CSS 595: An Enhancement of Distributed Graph Queries in
an Agent-Based Graph Database

Term Report (SP25)

1. Introduction

Graph databases are a specialized type of database designed to handle highly interconnected
data by leveraging graph theory principles. Unlike traditional databases, graph databases store
nodes (entities) and edges (relationships) natively to enable efficient traversal and querying of
connected data. These databases are particularly well-suited for applications like social
networks, recommendation systems, and fraud detection, where understanding relationships is
critical. There are different approaches to graph database modelling, including the RDF
(resource description framework) model and the property graph model [3], which are the two
most widely followed models. RDF model uses triplets (subject-predicate-object) to represent
data, while the property graph model allows nodes and relationships to carry properties as key-
value pairs. The RDF model can be rigid due to its structure and complex for certain
application, while the property graph model is more flexible and is ideal for a dynamic use case
requiring frequent schema changes and detailed relationship modelling.

The agent-based graph database system follows the property graph model, abstracting the
underlying distributed layer built using the MASS (Multi-agent spatial simulation) Java library.
In the distributed environment, the system operates across multiple computing nodes with the
data split across the nodes and maintained in-memory for efficient access and manipulation.
The MASS Java library excels at managing simulations where entities, represented as Agents,
dynamically interact with each other and their environment, depicted as Places [5]. The graph
database system is developed by extending the MASS Java library to allow data representation
using the property graph model and querying using the agent entities.

Filters are an essential component of a database system, enabling users to extract data matching
certain criteria while also reducing the computational load on the systems during reading
operations. To fulfil this aspect in the current version of the agent-based graph database, my
aim for this quarter has been the implementation of the filtering mechanism for reading
operations in the graph database.

2.Background and Challenges

The current version of the MASS graph database provides basic functionality to the users in
the form of creating, updating, and fetching results based on simple query patterns. It
successfully incorporates the following aspects of the Cypher query language — CREATE,
RETURN and MATCH clauses. The system follows a three-tier architecture pattern, as shown
in Figure-1, separating the presentation, logic, and data access layers to provide high levels of

abstraction to the users such that they can interact with the database without any in-depth
knowledge of the underlying structure. [1]

Agents/
Main Design / (s \ executmn\
() e t-__m.m - Execution
| Poseryane Jo={_Propeny Plan Building

Graph DatJah:se

| PropertyGraphPlaces |« = PropertyVertexPlace | T
4 N i

| PropertyGraphCypherVisitor ExecutionPlanBuilder
= convert query tree into AST =build(). Execution ree

= Expriontext

AN

Presentation

\ - -
— PropertyGraphCypherQueryContext
§ 3 -G:;-p.:ﬂmmmephPIacgs ‘ - var: PropertyGraphPlaces AST
. _:pﬂ. Y e | = var: ExecutionPlanBuilder
GraphDBHandler - Start{). call MASS.init() s
s - Sop():calMASS fnh() H parsing
- buildGral s
. p,.-,.@,,::(!)] PropertyGraphCypherQuery P attonsent
\ /| ||~ queryHandier) ‘-pm(): call CypherVisitor ‘ vl
— | y. -axecute(): call Context to build and execute Execution tree | P
N

enterAssign] '.;ssiqn(nnlnl exitdssign()

¥ Juminaliode o
~

Figure-1: Three tier design for Graph Database System

The presentation layer acts as the point of interaction with the users, where users can build the
graph based on input node and entity files and query the graph, upon successful graph creation.
The logic layer is responsible for executing the graph creation and further interacting with the
MASS system for fetching results for reading queries. The data access layer where the raw
string inputs are parsed and converted into an abstract syntax tree (AST) representation in Java,
which is eventually translated into agent code which manipulates the agent behaviours based
on the input query. This layer is also responsible for fetching the results and providing them to
the logic and presentation layers.

This system adopts the property graph model by extending the core MASS concepts, as shown
in Figure-2, such as Places (serving as a spatial framework) and Agents (dynamic entities that
interact within the spatial framework defined by Places) . Places is initially extended to support
simple graph applications by GraphPlaces and further modified to support multiple properties
for entities and relationships (property-graph model) by PropertyGraphPlaces.

MASS Basic Library I MASS Graph Library

Places ‘27-i4‘ GraphPlaces :—,:v PropertyGraphPlaces

MASS Property Graph Library '

Contains |} Esterds Cntains [] Extonds O)ri-'vul
Place = VertexPlace ¢—}— PropertyVertexPlace
Agents
-
Cnntm&

Extends

Extends
Agent C:F! GraphAgent ‘:Tﬁ — PropertyGraphigent

public class PropertyVertexPlace extends VertexPlace {
private String ItemlD = null;
private Set<String> labels;

private Map<String,String> nodeProperties; // to store node properties
private Map<Object, Object[]> toRelationship; // to store TO direction relationship types & properties
private Map<Object, Object[]> fromRelationship; // <ItealD, Object([Set<String> types, Map<String, String> properties]>

private List<Integer> nextVertex;

Figure-2: Adopting the property graph model in MASS

" y -
Query Handler e AN
- Noke #11 ™ Jrminl
Layer Logic Layer Data A Layer aeqinghoc _emehd -’ I'. L .
-t .

