

AGENT-BASED VECTOR SEARCH ON GPU

AKBARBEK RAKHMATULLAEV

Spring 2025 Term Report

University of Washington

Jun 15, 2025

Project Committee:
Munehiro Fukuda, Ph.D., Committee Chair

Min Chen, Ph.D., Committee Member
Wooyoung Kim, Ph.D., Committee Member

I. Introduction
Vector search is an artificial intelligence and data retrieval method that employs mathematical
vectors to represent and efficiently search through complex, unstructured data. It operates by
linking similar mathematical representations of data and converting queries into these same
vector formats. With both queries and data represented as vectors, the search for related data
involves identifying the closest matches to the query vector, a process known as nearest neighbor
search. Unlike traditional search algorithms, which rely on keywords, word frequency, or word
similarity, vector search utilizes the distances within the vectorized dataset to identify similarity
and semantic relationships. In today’s world, vector search is primarily being used in domains
such as e-commerce, content discovery and recommendation systems, natural language
processing (NLP), and many more.

The market offers many solutions for vector search, however, according to the latest benchmarks
[1][2], one of the best-performing libraries is NGT (Neighborhood Graph and Tree) [3][4]. The
NGT index combines both a graph and a tree, where the graph’s vertices represent searchable
objects and the tree is used to subdivide the entire vector space into smaller regions. This makes
NGT a top performer compared to other solutions. Although NGT performs well with reasonably
large datasets, it may face scalability issues with extremely large datasets or high-dimensional
data, as it can run only on one computing node/Central Processing Unit (CPU), and does not
provide Graphics Processing Unit (GPU) support for Approximate Nearest Neighbor (ANN) [5].

The Multi-Agent Spatial Simulation (MASS) [6][7] library is a parallel and distributed
computing framework designed for large-scale spatial and agent-based simulations. It operates
primarily with two concepts: Places and Agents. Generally, Places are the spatial locations or
cells that form the simulation environment and are capable of exchanging information with any
other Places. Agents are active entities that can move between Places, perform actions, and
interact with each other and their environment. MASS CUDA [8] is a library designed to
facilitate the execution of parallel computations using mobile agents on GPUs.

When implementing vector search on a GPU, two primary algorithmic approaches are commonly
used: Hierarchical Navigable Small World (HNSW)[9] and Inverted File Index with Product
Quantization (IVFPQ)[10].

HNSW (Hierarchical Navigable Small World) is a graph-based approach for approximate nearest
neighbor search, designed to efficiently navigate large-scale high-dimensional spaces. It
constructs a multi-layered, small-world graph structure where search operations traverse the
graph using greedy strategies. HNSW provides high recall rates and fast search times, making it
a popular choice for large-scale vector search applications. However, the graph-based nature of
HNSW requires significant memory overhead, and updates to the index can be computationally
expensive. While MASS Graph — a graph-based extension of MASS — could potentially
optimize HNSW with agent-based search, but its development was not mature enough for
practical implementation at the time of this work. Instead, IVFPQ was chosen due to its
well-established efficiency in large-scale vector search and its compatibility with MASS CUDA,
allowing for immediate integration of agent-based optimizations.

https://www.zotero.org/google-docs/?iLowUq
https://www.zotero.org/google-docs/?xSKA3L
https://www.zotero.org/google-docs/?nxbhUT
https://www.zotero.org/google-docs/?g9ahjp
https://www.zotero.org/google-docs/?3AOuhj

IVFPQ (Inverted File System with Product Quantization) is a widely used indexing technique
that balances search efficiency and memory usage. It partitions the vector space into clusters and
applies product quantization to compress the data, allowing fast approximate searches while
reducing storage requirements. IVFPQ is particularly effective for large-scale nearest neighbor
search, as it significantly reduces computational complexity. However, its performance depends
on proper tuning of parameters such as the number of clusters and quantization levels. While it
provides a strong foundation for efficient search, further enhancements using agent-based
approaches like MASS CUDA could improve adaptability and dynamic workload distribution
across GPUs, which is a part of this project.

