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1. Introduction 
 

Graph databases are a specialized type of database designed to handle highly interconnected 

data by leveraging graph theory principles. Unlike traditional databases, graph databases store 

nodes (entities) and edges (relationships) natively to enable efficient traversal and querying of 

connected data. These databases are particularly well-suited for applications like social 

networks, recommendation systems, and fraud detection, where understanding relationships is 

critical. There are different approaches to graph database modelling, including the RDF 

(resource description framework) model and the property graph model [3], which are the two 

most widely followed models. RDF model uses triplets (subject-predicate-object) to represent 

data, while the property graph model allows nodes and relationships to carry properties as key-

value pairs. The RDF model can be rigid due to its structure and complex for certain 

application, while the property graph model is more flexible and is ideal for a dynamic use case 

requiring frequent schema changes and detailed relationship modelling. 

The agent-based graph database system follows the property graph model, abstracting the 

underlying distributed layer built using the MASS (Multi-agent spatial simulation) Java library. 

In the distributed environment, the system operates across multiple computing nodes with the 

data split across the nodes and maintained in-memory for efficient access and manipulation. 

The MASS Java library excels at managing simulations where entities, represented as Agents, 

dynamically interact with each other and their environment, depicted as Places [5]. The graph 

database system is developed by extending the MASS Java library to allow data representation 

using the property graph model and querying using the agent entities. 

Filters are an essential component of a database system, enabling users to extract data matching 

certain criteria while also reducing the computational load on the systems during reading 

operations. To fulfil this aspect in the current version of the agent-based graph database, my 

aim for this quarter has been the implementation of the filtering mechanism for reading 

operations in the graph database.  

 

2. Background and Challenges 
The current version of the MASS graph database provides basic functionality to the users in 

the form of creating, updating, and fetching results based on simple query patterns. It 

successfully incorporates the following aspects of the Cypher query language – CREATE, 

RETURN and MATCH clauses. The system follows a three-tier architecture pattern, as shown 

in Figure-1, separating the presentation, logic, and data access layers to provide high levels of 



abstraction to the users such that they can interact with the database without any in-depth 

knowledge of the underlying structure. [1]  

 

Figure-1: Three tier design for Graph Database System 

The presentation layer acts as the point of interaction with the users, where users can build the 

graph based on input node and entity files and query the graph, upon successful graph creation. 

The logic layer is responsible for executing the graph creation and further interacting with the 

MASS system for fetching results for reading queries. The data access layer where the raw 

string inputs are parsed and converted into an abstract syntax tree (AST) representation in Java, 

which is eventually translated into agent code which manipulates the agent behaviours based 

on the input query. This layer is also responsible for fetching the results and providing them to 

the logic and presentation layers. 

This system adopts the property graph model by extending the core MASS concepts, as shown 

in Figure-2, such as Places (serving as a spatial framework) and Agents (dynamic entities that 

interact within the spatial framework defined by Places) . Places is initially extended to support 

simple graph applications by GraphPlaces and further modified to support multiple properties 

for entities and relationships (property-graph model) by PropertyGraphPlaces. 

 

Figure-2: Adopting the property graph model in MASS 



The query execution flow for the current system is based on a three-step process: building the 

abstract syntax tree (AST) representation of the cypher query, defining the execution plan 

for agents based on query content followed by the execution and result aggregation. The 

(AST) representation is built using the ANTLR parsing tool which makes it easy to customize 

how the query tree gets parsed and necessary information gets stored for generating the agent 

code [2]. The AST module is built to map the syntax specific to cypher grammar, which follows 

a hierarchy as shown in Figure-3, to Java classes with similar class hierarchy. Using the 

ANTLR’s visitor mechanism, the query tree is parsed and the important data (e.g. label names, 

property lookups, comparison operators etc.) gets stored in the respective AST class. The 

following figure provides a visualization of the parse tree that needs to be traversed for a cypher 

clause using the ANTLR parsing tool. 

 

 

Figure-3: Parse tree structure for a CypherQL query (e.g. MATCH clause with a WHERE component) 

 

Once the entire query is parsed and the data stored in AST format, we move onto the execution 

plan building phase. This phase defines how the extracted data gets utilized and converted into 

arguments for agents. The execution plan is essentially a tree of execution steps, which is 

required to fulfil the query efficiently. The mapping of classes and respective methods different 

steps of the query execution flow (AST parsing, Execution Plan building and the query 

execution by Agents), is shown in the Table-1 as it connects the parse tree rules (from Fig-3), 

with class hierarchy of execution plan builder (Fig-4). 