The query execution flow for the current system is based on a three-step process: building the
abstract syntax tree (AST) representation of the cypher query, defining the execution plan
for agents based on query content followed by the execution and result aggregation. The
(AST) representation is built using the ANTLR parsing tool which makes it easy to customize
how the query tree gets parsed and necessary information gets stored for generating the agent
code [2]. The AST module is built to map the syntax specific to cypher grammar, which follows
a hierarchy as shown in Figure-3, to Java classes with similar class hierarchy. Using the
ANTLR s visitor mechanism, the query tree is parsed and the important data (e.g. label names,
property lookups, comparison operators etc.) gets stored in the respective AST class. The
following figure provides a visualization of the parse tree that needs to be traversed for a cypher
clause using the ANTLR parsing tool.

Figure-3: Parse tree structure for a CypherQL query (e.g. MATCH clause with a WHERE component)

Once the entire query is parsed and the data stored in AST format, we move onto the execution
plan building phase. This phase defines how the extracted data gets utilized and converted into
arguments for agents. The execution plan is essentially a tree of execution steps, which is
required to fulfil the query efficiently. The mapping of classes and respective methods different
steps of the query execution flow (AST parsing, Execution Plan building and the query
execution by Agents), is shown in the Table-1 as it connects the parse tree rules (from Fig-3),
with class hierarchy of execution plan builder (Fig-4).

Table - 1: Mapping between the parse-tree rules, AST classes, and execution plan builder classes

Parse Tree C_\'phel'\: isitor AST Execution PIflanlder Execution Step
function function
ol _CREATE visitOC_Create() CypherCreateClause visitCreateClauset) JoinExecutionStep
oC_PatternPart visitOC_PatternPart() CypherPatternPart visitCreateClausePatteraPart() CreatePatternExecutionStep
oC_NodePattern visitDC_NodePattern() CypherNodePattern visitCreateNodePattemn() CreateNodePatternExecutionStep
ol _RelationshipPattern | visitOC_RelationshipPattern() | CypherRelationshipPattemn | visitCreateRelationshipFattern() | CreateRelationshipPatternExecutionStep

ExeculionStep SeriesExeculionStep

(interface) + extends ExeculionStepWithChildren
» implements ExecutionStep

iphOypherResult

+ Input: CypherQuery
vars,

« List<ExecutionStep> chilisteps

JoinExecutonStep RetumExecutionStep MatchExecutionStep

+ extends ExecutionStepWithChildren
« implernents ExeculonSlep

« Inpuc: CypherCreateClause
Vars:

« List=CreatePatternExceutionStep>

childsteps

CreatePatlernExerulionSten

+ extends ExecutionStepWithChildren
« implements ExecutionStep

« Inpul: CypherCreateClause.
i

- List<CreateNodePatternExecutionSiep>
 List<CreateRelationshipPallemExecutionStep>
» Sting ExecutionStepName

l

CreateRelationshipPatemExecutonStep

« extends CreatePatiernExecutionStep

« Ingut: CypherhodePattern

+ Listestring> nodeLabels
+ List=String, Sting> NodePropertes
« String nodeName

|

CreateNodePattemExecuionSiep

+ extends CreatePattemExecuionStep

+ Input: CypherRelationshipPatiern

» List<Sting> relatanshipType

+ Wap<Sting, Stiing= relationshipPrapertes

+ Stning refationshipName
+ Cypherbirection relationshipbirection

« CypherNadePattern previousNodePatem

» CypherNodePallern nexiNodePattern

« extends ExecutionStep\ithChildren
« implements ExecuionStep

« Input: CypherRetumClause,
CypherRetumBody

vars:
+ List<ReturnPartExecutionStep=

RetumPartCxecutionStep.

