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I. Introduction 
Vector search is an artificial intelligence and data retrieval method that employs mathematical 
vectors to represent and efficiently search through complex, unstructured data. It operates by 
linking similar mathematical representations of data and converting queries into these same 
vector formats. With both queries and data represented as vectors, the search for related data 
involves identifying the closest matches to the query vector, a process known as nearest neighbor 
search. Unlike traditional search algorithms, which rely on keywords, word frequency, or word 
similarity, vector search utilizes the distances within the vectorized dataset to identify similarity 
and semantic relationships. In today’s world, vector search is primarily being used in domains 
such as e-commerce, content discovery and recommendation systems, natural language 
processing (NLP), and many more. 
 
The market offers many solutions for vector search, however, according to the latest benchmarks 
[1][2], one of the best-performing libraries is NGT (Neighborhood Graph and Tree) [3][4]. The 
NGT index combines both a graph and a tree, where the graph’s vertices represent searchable 
objects and the tree is used to subdivide the entire vector space into smaller regions. This makes 
NGT a top performer compared to other solutions. Although NGT performs well with reasonably 
large datasets, it may face scalability issues with extremely large datasets or high-dimensional 
data, as it can run only on one computing node/Central Processing Unit (CPU), and does not 
provide Graphics Processing Unit (GPU) support for Approximate Nearest Neighbor (ANN) [5]. 
 
The Multi-Agent Spatial Simulation (MASS) [6][7] library is a parallel and distributed 
computing framework designed for large-scale spatial and agent-based simulations. It operates 
primarily with two concepts: Places and Agents. Generally, Places are the spatial locations or 
cells that form the simulation environment and are capable of exchanging information with any 
other Places. Agents are active entities that can move between Places, perform actions, and 
interact with each other and their environment. MASS CUDA [8] is a library designed to 
facilitate the execution of parallel computations using mobile agents on GPUs. 
 
When implementing vector search on a GPU, two primary algorithmic approaches are commonly 
used: Hierarchical Navigable Small World (HNSW)[9] and Inverted File Index with Product 
Quantization (IVFPQ)[10]. 
 
HNSW (Hierarchical Navigable Small World) is a graph-based approach for approximate nearest 
neighbor search, designed to efficiently navigate large-scale high-dimensional spaces. It 
constructs a multi-layered, small-world graph structure where search operations traverse the 
graph using greedy strategies. HNSW provides high recall rates and fast search times, making it 
a popular choice for large-scale vector search applications. However, the graph-based nature of 
HNSW requires significant memory overhead, and updates to the index can be computationally 
expensive. While MASS Graph — a graph-based extension of MASS — could potentially 
optimize HNSW with agent-based search, but its development was not mature enough for 
practical implementation at the time of this work. Instead, IVFPQ was chosen due to its 
well-established efficiency in large-scale vector search and its compatibility with MASS CUDA, 
allowing for immediate integration of agent-based optimizations. 
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IVFPQ (Inverted File System with Product Quantization) is a widely used indexing technique 
that balances search efficiency and memory usage. It partitions the vector space into clusters and 
applies product quantization to compress the data, allowing fast approximate searches while 
reducing storage requirements. IVFPQ is particularly effective for large-scale nearest neighbor 
search, as it significantly reduces computational complexity. However, its performance depends 
on proper tuning of parameters such as the number of clusters and quantization levels. While it 
provides a strong foundation for efficient search, further enhancements using agent-based 
approaches like MASS CUDA could improve adaptability and dynamic workload distribution 
across GPUs, which is a part of this project. 
 
The idea of this project is to try to leverage the capabilities of GPUs using mobile agents by the 
MASS CUDA library and improve IVFPQ algorithm to perform better. A more detailed 
explanation of the implementation is provided in the next sections. 

II. Background 
The vector searching landscape is highly dynamic, with frequent advancements and discoveries. 
Current vector search engines, such as NGT, SPTAG [11], ANNOY [12], etc., are effective but 
have various limitations in terms of scalability, speed, or precision. The idea behind this project 
is to utilize the best state-of-the-art methods and algorithms in terms of speed and precision and 
scale one of the most used algorithms IVFPQ using mobile agents. As a result, there is an 
opportunity to develop an agile vector search engine. 

 
While existing solutions like NGT, SPTAG, ANNOY, etc. offer effective vector search, our 
deliverable stands out by scaling and enhancing the IVFPQ algorithm on GPU using mobile 
agents. 

