"
2. #include "DerivedPlace.h"
3. #include "DerivedAgent.h"
4. #include <vector>
5.
6. int main(int argc, char *argv[]) {
7.
8. // convert arguments
9. int nTurns = atoi(argv[0]);
10.
11. int x = atoi(argv[1]);
12. int y = atoi(argv[2]);

MASS	 CUDA:	 Parallel-‐Computing	 Library	 for	 Multi-‐Agent	 Spatial	 Simulation	

UW	 Bothell	 Computing	 &	 Software	 Systems	 13	 	 	 	

13. int z = atoi(argv[3]);
14. dim3 size(x, y, z);
15.
16. // initialize MASS
17. int nGpu = atoi(argv[4]);
18. int* devices = (int *) calloc(nGpu, sizeof(int));
19. MASS.init(nGpu, devices);
20.
21. Places *places = new Places<DerivedPlace>(1, size, nGpu, devices, null, 0,
22. null, null);
23.
24. Agents *agents = new Agents<DerivedAgent>(nGpu, devices, "hello", 5, null,
25. null, 4000);
26.
27. // compute results
28. for(int j = 0; j < nTurns; j++){
29. agents->callAll(DerivedAgent.functionConstant, "message", 7);
30. agents->manageAll();
31.
32. places->callAll(DerivedPlace.functionConstant, “message2”, 8);
33. places->updateAll();
34. }
35.
36. // use elements to output or store results of computation
37. DerivedPlace *elements = places.getElements();
38.
39. MASS.finish();
40. }	

	 	 	 	
6 Implementation Status and Plan
	 	 	 	
MASS CUDA is currently available for using Places only. Places are currently limited to 2D
places only, and current plans involve building 3D spaces out of a series of 2D grids.

Agents cannot yet be instantiated. We are planning to complete the initial implementation of
Agents by the end of June 2014 so that MASS CUDA can begin testing of full functionality and
performance gains.