« extends ExecutionStepWithChildren
« implements ExecutionStep

« Input: CypherRetumitem
Vi

« Vars:
« List<LookUpExecutionStep>

LackUpExecutionStep

« extends ExecutionStepWwithChildren
~ implements ExecutionStep

Input: CypherLookUp

- extends ExecutionStepWithChildren
« implements ExetutionStep

» Input: Cypher'atehClause
Vars:

+ List<PaticrnPantExceutionsteps:=
childsteps

PallernParlExecutionStep

« extends ExeculionStepWilh Children
« implements ExecutionStep

« Input: CypherPaltemPart
Vars

vars:
- ListMatchPartExecutionStep>

MatchPartexecutionStep (abstract class)

« extends CxecutionStepWithChildren
« implements ExecutionStep

Vars:

« String resuftName

« stiing originalName

« ListsString= propertyResutNames
« Boalean optional

“atchNodePattemExecutinStep

« extends MatchPartExecutionStep

+ Input: CypherhadePatiarn
Vars:

« List

ring> nidel abels
ring, Sting> NodeProperties
- String nodeName

atchRelatonshipExecutionStep

« extends MatchPartExecutionstep

« Input: CypherRelatianshipPattern
vars:

+ ListSiring> relationshipType
Map=Siring, Sting>
relatianshipProperties

+ String relationshipName

« Cypherbirection
relatianshipDirection

« CypherNodePatiern
previousNodePatiern

+ CypherNodePattern
nextNoderattern

Figure-4: Execution step tree determining the steps in an execution plan

The MASS graph database system implements various Cypher clauses, each requiring distinct
agent behaviors. Clauses like CREATE (for node/relationship creation) operate independently,
while others like MATCH and RETURN function as interdependent components within a
single query. This variation in clause functionality necessitates a structured execution
framework.

Figure-4 illustrates the hierarchical execution plan that guides agent behavior during query
processing. This hierarchy serves as a critical blueprint, defining the precise sequence of
operations agents must perform when interpreting different clause combinations. The
structured class relationship shown in the diagram ensures that agents can systematically
process complex queries by following predefined execution paths, while maintaining the
specific operational requirements of each clause type. This architectural approach enables the

system to handle both standalone operations and multi-clause query patterns with consistent
behavior.

The final step in the process is the execution of the plan by agents, as depicted visually in
Figure-5. Based on the execution step, agents are provided with corresponding attributes to
verify and migrate or terminate. PropertyGraphAgents carry the pathResult attribute to store
the path traversal results and inherit them form the parent agent (if any). To facilitate co-
ordination agents, multiple iterations of callAll() and manageAll() are invoked for verifying if
the current Place satisfies the node pattern information. If validated, the current place’s ID is
added to its pathResults list, and neighbor places are determined via the relationship pattern
and updated in its nextVertex field, facilitating agents to migrate to its neighbor places.
Subsequently, manageAll() is called to coordinate the lifecycle of agents, encompassing the
stages of spawn, kill, and migration.

Place 4
i o A Agent{Agent134, Agent234]
Agent 234 NextVertex(]
Place 1 Agent 13
AgentfAgent1] i
NextVertex[Place 3]
Place 5
Place 3 = AgentfAgent135, Agent 235]
] Agent[Agent13, Agent23) . NextVertex|]
NextVertex[Place 4,
Place 5, Place6)
Place 2
Agentf{Agent2] Agant 23
NextVertex[Place 3] —— Place 6
neent236 > Agent[Agent136, Agent 236]

NextVertex[]

Figure-5: Agent propagation in MASS PropertyGraphPlaces

The current state of MASS graph database system allows for CREATE, MATCH and RETURN
clauses, but has some limitations in terms of the constraints that can be put for the queries. In
the current state it also does not allow for deletion and does not support the “filters” for a query,
which are essential for a database system.

The challenges associated with building a filter mechanism for the MASS graph database lies
in determining the approach for checking constraints for different entities and relationships
based on the MATCH pattern. For example, in the following pattern:

MATCH (p:person)-[r:acted_in]->(m:movie) WHERE p.age > 35 AND m.rating >=4.0
RETURN m,p

e Agents only have access to one node and the corresponding relationship
information at a given point of time

e Using constraints after traversing all the paths with the MATCH pattern might
provide the correct results to the user, but would inherently not provide any
optimization/reduce computational load on the system while doing reading
operations.

3. Autumn Quarter Implementation (AU24)

My focus for this quarter was working on the WHERE clause implementation. WHERE clause
in Cypher is used to filter query results by adding conditions to patterns specified in
the MATCH or OPTIONAL MATCH clauses. It functions similarly to the WHERE clause in
SQL, allowing users to refine their queries by applying constraints on node properties,
relationships, or patterns [4]. For example, it can be used to filter nodes based on property
values, check for the existence of properties, or apply multiple conditions using logical
operators like ‘AND’, ‘OR’, and ‘XOR’. This makes it a powerful tool for retrieving specific
data from a graph database.

The approach for incorporating the WHERE clause in the MASS graph database is as follows:

1. AST representation: Within the Java AST module, building a new class to represent the
structure of cypher WHERE clause. Splitting the constraints to a List of expressions
and separators (Boolean operators — AND, OR, NOT), as shown in Figure-6, (line 5 —
7).