III. Challenges 
This quarter, one of the biggest challenges was figuring out how to optimize the search part in 
terms of creation, distribution and proper usage of places and agents. After many iterations of 
different approaches, I came up with one that optimized usage of places and agents the most 
inside of the search part, which allowed me to save time to create places and have multiple 
queries at the same time. Another problem was the abundance of bugs within MASS CUDA 
itself and adjusting it to work as a simple importable library rather than core of application as it 
was before. Last but not least, bugs that occurred during the development, such as with memory 
allocation, and 30 minute long compilation time caused problems this quarter. 

IV. Goals 
The primary objective this quarter was to develop a methodology, and its implementation, for 
effectively utilizing MASS CUDA agents within IVFPQ, which has base implementation 
available from cuVS (CUDA Vector Search)[13] developed by Nvidia Corporation. A significant 
portion of the time was dedicated to finalize Place and Agent classes, and proper memory 
management. However, due to the complexity of the code, details of which will be discussed in 
the next section, there is still work to be done, particularly in the implementation of agents. 

https://www.zotero.org/google-docs/?zSUp3u
https://www.zotero.org/google-docs/?SRrYhP


V. Implementation 
The core idea behind our new approach is to distribute the search operation across multiple 
CUDA threads efficiently, leveraging MASS's ability to manage parallel computations. This 
approach was inspired by the work of Alex Li and Professor Fukuda[14]. Each dimension of a 
PQ-encoded vector is treated as a separate Place, which stores sorted values for that dimension 
along with their corresponding vector IDs. Agents are then dispatched to these Places to perform 
a binary search for the closest quantized value, ultimately contributing to an overall search result  
(see Figure 1). While significant progress has been made in designing the structure and 
implementing key components, the full implementation is still ongoing. 
 
The implementation is structured around two custom classes: PQPlace and PQAgent. The 
PQPlace class extends MASS’s Place class and serves as the core storage unit for each 
dimension’s sorted PQ values and associated vector IDs represented as indices. It provides an 
efficient device-side method to find the closest match using binary search. The code is available 
in Listing 1. On the other hand, PQAgent is an agent class that can query a specific Place by 
executing the binary search algorithm and returning the best-matching vector ID. The code is 
available in Listing 2. The workflow begins by initializing MASS and creating a hashmap of 
Places, each for one list, and where each Place is responsible for one dimension of the 
PQ-encoded vectors. The quantized values from the dataset are sorted and stored in these Places 
to allow efficient lookups during the search phase. 
 
Once the Places are set up, a query vector is processed by dispatching one agent per dimension. 
Each agent independently queries its assigned place, searching for the closest quantized value to 
its respective component of the query vector. This results in a set of "votes," where each Agent 
suggests a potential matching vector ID. These votes are then aggregated to determine the final 
closest vector. 
 
While the fundamental logic and architecture are in place, the full implementation has not yet 
been completed due to the complexity of integrating MASS CUDA with the data structures and 
query workflow. One of the main challenges is to tie together kernel code available in cuVS with 
MASS CUDA. The current implementation is a primitive one that does not calculate how many 
threads, blocks, shared memory, L1 cache or global memory is required. It also lacks proper 
usage of LUTs (Look-up Tables). Additionally, testing and debugging parallel execution in 
MASS CUDA require careful verification to ensure correctness and performance gains over 
traditional methods. Despite these challenges, we made calculations of computational complexity 
of such an approach which demonstrates the feasibility of this approach and suggests that once 
finalized, it will provide an efficient and scalable solution for PQ-based vector search. The next 
steps involve refining the agent execution model, optimizing memory allocation, and validating 
performance improvements through extensive testing. 

VI. Future Work 
The objective for the upcoming quarter is to finalize agent class PQAgent, proper memory 
management, test and benchmark implementation, and work on a paper. 
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Appendix 

A. Code 
Listing 1: Place class 

 



 

 
 
Listing 2: Agent class 



 

 
 

B. How To Run a Program 
To run the Feature Extraction program, Python 3.9 or higher, along with the corresponding 
version of PyTorch, is required. For the IVF PQ program, the latest version of cuVS must be 



installed, ensuring that all associated prerequisites, including compatibility with the appropriate 
version of the CUDA Toolkit, are met. Additionally, the libnpy library is necessary to convert the 
NumPy arrays generated by the Feature Extraction program into a C++-compatible vector data 
structure. 
 

C. Figures 
Figure 1: 
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