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1. Introduction
Over the past three quarters, for my capstone project and one quarter of CSS 499, I have been working on developing benchmarking programs for FLAME GPU2 and MASS CUDA to compare execution times and conduct a programmability analysis. I was tasked with writing, modifying and analyzing the following benchmark programs:

· Game of Life for FLAME GPU2
· Tuberculosis for FLAME GPU2
· Neural Net for FLAME GPU2
· Neural Net for MASS CUDA

Over the past three quarters I was to port each of these programs from FLAME to FLAME GPU2 and compare their metrics to those of the same benchmark programs written in MASS CUDA. Furthermore, I was to modify Neural Net for MASS CUDA to be compatible with the newest version called “PlaceV2” which included performance improvements.

2. Goals
My goals for Fall and Winter quarters were as follows:

· Port Game of Life to FLAME GPU2
· Compare execution times for Game of Life between FLAME GPU2 and MASS CUDA
· Port Tuberculosis to FLAME GPU2
· Compare execution times for Tuberculosis between FLAME GPU2 and MASS CUDA
· Port Neural Net to FLAME GPU2
· Modify Neural Net for MASS CUDA to work with PlaceV2
· Modify Tuberculosis for MASS CUDA to work with PlaceV2

3. Achievements
The achievements over the Fall and Winter quarters were as follows:

· Understanding and modifying the example program, Game of Life provided with FLAME GPU2
· Running execution time tests and conducting a programmability analysis for Game of Life
· Porting Tuberculosis to FLAME GPU2
· Running execution time tests and conducting a programmability analysis for Tuberculosis
· Porting Neural Net to FLAME GPU2
· Modifying Neural Net for MASS CUDA to work with PlaceV2

Porting Neural Net came with substantial difficulties, as the original program took advantage of features that FLAME GPU2 did not have. This led to its development being extended and as a result finished in the third quarter instead of the second. Additionally, due to time constraints, the modifications for Tuberculosis could not be completed on time.
Due to the execution time tests for FLAME GPU2, MASS was able to be improved to be roughly equal in execution times.



3.1. Implementation of Game of Life
Game of Life, also known as Conway’s Game of Life, or just Life is a cellular automaton devised by the British mathematician John Horton Conway in 1970. Due to its nature of being a grid of cells interacting with their neighbors, it was not a surprise to find an implementation of it among the example programs provided with FLAME GPU2.

The code for Game of Life, and more generally a FLAME GPU2 program consisted of the following parts:

Agent Specification
[image: ]

This code specifies a cell agent with a 2-element unsigned int array representing the agent’s position and an unsigned int representing if the agent is alive or dead.

Two agent functions are then attached to the agent. An output function, where the cell communicates its state to its adjacent cells, and an update function, which takes in the communication from adjacent agents and decides the cell’s own new state.

The agent functions are attached to the agent while specifying what message that agent function will output and input, in this case the “is_alive_message.”

Message Specification
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This code specifies the message sent by the “output” function and received by the “update” function. It is of the type MessageArray2D, which means that the message is a 2D array of messages where an agent function specifies that they are writing a message to a particular index within the 2D array. This allows the agent function receiving the message to look at a message at a particular location, or a set of messages relative to a particular location. 
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Here, in the update function, the wrap() method is used to iterate through messages from the cell’s Moore neighborhood centered on the cell’s own x and y coordinates.

Layer Specification
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Here, control flow elements called layers are created, and agent functions are attached to  them. Layers dictate the order in which agent functions are run, with a layer being created earlier being run earlier. In this case, two layers are created. The output function is attached to the first layer, and the update function is attached to the second. This means that the output function will execute first, sending each cell’s aliveness to its neighbors, followed by the update function executing, which will read in those messages and use them to determine each cell’s own state.

Environment Specification
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Globally-accessible variables can be specified using the model’s environment. Agent functions can access these values at runtime.

Agent Functions
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Agent functions represent the behaviors of individual agents and contain the main part of the logic of a FLAME GPU2 program. The above code snippet is the output function of a cell in Game of Life. The function header specifies that it is an agent function, as distinct from the few other types of functions including host functions and init functions. The header also specifies the name of the function, the type of incoming message, which in this case is none, or MessageNone, and the type of outgoing message, which in this case is a MessageArray2D, as discussed earlier.