The idea of this project is to try to leverage the capabilities of GPUs using mobile agents by the
MASS CUDA library and improve IVFPQ algorithm to perform better. A more detailed
explanation of the implementation is provided in the next sections.

II. Background
The vector searching landscape is highly dynamic, with frequent advancements and discoveries.
Current vector search engines, such as NGT, SPTAG [11], ANNOY [12], etc., are effective but
have various limitations in terms of scalability, speed, or precision. The idea behind this project
is to utilize the best state-of-the-art methods and algorithms in terms of speed and precision and
scale one of the most used algorithms IVFPQ using mobile agents. As a result, there is an
opportunity to develop an agile vector search engine.

While existing solutions like NGT, SPTAG, ANNOY, etc. offer effective vector search, our
deliverable stands out by scaling and enhancing the IVFPQ algorithm on GPU using mobile
agents.

III. Challenges
This quarter, one of the biggest challenges was figuring out how to optimize the search part in
terms of creation, distribution and proper usage of places and agents. After many iterations of
different approaches, I came up with one that optimized usage of places and agents the most
inside of the search part, which allowed me to save time to create places and have multiple
queries at the same time. Another problem was the abundance of bugs within MASS CUDA
itself and adjusting it to work as a simple importable library rather than core of application as it
was before. Last but not least, bugs that occurred during the development, such as with memory
allocation, and 30 minute long compilation time caused problems this quarter.

IV. Goals
The primary objective this quarter was to develop a methodology, and its implementation, for
effectively utilizing MASS CUDA agents within IVFPQ, which has base implementation
available from cuVS (CUDA Vector Search)[13] developed by Nvidia Corporation. A significant
portion of the time was dedicated to finalize Place and Agent classes, and proper memory
management. However, due to the complexity of the code, details of which will be discussed in
the next section, there is still work to be done, particularly in the implementation of agents.

https://www.zotero.org/google-docs/?zSUp3u
https://www.zotero.org/google-docs/?SRrYhP

V. Implementation
The core idea behind our new approach is to distribute the search operation across multiple
CUDA threads efficiently, leveraging MASS's ability to manage parallel computations. This
approach was inspired by the work of Alex Li and Professor Fukuda[14]. Each dimension of a
PQ-encoded vector is treated as a separate Place, which stores sorted values for that dimension
along with their corresponding vector IDs. Agents are then dispatched to these Places to perform
a binary search for the closest quantized value, ultimately contributing to an overall search result
(see Figure 1). While significant progress has been made in designing the structure and
implementing key components, the full implementation is still ongoing.

The implementation is structured around two custom classes: PQPlace and PQAgent. The
PQPlace class extends MASS’s Place class and serves as the core storage unit for each
dimension’s sorted PQ values and associated vector IDs represented as indices. It provides an
efficient device-side method to find the closest match using binary search. The code is available
in Listing 1. On the other hand, PQAgent is an agent class that can query a specific Place by
executing the binary search algorithm and returning the best-matching vector ID. The code is
available in Listing 2. The workflow begins by initializing MASS and creating a hashmap of
Places, each for one list, and where each Place is responsible for one dimension of the
PQ-encoded vectors. The quantized values from the dataset are sorted and stored in these Places
to allow efficient lookups during the search phase.

Once the Places are set up, a query vector is processed by dispatching one agent per dimension.
Each agent independently queries its assigned place, searching for the closest quantized value to
its respective component of the query vector. This results in a set of "votes," where each Agent
suggests a potential matching vector ID. These votes are then aggregated to determine the final
closest vector.

While the fundamental logic and architecture are in place, the full implementation has not yet
been completed due to the complexity of integrating MASS CUDA with the data structures and
query workflow. One of the main challenges is to tie together kernel code available in cuVS with
MASS CUDA. The current implementation is a primitive one that does not calculate how many
threads, blocks, shared memory, L1 cache or global memory is required. It also lacks proper
usage of LUTs (Look-up Tables). Additionally, testing and debugging parallel execution in
MASS CUDA require careful verification to ensure correctness and performance gains over
traditional methods. Despite these challenges, we made calculations of computational complexity
of such an approach which demonstrates the feasibility of this approach and suggests that once
finalized, it will provide an efficient and scalable solution for PQ-based vector search. The next
steps involve refining the agent execution model, optimizing memory allocation, and validating
performance improvements through extensive testing.