2. Execution plan building: Making changes within the parent MatchPartExecutionStep,
to provide the agents with more attributes, namely: constraints (list of expressions),
separators (list of Boolean operators) and partial results (a list of Booleans, storing the
corresponding results of constraints after verification by agents)

3. Agent code: In addition to pathResult, the PropertyGraphAgents will also pass along
the partial results to the children instance.

4. To optimize constraint checking, implementing a ‘short-circuit’ evaluation strategy for
Boolean logic.

ssion>> constraints;

on>> constraints,

.constraints = constraints;
.separators = separators;

CypherListLiteral<Cyp X on»> getConstraints(){

<String> getSeparators(){

Figure-6: AST representation for WHERE clause, initial version

The flowchart in Figure-7 illustrates a comprehensive process for extending Cypher clauses in
the MASS graph database system, including the development of the Cypher WHERE clause.
This approach begins with building the Abstract Syntax Tree (AST) representation of the
clause, followed by modifying the PropertyGraphCypherVisitor class methods based on the
parse tree. The data is stored using the AST module class. Execution steps classes are then
constructed for each clause, with necessary adjustments made in the ExecutionPlanBuilder
class methods. The process also involves mapping these changes to agent behavior, such as

adding new attributes or methods, and optimizing the AST representation. This incremental
and systematic methodology ensures effective feature development and functionality

enhancement.

Start Here

N4

arsing phase
Build the AST P op

representation of
the Clause

A

Optimize: AST Flow for extending new cypher

representation

Map out what this
translates to in terms
of agent behaviour =

clauses in MASS graph database

(e.g. new attributes,
new methods etc.)

Agent behaviour /
execution

Modify the
CypherVisitor method
based on the parse
tree; Store data using
the AST module class

execution plan building

Y

Build the execution
steps for the particular
clause; Make

appropriate changes in

the
ExecutionPlanBuilder

Figure-7: Flow for incrementally building new features/extending cypher clauses in MASS graph database

5. Winter Quarter Implementation (WI25)

This quarter’s focus was working on the WHERE clause, extending the previous quarter’s
implementation along with some changes made to incorporate the evaluation approach for the
WHERE clause expression. The following implementation entails the details for the
completion of parsing phase (using ANTLR tool) of Cypher Where clause for MASS graph

database system.

1. Abstract Syntax Tree (AST)

Taking into consideration the arguments expected for providing additional set of constraints to
Agents during the Match clause execution, the AST representation of CypherWhereClause was
modified to accommodate the postfix notation of the expression along with the constraints
mapped based on symbolic names, as shown in Fig-8 (lines 7-12).

g>>> constraints,
ression_list)f

constraints;

st = expression_list;

Figure-8: AST representation for WHERE clause, modified version

To build the constraint map along with the unique expression ID (representing each sub-
expression / the smallest individual expression) while parsing the input query’s where-
expression, another helping class — CypherWhereContext was built. This class generates
unique expression IDs to keep track of the sub-expressions in WHERE clause and store them
in the constraint map for efficient retrieval, as shown in Figure-9 (lines 8 — 19). This class
object is used as a shared resource and passed downstream in the parsing tree based on
CypherQL’s Grammar (more details in the appendix section-a).

ring>»> constraints_map;

ing»>>> constraint_map,

raints_map = constraint_map;

n_list = expression_list;

HashSet<>

Figure-9: Helper AST class — CypherWhereContext

2. Testing with different cases:
Fig-10 to Fig-12 shows the contents of the constraints map and expression list attributes
of the CypherWhereClause AST class (Fig-8), after the parsing phase is completed.

e Simple Expression:
WHERE p.age> 25 OR m.rating > 4

=> Infix: “exp@® | expl”
=> Postfix: “exp® expl |”

[aatmanrp@hermes@l ~]$ fusr/bin/env fusr/lib/jvm/java-11-openjdk-11.8.22.8.7-1.el7 9.x86_64/b
leParsing

LHS tree returned UID: exp®

In the RHS tree updating UID: exp®

Fetching RHS

LHS tree returned UID: expl

In the RHS tree updating UID: expl

Fetching RHS5
>CypherlhereClause content:
WHERE
constraints-map: {p: [age, », 25, exp®, TRUTH VALUE], m: [rating, >, 4, expl, TRUTH VALUE]}
expression list: exp@, expl, |
[aatmanrp@hermes@l ~]% I

Figure-10: WHERE clause parser test case-1

e Complex Nested Expression:
WHERE p.age> 25 AND (m.rating > 4 OR m.budget < 500000)