 

 

 

 



Table - 1: Mapping between the parse-tree rules, AST classes, and execution plan builder classes 

 

 

Figure-4: Execution step tree determining the steps in an execution plan 

The MASS graph database system implements various Cypher clauses, each requiring distinct 

agent behaviors. Clauses like CREATE (for node/relationship creation) operate independently, 

while others like MATCH and RETURN function as interdependent components within a 

single query. This variation in clause functionality necessitates a structured execution 

framework. 

Figure-4 illustrates the hierarchical execution plan that guides agent behavior during query 

processing. This hierarchy serves as a critical blueprint, defining the precise sequence of 

operations agents must perform when interpreting different clause combinations. The 

structured class relationship shown in the diagram ensures that agents can systematically 

process complex queries by following predefined execution paths, while maintaining the 

specific operational requirements of each clause type. This architectural approach enables the 



system to handle both standalone operations and multi-clause query patterns with consistent 

behavior. 

The final step in the process is the execution of the plan by agents, as depicted visually in 

Figure-5. Based on the execution step, agents are provided with corresponding attributes to 

verify and migrate or terminate. PropertyGraphAgents carry the pathResult attribute to store 

the path traversal results and inherit them form the parent agent (if any). To facilitate co-

ordination agents, multiple iterations of callAll() and manageAll() are invoked for verifying if 

the current Place satisfies the node pattern information. If validated, the current place’s ID is 

added to its pathResults list, and neighbor places are determined via the relationship pattern 

and updated in its nextVertex field, facilitating agents to migrate to its neighbor places. 

Subsequently, manageAll() is called to coordinate the lifecycle of agents, encompassing the 

stages of spawn, kill, and migration. 

 

Figure-5: Agent propagation in MASS PropertyGraphPlaces 

 

The current state of MASS graph database system allows for CREATE, MATCH and RETURN 

clauses, but has some limitations in terms of the constraints that can be put for the queries. In 

the current state it also does not allow for deletion and does not support the “filters” for a query, 

which are essential for a database system.  

The challenges associated with building a filter mechanism for the MASS graph database lies 

in determining the approach for checking constraints for different entities and relationships 

based on the MATCH pattern. For example, in the following pattern:  

MATCH (p:person)-[r:acted_in]->(m:movie) WHERE p.age > 35 AND m.rating >=4.0 
RETURN m,p 

• Agents only have access to one node and the corresponding relationship 

information at a given point of time 

• Using constraints after traversing all the paths with the MATCH pattern might 

provide the correct results to the user, but would inherently not provide any 

optimization/reduce computational load on the system while doing reading 

operations. 



3. Autumn Quarter Implementation (AU24) 
 

My focus for this quarter was working on the WHERE clause implementation. WHERE clause 

in Cypher is used to filter query results by adding conditions to patterns specified in 

the MATCH or OPTIONAL MATCH clauses. It functions similarly to the WHERE clause in 

SQL, allowing users to refine their queries by applying constraints on node properties, 

relationships, or patterns [4]. For example, it can be used to filter nodes based on property 

values, check for the existence of properties, or apply multiple conditions using logical 

operators like ‘AND’, ‘OR’, and ‘XOR’. This makes it a powerful tool for retrieving specific 

data from a graph database. 

The approach for incorporating the WHERE clause in the MASS graph database is as follows: 

1. AST representation: Within the Java AST module, building a new class to represent the 

structure of cypher WHERE clause. Splitting the constraints to a List of expressions 

and separators (Boolean operators – AND, OR, NOT), as shown in Figure-6, (line 5 – 

7). 

2. Execution plan building: Making changes within the parent MatchPartExecutionStep, 

to provide the agents with more attributes, namely: constraints (list of expressions), 

separators (list of Boolean operators) and partial_results (a list of Booleans, storing the 

corresponding results of constraints after verification by agents) 

3. Agent code: In addition to pathResult, the PropertyGraphAgents will also pass along 

the partial_results to the children instance. 

4. To optimize constraint checking, implementing a ‘short-circuit’ evaluation strategy for 

Boolean logic. 

 

 

Figure-6: AST representation for WHERE clause, initial version 



The flowchart in Figure-7 illustrates a comprehensive process for extending Cypher clauses in 

the MASS graph database system, including the development of the Cypher WHERE clause. 