VI. Future Work
The objective for the upcoming quarter is to finalize agent class PQAgent, proper memory
management, test and benchmark implementation, and work on a paper.

References
[1] “ANN - Benchmarks.” [Online]. Available:

https://github.com/erikbern/ann-benchmarks?tab=readme-ov-file
[2] M. Aumüller, E. Bernhardsson, and A. Faithfull, “ANN-Benchmarks: A Benchmarking

Tool for Approximate Nearest Neighbor Algorithms,” 2018, arXiv. doi:
10.48550/ARXIV.1807.05614.

[3] M. Iwasaki, “Proximity search in metric spaces using approximate k nearest neighbor
graph,”

[4] NGT. Yahoo! Japan. [Online]. Available: https://github.com/yahoojapan/NGT
[5] A. Andoni, P. Indyk, and I. Razenshteyn, “Approximate Nearest Neighbor Search in High

Dimensions,” 2018, arXiv. doi: 10.48550/ARXIV.1806.09823.
[6] J. Emau, T. Chuang, and M. Fukuda, “A multi-process library for multi-agent and spatial

simulation,” in Proceedings of 2011 IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing, Victoria, BC, Canada: IEEE, Aug. 2011, pp. 369–375.
doi: 10.1109/PACRIM.2011.6032921.

[7] MASS. University of Washington. [Online]. Available:
https://depts.washington.edu/dslab/MASS/

[8] L. Kosiachenko, N. Hart, and M. Fukuda, “MASS CUDA: A General GPU Parallelization
Framework for Agent-Based Models,” in Advances in Practical Applications of Survivable
Agents and Multi-Agent Systems: The PAAMS Collection, vol. 11523, Y. Demazeau, E.
Matson, J. M. Corchado, and F. De La Prieta, Eds., in Lecture Notes in Computer Science,
vol. 11523. , Cham: Springer International Publishing, 2019, pp. 139–152. doi:
10.1007/978-3-030-24209-1_12.

[9] Yu. A. Malkov and D. A. Yashunin, “Efficient and robust approximate nearest neighbor
search using Hierarchical Navigable Small World graphs,” 2016, arXiv. doi:
10.48550/ARXIV.1603.09320.

[10] H. Jégou, M. Douze, and C. Schmid, “Product Quantization for Nearest Neighbor Search,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1, pp. 117–128, Jan. 2011, doi:
10.1109/TPAMI.2010.57.

[11] SPTAG. Microsoft. [Online]. Available: https://github.com/microsoft/SPTAG
[12] E. Bernhardsson, ANNOY. [Online]. Available: https://github.com/spotify/annoy
[13] cuVS. [Online]. Available: https://github.com/rapidsai/cuvs
[14] A. Li and M. Fukuda, “Agent-Based Parallelization of a Multi-Dimensional Semantic

Database Model,” presented at the IEEE 24th Int’l Conf. on Information Reuse and
Integration for Data Science, Aug. 2023, pp. 64–69.

https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://www.zotero.org/google-docs/?J5AuAS
https://github.com/spotify/annoy

Appendix

A. Code
Listing 1: Place class

Listing 2: Agent class

B. How To Run a Program
To run the Feature Extraction program, Python 3.9 or higher, along with the corresponding
version of PyTorch, is required. For the IVF PQ program, the latest version of cuVS must be

installed, ensuring that all associated prerequisites, including compatibility with the appropriate
version of the CUDA Toolkit, are met. Additionally, the libnpy library is necessary to convert the
NumPy arrays generated by the Feature Extraction program into a C++-compatible vector data
structure.

C. Figures
Figure 1:

	AGENT-BASED VECTOR SEARCH ON GPU
	I.​Introduction
	II.​Background
	III.​Challenges
	IV.​Goals
	V.​Implementation
	VI.​Future Work
	References
	Appendix
	A.​Code
	B.​How To Run a Program
	C.​Figures