=> Infix: “exp® & (expl | exp2)”
=> Postfix: “exp® expl exp2 | &

LHS tree returned UID: exp@
In the RHS tree updating UID: exp@
Fetching RHS
Fetching RHS
LHS tree returned UID: expl
In the RHS tree updating UID: expl
Fetching RHS
LHS tree returned UID: exp2?
In the RHS tree updating UID: exp2

hing RHS

CypherWihereClause content:
WHERE
25, exp@, TRUTH_VALUE], m: [rating, », 4, expl, TRUTH VALUE], [budget, <, 580088, exp2, TRUTH_VALUE]}

Figure-11: WHERE clause parser test case-2

e Parenthesized expression with multiple constraints on the same key:
WHERE m.release_year = 1995 OR (m.rating > 4 AND m.budget > 100000)
=> Infix: “exp® | (expl & exp2)”
=> Postfix: “exp® expl exp2 & |”

p@hermes@1 ~]% /usr/bin/env fusr/lib/jvm/java-11-openjdk-11.8.22.8.7-1.el7_9.x86_64/bin/java @/tmp/cp_e8crhb@ibbbuhonv87wxzbowa.argfild
lePa g
LHS tree returned UID: exp@
In the RHS tree updating UID: exp@
Fetching RHS
Fetching RHS
LHS tree returned UID: expl
In the RHS tree updating UID: expl
Fetching RHS
LHS tree returned UID: exp2
In the RHS tree updating UID: exp2
Fe RHS
== ypherWhereClause content:
WHERE

const : {m: [release year, =, 1995, exp@®, TRUTH VALUE], [rating, >, 4, expl, TRUTH VALUE], [budget, >, 180080808, exp2, TRUTH VALUE]}
expressi pB, expl, exp2, &, |
aatma 2

Figure-12: WHERE clause parser test case-3

Based on the above implementation, the following is the approach towards integrating the
data stored in the AST representation with the agent code.

3. Expression Evaluation Approach and Integration:

The graph database WHERE conditions are to be evaluated using a stack-based approach.
As agents traverse the graph, they populate the constraint-map with truth value results for
individual constraints (e.g., "prop_name > 30"). The core of this evaluation relies on the
representation of the WHERE expression in postfix notation and then using a stack to
process operators and operands sequentially. During postfix evaluation, operands (truth
values from constraints) are pushed onto the stack, while operators pop the required number
of operands from the stack, apply the logical operation (AND, OR, NOT, XOR), and push
the result back onto the stack. This stack-based method efficiently handles complex boolean
expressions with proper operator precedence (NOT > AND > XOR > OR), allowing the
WHERE clause to correctly filter graph paths by evaluating nested conditions without
requiring recursive parsing. The result is obtained when all tokens are processed and only
a single boolean value remains on the stack, determining whether the current path satisfies
all conditions.

Stack Evaluation Steps

Stack: [a]

Stack: [a, b]

Stack: [a, b, c]

|

Operator Precedence

NOT(!) AND(&) +——» XOR(") ——» OR(|]) Stack: [a, (b"c), d]

Stack: [a, (b"c), d, €]

|

‘ Stack: [a, (b"c), (dfe)] ‘

|

Stack: [a, ((b"c)|(d&e))]

|

Stack: [al((b"c)1(d&e))]

Initial HashMap

a: true b: false c: true d: false e: true

Infix to Postfix Conversion

‘ alb*“c|ld&e }—b{ abcdef& || ‘

Figure-13: A visual representation of the stack-based expression evaluation approach

6.Spring Quarter Implementation (SP25)

This quarter’s focus was on completing the implementation of WHERE clause in MASS graph
database by integrating the above-mentioned expression evaluation mechanism with agent
migration. The outputs of WHERE clause were verified for correctness and benchmarking was
performed using the IMDB movies dataset. The details are as follows: -

1. WHERE clause integration changes:

The changes made to the existing implementation, on the execution planning and agent

code execution phase include:

e PropertyGraphAgent & Agent agruments:
To provide agents with the context of the WHERE clause, modifications were made to
the PropertyGraphAgent class itself and additional set of data added to the agent
arguments array. These are the arguments/attributes that enable the
PropertyGraphAgents to evaluate if they are on the correct vertex on the graph
according to the details extracted from the query patterns.

Two new attributes — contraintsMap (a hashmap containing the Where clause
constraints based on the generated AST) and expressionList (a postfix notation
representing the logical expression in the WHERE clause), were added to the
PropertyGraphAgent class (lines 48 to 66).

ist<lis traintsMap;
onl
pathResult;

.pathR

.pathResult = new Arrayl
raintsMap =
ssionlist =

Figure-14: Modified PropertyGraphAgent class

Two new arguments — symbolicName pair (array containing current node and
relationship’s symbolic names) and iteration number pair (array containing the
current iteration and total iterations based on query pattern), were added to the existing
list of five agent arguments (lines 67 to 77).