This approach begins with building the Abstract Syntax Tree (AST) representation of the 

clause, followed by modifying the PropertyGraphCypherVisitor class methods based on the 

parse tree. The data is stored using the AST module class. Execution steps classes are then 

constructed for each clause, with necessary adjustments made in the ExecutionPlanBuilder 

class methods. The process also involves mapping these changes to agent behavior, such as 

adding new attributes or methods, and optimizing the AST representation. This incremental 

and systematic methodology ensures effective feature development and functionality 

enhancement.

 

Figure-7: Flow for incrementally building new features/extending cypher clauses in MASS graph database 

 

 

 

5. Winter Quarter Implementation (WI25) 
This quarter’s focus was working on the WHERE clause, extending the previous quarter’s 

implementation along with some changes made to incorporate the evaluation approach for the 

WHERE clause expression. The following implementation entails the details for the 

completion of parsing phase (using ANTLR tool) of Cypher Where clause for MASS graph 

database system. 

 

1. Abstract Syntax Tree (AST) 



Taking into consideration the arguments expected for providing additional set of constraints to 

Agents during the Match clause execution, the AST representation of CypherWhereClause was 

modified to accommodate the postfix notation of the expression along with the constraints 

mapped based on symbolic names, as shown in Fig-8 (lines 7-12). 

 

Figure-8: AST representation for WHERE clause, modified version 

 

To build the constraint map along with the unique expression ID (representing each sub-

expression / the smallest individual expression) while parsing the input query’s where-

expression, another helping class – CypherWhereContext was built. This class generates 

unique expression IDs to keep track of the sub-expressions in WHERE clause and store them 

in the constraint map for efficient retrieval, as shown in Figure-9 (lines 8 – 19). This class 

object is used as a shared resource and passed downstream in the parsing tree based on 

CypherQL’s Grammar (more details in the appendix section-a). 

 

 

Figure-9: Helper AST class – CypherWhereContext 

 

2. Testing with different cases:  

Fig-10 to Fig-12 shows the contents of the constraints map and expression list attributes 

of the CypherWhereClause AST class (Fig-8), after the parsing phase is completed. 

• Simple Expression: 
WHERE p.age> 25 OR m.rating > 4 



=> Infix: “exp0 | exp1” 
=> Postfix: “exp0 exp1 |” 

 

 

Figure-10: WHERE clause parser test case-1 

 

• Complex Nested Expression:  

WHERE p.age> 25 AND (m.rating > 4 OR m.budget < 500000) 

=> Infix: “exp0 & (exp1 | exp2)” 
=> Postfix: “exp0 exp1 exp2 | &” 

 

Figure-11: WHERE clause parser test case-2 

 

• Parenthesized expression with multiple constraints on the same key: 
WHERE m.release_year = 1995 OR (m.rating > 4 AND m.budget > 100000) 

=> Infix: “exp0 | (exp1 & exp2)” 
=> Postfix: “exp0 exp1 exp2 & |” 

 



Figure-12: WHERE clause parser test case-3 

Based on the above implementation, the following is the approach towards integrating the 

data stored in the AST representation with the agent code. 

3. Expression Evaluation Approach and Integration: 

The graph database WHERE conditions are to be evaluated using a stack-based  approach. 

As agents traverse the graph, they populate the constraint-map with truth value results for 

individual constraints (e.g., "prop_name > 30"). The core of this evaluation relies on the 

representation of the WHERE expression in postfix notation and then using a stack to 

process operators and operands sequentially. During postfix evaluation, operands (truth 

values from constraints) are pushed onto the stack, while operators pop the required number 

of operands from the stack, apply the logical operation (AND, OR, NOT, XOR), and push 

the result back onto the stack. This stack-based method efficiently handles complex boolean 

expressions with proper operator precedence (NOT > AND > XOR > OR), allowing the 

WHERE clause to correctly filter graph paths by evaluating nested conditions without 

requiring recursive parsing. The result is obtained when all tokens are processed and only 

a single boolean value remains on the stack, determining whether the current path satisfies 

all conditions. 

  

Figure-13: A visual representation of the stack-based expression evaluation approach 



 

6. Spring Quarter Implementation (SP25) 
This quarter’s focus was on completing the implementation of WHERE clause in MASS graph 

database by integrating the above-mentioned expression evaluation mechanism with agent 

migration. The outputs of WHERE clause were verified for correctness and benchmarking was 

performed using the IMDB movies dataset. The details are as follows: - 

1. WHERE clause integration changes: 

 

The changes made to the existing implementation, on the execution planning and agent 

code execution phase include: 

• PropertyGraphAgent & Agent agruments:  

To provide agents with the context of the WHERE clause, modifications were made to 

the PropertyGraphAgent class itself and additional set of data added to the agent 

arguments array. These are the arguments/attributes that enable the 

PropertyGraphAgents to evaluate if they are on the correct vertex on the graph 

according to the details extracted from the query patterns.  