Within this agent function, FLAMEGPU->message_out representing the outgoing message has two fields that are set. The variable “is_alive”, as defined earlier, is set using the cell’s own “is_alive” property. Then, as this is a MessageArray2D, the message’s index within the 2D array is set using the cell’s own position value.

This message is then passed on to the next agent function.
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In the update function, the MessageArray2D is received and is iterated through using the wrap function, which accesses the location’s Moore neighborhood based on the cell’s own position, as shown earlier.

In order for an agent’s variables to be changed they must be set using FLAMEGPU->setVariable.

At the end of an agent function, flamegpu::ALIVE must be returned, representing that the agent is still alive at the end of the function execution. If the behavior is enabled when the agent function is initially assigned to the agent during agent specification, flamegpu::DEAD may be returned instead, indicating that the agent has died during the execution of the function.



3.2. Implementation of Tuberculosis
Tuberculosis is a simulation of Tuberculosis bacteria gradually infecting a human lung. The simulation consists of a 32 by 32 grid of spaces that represent the lung. 4 places in the center of the area are initially infected with bacteria, which gradually spreads to cover the lung. 

Every simulation step, macrophage cells are spawned from predetermined blood vessels which wander the lung space somewhat randomly but will tend to move towards adjacent infected spaces if they detect a chemokine signal, which is generated by a place reacting to the presence of bacteria. Macrophages will consume bacteria on a space, making the space uninfected but infecting the macrophage in the process. Infected macrophages will gradually build up intracellular bacteria until they reach a particular threshold, at which point they are considered chronically infected. A chronically infected bacteria will eventually die when the intracellular bacteria reaches another, higher threshold. A macrophage that dies in this way will spread bacteria to nearby places.

After a certain number of simulation steps, by default 10, blood vessels will start to spawn T-cells, which will move in a similar manner to macrophages, attracted to a chemokine signal. When a macrophage and T-cell occupies the same space, one of two things will happen. If the macrophage is in its default state, or infected, the macrophage will become activated, and be able to consume bacteria from places without itself becoming infected again. If the macrophage is chronically infected when it encounters a T-cell, the macrophage will be killed.

This image is from the FLAME GPU (the original) implementation of Tuberculosis, as the visualizer for the FLAME GPU2 implementation is not yet complete. This is what the lung might look like after 99 simulation steps. [image: ]

The following sections will broadly explain the various agents and their specific behaviors.










Place Agents
Place agents represent a location on the lung. Place agents are responsible for managing the spread of bacteria, maintaining their chemokine signal, and if they are marked as a blood vessel, spawning in new macrophage and T-cell agents. Agent functions belonging to place agents are as follows:

· decay_chemokine_and_grow_bacteria
· cell_recruitment
· approve_macrophage_movement
· approve_tcell_movement
· react_to_macro

decay_chemokine_and_grow_bacteria
This function is responsible for decrementing a place’s chemokine value at every simulation step, as well as indicating to adjacent places that they should grow bacteria if the day is a day for bacteria to grow, by default every tenth day.

cell_recruitment
This function is responsible for creating new macrophage and T-cell agents, which is does depending on a number of factors including the current day, the presence or absence of a macrophage or T-cell currently on the place, and whether the day for T-cells to start spawning has passed.

approve_macrophage_movement
This function is responsible for responding to movement requests sent by macrophages. As only one macrophage can move to a place and two macrophages cannot occupy the same place, a place must approve the movement of a single macrophage agent to its own location.

approve_tcell_movement
This function is identical in functionality to approve_macrophage_movement, as T-cells share the same logic for moving as macrophages.

react_to_macro
This function is responsible for responding to the presence of macrophages and T-cells by adjusting the place agent’s bacteria values.