MatchPatternPartExecutionStep(String resultName, CypherWhereClause whereExpression, MatchPartExecutionStep... matchPartExecutionSteps) {
if(whereExpression!=
-agentInitializer AgentInitArgs 3 » convertCypherMapToHashMap(whereExpression.getConstraintsMap()), convertCypherListTolist(whereExpred
else

.agentInitializer = new AgentInitArgs(pathResult: 5 traintsMap:

i < matchPartExecutionSteps
jonstep nodeStep — xecutionStep) matchPartExecutionsteps[il;

ep.getResultname());

ep relStep - i < matchPartExecutionSteps th ? (Mat onshippa i p) matchpartExecutionsteps[i] :

: (i
Symbo1licName!
? "EMPTY" Step.getSymbolicName();
= {nodeSymbolicName, relSymbolicName};
) symbolicNames;

matchIterat: +1, nodeNumber};
get(i)[6] = j matchIterations;

Figure-15: Modified set of arguments for agents

e Updating the constraintsMap:
As the agent perform validation checks for each vertex and edge to determine if it
should migrate or terminate, the constraintsMap update the truth values of sub-
expressions based on the current node and relationship. Once the entire constraintsMap
is populated with the truth values, we perform the stack-based evaluation described
above using the trigger mechanism.

e Trigger mechanism for WHERE clause evaluation:
Once the agents reach the destination node, there needs to be an evaluation to determine
whether the retrieved path passes the conditions of the WHERE clause. This evaluation
gets triggered when the current iteration equals the total iterations in the agent
arguments. Based on the outcome of the stack-based evaluator, the current pathResult
is aggregated to results only if the outcome is ‘true’.

e Execution phase visualization:
The execution phase for handling queries with WHERE clauses involves both argument
preparation and agent migration, as shown in the figure below:
e Argument-Preparation:
The execution plan builder decomposes the Cypher query into multiple stages.
For each stage, it assigns:
The symbolic name of the node/relationship.

o The node labels, relationship type and properties (if specified).
o Any directional information required for relationship traversals.
o constraintsMap and expressionList from the CypherWhereClause class

in parsing phase.
These arguments are packaged into agent payloads before dispatch.
o Agent-Migration:
As agents traverse through MASS Places (nodes), they carry these arguments
and constraints. At each place:

o Agents verify the correct path using node/edge properties & keep
updating the constraintsMap.

o Evaluate applicable constraints once they reach the final node based on
query pattern.

o Clear the pathResult if the evaluator output is ‘false’.

WHERE Constraints:-

For agent based execution of MATCH Clause. the execution planning phase it {A{age. = 30, exp0, TV},

crucial as it prepares the arguments and packages it specifically for the B:{{year, = 2001, expl, TV},

PropertyGraphAgent. {budget. '<', 1000,000', exp2,
TV}

Agent ARGS; Agent ARGS: Agent ARGS:

- nodeSymbolicName: ‘A’ - nodeSymbolicName: - nodeSymbolicName:
Nodelabel: “person”, B i
NodeProps: ", Nodelabel: “movie” Nodel abel: “person”
relSymbolicName: RY NodeProps: " " NodeProps: "
RelDir; “->" relSymbolicName: 'R2" relSymbolicName: "
RelType: "acted_in" RelDir: "<-" RelDir: NULL
RelProps: " * RelType: “acted_in" RelType: NULL
curr_itr: 1 RelProps: ** RelProps: NULL
Total_itr: 3 curr_itr: 2 curr_itr: 3

Total_itr: 3 Total_itr: 3

Figure-16: Visualization of agent argument preparation

2. Verifying the correctness of the implementation:

Enter queries: MATCH (m:movie) WHERE m.year = 1996 RETURN m
Printing Query Resu :
movie 61

movie 66
movie_ 7@
movie 74
movie 79
= movie_ 86
movie_87
movie 88
movie_ 92
= movie_94
= movie 95
movie 100
Query handlering time: 50

Figure-17: Execution example-1 of WHERE clause query

33333333333 313313

Enter queries: MATCH (m:movie)<-[r:acted_in]-(p:person) WHERE m.year < 1996 AND p.bornin = "australia’ RETURN m,p
Printing Query Results:

m = movie 2 p = person_8537
Query handlering time: 89

Figure-18: Execution example-2 of WHERE clause query

3. Initial benchmarks using the IMDB movies dataset:

The IMDB movies dataset supports diverse query types: simple lookups, property filters,
and nested logical conditions. It was transformed into the MASS graph database CSV
format and here is a brief overview of it:

Node Types:

e Person: Name, person_imdbid, born

o User: Name

e Movie: Title, Year, movie imdbid, budget, runtime, imdb_votes, released, imdb_rating

Relationship Types:
e Acted in (Role),
o Directed,

e Rated (rating (out of 5), Timestamp)

Dataset Size:
e ~1,100 Nodes
e ~8,130 Relationships

Overview

Node labels

_ ® - D
Director S—— -

Relationship types

Displaying 5 nodes, 7 relationships.