 

Two new attributes – contraintsMap (a hashmap containing the Where clause 

constraints based on the generated AST) and expressionList (a postfix notation 

representing the logical expression in the WHERE clause), were added to the 

PropertyGraphAgent class (lines 48 to 66).  

 

 
Figure-14: Modified PropertyGraphAgent class 

 

Two new arguments – symbolicName pair (array containing current node and 

relationship’s symbolic names) and iteration number pair (array containing the 

current iteration and total iterations based on query pattern), were added to the existing 

list of five agent arguments (lines 67 to 77). 



 
Figure-15: Modified set of arguments for agents 

 

  

  

• Updating the constraintsMap:  

As the agent perform validation checks for each vertex and edge to determine if it 

should migrate or terminate, the constraintsMap update the truth values of sub-

expressions based on the current node and relationship. Once the entire constraintsMap 

is populated with the truth values, we perform the stack-based evaluation described 

above using the trigger mechanism. 

 

• Trigger mechanism for WHERE clause evaluation: 

Once the agents reach the destination node, there needs to be an evaluation to determine 

whether the retrieved path passes the conditions of the WHERE clause. This evaluation 

gets triggered when the current_iteration equals the total_iterations in the agent 

arguments. Based on the outcome of the stack-based evaluator, the current pathResult 

is aggregated to results only if the outcome is ‘true’. 

 

• Execution phase visualization: 

The execution phase for handling queries with WHERE clauses involves both argument 

preparation and agent migration, as shown in the figure below: 

• Argument-Preparation: 

The execution plan builder decomposes the Cypher query into multiple stages. 

For each stage, it assigns: 

o The symbolic name of the node/relationship. 

o The node labels, relationship type and properties (if specified). 

o Any directional information required for relationship traversals. 

o constraintsMap and expressionList from the CypherWhereClause class 

in parsing phase. 

These arguments are packaged into agent payloads before dispatch. 

• Agent-Migration: 

As agents traverse through MASS Places (nodes), they carry these arguments 

and constraints. At each place: 



o Agents verify the correct path using node/edge properties & keep 

updating the constraintsMap. 

o Evaluate applicable constraints once they reach the final node based on 

query pattern. 

o Clear the pathResult if the evaluator output is ‘false’. 

 

 
Figure-16: Visualization of agent argument preparation  

 

 

2. Verifying the correctness of the implementation: 

 

 
Figure-17: Execution example-1 of WHERE clause query  

 

 

 

 
Figure-18: Execution example-2 of WHERE clause query  

 

 



3. Initial benchmarks using the IMDB movies dataset: 

 

The IMDB movies dataset supports diverse query types: simple lookups, property filters, 

and nested logical conditions. It was transformed into the MASS graph database CSV 

format and here is a brief overview of it: 

 

Node Types: 

• Person: Name, person_imdbid, born 

• User: Name 

• Movie: Title, Year, movie_imdbid, budget, runtime, imdb_votes, released, imdb_rating 

 

Relationship Types: 

• Acted_in (Role),  

• Directed,  

• Rated (rating (out of 5), Timestamp) 

 

Dataset Size: 

• ~1,100 Nodes 

• ~8,130 Relationships 

 

 
Fig-19: IMDB dataset visualization 

 

 

Initial Benchmarking was performed using the following query types: 

 

• Single Entity (no filters): MATCH (m:movie) RETURN m 

• Single Entity ( 1 constraint): MATCH (m:movie) WHERE m.year = 1996 
RETURN m 

• Single Entity (Multiple Nested Constraints): MATCH (m:movie) WHERE 
m.imdbrating > 7 AND (m.year >= 1995 AND m.year < 2000) 
RETURN m 

 



 
Fig-20: Comparison of average execution times on Neo4j vs MASS Graph DB (single compute node) 

 

 

 

 
Fig-21: Average execution times of queries in MASS Graph DB over different number of compute nodes 

 
 
 
 



Since systems like Neo4j only work on a single compute instance, we compared its query 

execution times with MASS Graph Database on a single compute node. As per the 

visualization in figure-20, we can infer that both systems have quite comparable execution 

times (< 10 ms of difference) which are consistent along all three query types. The slightly 

quicker execution observed in Neo4j can be attributed to its caching mechanisms and 

optimized querying using Anchor Nodes (appendix – Section a, 1). MASS Graph DB does 

not utilize any such caching or optimizations currently. 