__ACTEDIN—
—— DIRECTED — "

Fig-19: IMDB dataset visualization

Initial Benchmarking was performed using the following query types:

o Single Entity (no filters): MATCH (m:movie) RETURN m

o Single Entity (1 constraint): MATCH (m:movie) WHERE m.year = 1996
RETURN m

o Single Entity (Multiple Nested Constraints): MATCH (m:movie) WHERE
m.imdbrating > 7 AND (m.year >= 1995 AND m.year < 2000)
RETURN m

Execution Time (ms)

Neo4j vs MASS Single Node Comparison

Platform
[Neodj (Desktop)
. MASS 1 Node

Single Entity (Nested filters)

Single Entity (1 filter)

Query Type

Single Entity (No filters)

0 10 20 30 40 50
Execution Time (ms)

Fig-20: Comparison of average execution times on Neo4j vs MASS Graph DB (single compute node)

MASS Nodes Query Execution Time Comparison

180+ Query Type
—a— Single Entity (No filters)
—e— Single Entity (1 filter)

160 | —&— Single Entity (Nested filters)

140
120}

100

60

Platform Configuration

Fig-21: Average execution times of queries in MASS Graph DB over different number of compute nodes

Since systems like Neo4j only work on a single compute instance, we compared its query
execution times with MASS Graph Database on a single compute node. As per the
visualization in figure-20, we can infer that both systems have quite comparable execution
times (< 10 ms of difference) which are consistent along all three query types. The slightly
quicker execution observed in Neo4j can be attributed to its caching mechanisms and
optimized querying using Anchor Nodes (appendix — Section a, 1). MASS Graph DB does
not utilize any such caching or optimizations currently.

As MASS Graph Database is a distributed graph database, it can create and maintain a
graph across multiple cluster nodes. This is especially useful when the graph sizes increase
significantly (i.e. larger than the physical memory) and we exhaust a single machine’s
memory space. In such cases systems like Neo4j cannot store the graph, yet alone querying
it. Our aim with MASS Graph Database is to support querying under such scenarios along
with the advantage to scale horizontally by adding more compute nodes. Additionally, when
systems like Neo4j get many simultaneous queries beyond its capabilities we expect MASS
Graph Database to outperform it due to its agent-based querying mechanism.

The query execution times for agent-based querying on a distributed graph database are
visualized in figure-21. We find that as we keep doubling the number of compute nodes,
the execution times tend to increase but converges at 8 nodes configuration. This increase
in execution times is likely due to an overhead from communication and synchronization
which is required when there are agents migrating and accumulating results across multiple
compute nodes.

We can observe that the number of constraints on the query do affect the execution times
as the nested query has a slightly slower execution compared to other queries but well
within the range of other queries. This proves that the stack-based evaluation of WHERE
clause does not add any significant overheads on the MATCH clause while improving the
expressiveness of queries in MASS Graph Database.

Takeaways:

e There is scope for improving the agent-based querying with some optimization
strategies.

e Benchmarking over larger datasets is required to compare how performance is
affected by graph size and node degrees.

e Benchmarking over different types of queries at different depths to see how the
execution times are changing.

4. Plan for Summer 25 quarter implementation

The focus during Summer 2025 quarter is performing additional benchmarking tasks over
larger datasets and observing how the performance scales with graph size. Another area of
focus is to find ways to optimize the filtering performance by improving how agents can
terminate quickly using dynamic evaluation while migrating.

Spring 2025 Tasks
Timeline
Week 1 WHERE Clause benchmarks: Running benchmarks over bigger
dataset
Week 2 WHERE Clause: Evaluating possible optimizations
Week 3 WHERE Clause: Trying the short-circuit evaluation pattern
Week 4 WHERE Clause: Testing the correctness of above implementation
Week 5 WHERE Clause: Benchmarking across MASS, Neo4j and ArangoDB
Week 6 Delete Clause: Ideation and possible implementation plan
Week 7 Completing the White-paper
Week 8 Documentation and Code clean-up in the development branch
Week 9 Final preparations
Week 10 Thesis Defence?
Week 11 Thesis Defence?

5. References

[1] L. Cao, "An Incremental Enhancement of the Agent-based Graph Database (Received
from DS-Lab)," 2024.