 

As MASS Graph Database is a distributed graph database, it can create and maintain a 

graph across multiple cluster nodes. This is especially useful when the graph sizes increase 

significantly (i.e. larger than the physical memory) and we exhaust a single machine’s 

memory space. In such cases systems like Neo4j cannot store the graph, yet alone querying 

it. Our aim with MASS Graph Database is to support querying under such scenarios along 

with the advantage to scale horizontally by adding more compute nodes. Additionally, when 

systems like Neo4j get many simultaneous queries beyond its capabilities we expect MASS 

Graph Database to outperform it due to its agent-based querying mechanism. 

 

The query execution times for agent-based querying on a distributed graph database are 

visualized in figure-21. We find that as we keep doubling the number of compute nodes, 

the execution times tend to increase but converges at 8 nodes configuration. This increase 

in execution times is likely due to an overhead from communication and synchronization 

which is required when there are agents migrating and accumulating results across multiple 

compute nodes.  

 

We can observe that the number of constraints on the query do affect the execution times 

as the nested query has a slightly slower execution compared to other queries but well 

within the range of other queries. This proves that the stack-based evaluation of WHERE 

clause does not add any significant overheads on the MATCH clause while improving the 

expressiveness of queries in MASS Graph Database. 

 

Takeaways: 

 

• There is scope for improving the agent-based querying with some optimization 

strategies. 

• Benchmarking over larger datasets is required to compare how performance is 

affected by graph size and node degrees. 

• Benchmarking over different types of queries at different depths to see how the 

execution times are changing. 

 

 

4. Plan for Summer 25 quarter implementation 
The focus during Summer 2025 quarter is performing additional benchmarking tasks over 

larger datasets and observing how the performance scales with graph size. Another area of 

focus is to find ways to optimize the filtering performance by improving how agents can 

terminate quickly using dynamic evaluation while migrating. 
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6. Code 
1. mass_java_appl, aatmanrp/graph-database branch: 

https://bitbucket.org/mass_application_developers/mass_java_appl/src/QueryGraphD

B/ 

 

2. mass_java_core, aatmanrp/mass-refactoring branch: 

https://bitbucket.org/mass_library_developers/mass_java_core/src/QueryGraphDB/ 

 

Spring 2025 

Timeline 

Tasks 

Week 1  WHERE Clause benchmarks: Running benchmarks over bigger 

dataset 

Week 2 WHERE Clause: Evaluating possible optimizations 

Week 3 WHERE Clause: Trying the short-circuit evaluation pattern 

Week 4 WHERE Clause: Testing the correctness of above implementation 

Week 5 WHERE Clause: Benchmarking across MASS, Neo4j and ArangoDB 

Week 6 Delete Clause: Ideation and possible implementation plan 

Week 7 Completing the White-paper 

Week 8 Documentation and Code clean-up in the development branch 

Week 9 Final preparations 

Week 10 Thesis Defence? 

Week 11 Thesis Defence? 

https://neo4j.com/docs/cypher-manual/current/clauses/
https://bitbucket.org/mass_application_developers/mass_java_appl/src/QueryGraphDB/
https://bitbucket.org/mass_application_developers/mass_java_appl/src/QueryGraphDB/
https://bitbucket.org/mass_library_developers/mass_java_core/src/QueryGraphDB/


7. Appendix 
 

a. Definitions: 

1. Anchor Nodes: a set of nodes to start from that are selected first, which are 

used as the starting point for graph traversals. 

 

b. Use of CypherWhereContext class in parsing the WHERE clause sub-tree 

PropertyGraphCypherVisitor – the parsing interface class built using ANTLR tool 

for parsing the CypherQL queries. It consists of visitor methods for grammar rules 

based on the following structure in Figure-15.  

 

Figure-15: WHERE clause parse tree used in the parsing and AST building phase 

 

The following code snippets represent important visitor methods for rules important to building 

the AST of WHERE clause (i.e. generating the constraint map and postfix expression), which 

depict the CypherWhereContext object – “whereCtx” being passed down the subtree. 



 

Figure-15: Visitor method for visitOC_Where rule  

 

 

Figure-15: Visitor method for visitOC_OrExpression rule  

 

 

 

Visitor method for visitOC_ComparisonExpression rule  

 



 

Figure-15: Visitor method for visitOC_PropertyOrLabelsExpression rule  

 

 

Figure-15: Visitor method for visitOC_Atom rule  

 

 

 

 