[2] T. Parr, The Definitive ANTLR 4 Reference, 2nd ed. Pragmatic Bookshelf, 2013.

[3] C. Willemsen and L. Misquitta, Neo4j: The Definitive Guide. Sebastopol, CA, USA:
O'Reilly Media, Inc., May 2025. ISBN: 9781098165659.

[4] "Clauses," Cypher Manual, Neo4j, Dec. 11, 2024. [Online].
Available: https://neo4j.com/docs/cypher-manual/current/clauses/. [Accessed: Dec. 11,
2024].

[5] M. Fukuda, C. Gordon, U. Mert and M. Sell, "An Agent-Based Computational
Framework for Distributed Data Analysis," in Computer, vol. 53, no. 3, pp. 16-25, March
2020, doi:10.1109/MC.2019.2932964.

6. Code

1. mass java appl, aatmanrp/graph-database branch:
https://bitbucket.org/mass_application_developers/mass_java_appl/src¢/QueryGraphD
B/

2. mass_java_ core, aatmanrp/mass-refactoring branch:
https://bitbucket.org/mass_library_developers/mass_java_core/src/QueryGraphDB/

https://neo4j.com/docs/cypher-manual/current/clauses/
https://bitbucket.org/mass_application_developers/mass_java_appl/src/QueryGraphDB/
https://bitbucket.org/mass_application_developers/mass_java_appl/src/QueryGraphDB/
https://bitbucket.org/mass_library_developers/mass_java_core/src/QueryGraphDB/

7. Appendix

a. Definitions:
1. Anchor Nodes: a set of nodes to start from that are selected first, which are
used as the starting point for graph traversals.

b. Use of CypherWhereContext class in parsing the WHERE clause sub-tree

PropertyGraphCypherVisitor — the parsing interface class built using ANTLR tool
for parsing the CypherQL queries. It consists of visitor methods for grammar rules
based on the following structure in Figure-15.

oC_Multiply

Decimalinteer30

Figure-15: WHERE clause parse tree used in the parsing and AST building phase

The following code snippets represent important visitor methods for rules important to building
the AST of WHERE clause (i.e. generating the constraint map and postfix expression), which
depict the CypherWhereContext object — “whereCtx” being passed down the subtree.

|_. e =
children.

vi

visitOC_Wher

herL i al- <5tr > constraints_map = r CypherMaplLiteral<»();

expression_list i CypherListLiteral<>();

whereCtx = new CypheriWhereContext(constraints_map, expression_list);

_(ctx.oC_Expression(), whereCtx);

ause(whereCtx. getConstraintsMap(), whereCtx.getExpressionlist());

Figure-15: Visitor method for visitOC _Where rule

whereCtx){

whereCtx);

whereCtx);

t0C_XorExpression (children.get(1l), whereCt
eCtx.getExpressionlist().addElement (e

Figure-15: Visitor method for visitOC _OrExpression rule

d visitOC_ComparisonExpression_

rtialC

whereCtx.getExpressionList().addElement(curr_UID);

Visitor method for visitOC _ComparisonExpression rule

up > propertylookups = ctx.oC_Prope

nodelabels = ctx.oC_Nodelabels();

F({ propertyLookup: || propertylookups
: {nodelabels || nodelabels.oC_HNodelabel |1
children.si 1= 1) {
raphCypherSyntaxErrorException(™ir + ctx.getText
println(” RHS ™) 5
t0C_Atom_(atom, whereCtx, curr_UID

irr_UID) ;
+ curr_UID);

if(curr_UID.equals(EM
tt PropertyGraph

t0C_PropertylLookup (propertylookups, whereCtx, curr UID);
n curr_UID;

visitOC_Atom_(

. Variable()!=

ame = visitVariableString(ctx.oC Variable

curr_UID = whereCtx.generateExpressionID(whereCtx.getIDCounter

whereCtx. getGeneratedIDSet()
‘curr_UID

)
ListItem =
ge

»curr_UID, "TRUTH
-.getConstraintsMap() . containsKey(keyName

L ng>
X

whereCt:

key constraint list = whereCix.getConstraintsMap().get(keyName);
H
) tempValuelist = CypherListliteral<>
pValuelist.addElement(ListItem);
whereCtx.getConstraintsMap() .addElement(keyName, tempValuelist);

rn curr_UID;
if(ctx.oC_Literal()!=
(curr_UID.equals(E G))1
.println(whereCtx.getConstraint .toString
PropertyGraphCypherException 1 Rul

g rhs_value = visitOC_Literal(ctx.oC_Literal .getValue().toString();

L i > constraints_map = whereCtx.getConstraintsMap();

currKeyOuterLlist = constraints_map.get(

Figure-15: Visitor method for visitOC _Atom rule