Macrophage Agents
Macrophage agents represent macrophage cells which roam the lung tissue and consume bacteria from places. Agent functions belonging to macrophage agents are as follows:

· macrophage_request_move
· macrophage_move
· macrophage_react

macrophage_request_move
This function is responsible for deciding which place a macrophage will move to. It does this by considering all the adjacent places and picks the one with the highest chemokine value. If all locations have a chemokine value of 0, the macrophage will move to a randomly selected place.

macrophage_move
This function is responsible for receiving a message from the place agent’s approve_macrophage_movement. If a macrophage agent’s movement has been approved, this function will execute upon it, updating the macrophage’s position values.

macrophage_react
This function is responsible for the macrophage reacting to the presence of bacteria and/or a T-cell at its new location, as well as updating intracellular bacteria if present. If the macrophage’s intracellular bacteria count is too high, or the macrophage is chronically infected and encounters a T-cell, this function will return flamegpu::DEAD, killing the agent.

T-Cell Agents
T-cell agents represent T-cells which move in the same manner as macrophages. T-cells are light on functionality as most of their interaction with other agents rely on other agents responding to their presence. Agent functions belonging to T-cell agents are as follows:

· tcell_request_move
· tcell_move

tcell_request_move
This function is identical in functionality to macrophage_request_move as they share the same movement behavior.

tcell_move
This function is identical in functionality to macrophage_move as they share the same movement behavior.




3.3. Implementation of Neural Net
Neural Net is a simulation of neurons growing and connecting to each other, eventually transmitting signals between them. The simulation space is a 100 by 100 grid of place agents that represent the portion of the brain which the program simulates. Upon initialization, each place has a 10% chance to become one of either a neutral, excitatory, or inhibitory neuron, or a 70% chance that the place will remain empty. If a neuron is determined to be created at a particular place, that place agent will be marked to contain a neuron, and a neuron agent will be created at that place’s coordinates.
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Each simulation step, each neuron will consider the current growth step, which is synchronized to the current simulation step, and use that value to determine which neuron part it will attempt to grow next. This means that every neuron in the simulation will attempt to grow the same neuron parts at the same steps.

Once a neuron has decided to grow a part in a particular direction, it notes the data corresponding to that growth in a set of variables we will call the “Next Growth” variables. It then consults these variables and sends a growth request to the place agent at that location. The place agent then looks at all the growth requests it has received and sends a response to each of them. The place agent will approve a single request and deny the rest of them if it is unoccupied, or if it is occupied, it will deny all requests. If a neuron agent requesting to grow to a particular place receives approval from that place, it will note that location within the neuron’s data as containing a part of itself. The location and type of neuron part are noted. As part of sending the approval, the place agent also notes that it is now occupied by a neuron part. This is able to be done as part of the approval as there is no circumstance under which a neuron receiving an approved growth request will not grow to that location.

Previously, this would be where the complexities started to take hold. There were three ways in which a new neuron part agent can be created:
· When a neuron agent creates its first neuron part of its chain, e.g. when a neuron agent creates its initial axon part
· When a neuron part agent creates another one of itself, e.g. when a dendrite agent extends, creating another dendrite agent
· When a neuron part agent branches and creates a second one of itself, e.g. when an axon splits in two 
Due to the limitations of FLAME GPU2, each of these neuron part relationships required their own agent functions. This means that for each of the neuron part types, and for each of the types of growth, four agent functions were required for each of the request, approval, growth, and post-state stages.
These limitations required that the neuron growth required, at minimum, 36 separate agent functions for each of the stages for each neuron part. Both designing this approach, implementing it and debugging it ate up significant development time, as whenever an issue was discovered in one of these agent functions, it had required that the same issue be fixed in each of the other 9 agent functions of that type.[image: ]

Due to this, the first half of the quarter was spent improving Neural Net to not require a separate agent type for each neuron part. Now, a neuron simply notes the locations its parts occupy in a series of arrays. This allowed for the program to trim down the number of functions relating to neuron growth from over 36 to just four.

Place Agents
Place agents represent a location on the brain. Place agents are responsible for tracking what type of neuron part is present at that location, as well as using that information to respond to growth requests. Agent functions belonging to place agents are as follows:

approve_growth
This category of function receives growth requests from the various neuron parts. If the place is already occupied by a neuron part, the function will deny all requests. If the place is unoccupied, the place will approve the first request and deny the rest. If the place agent approves a growth request, it will note the part type of the occupying neuron part.


Neuron Agents
Neuron agents represent the center of a neuron. The neuron agent is responsible for tracking the order for which it will grow the initial part in the chain of each of the surrounding neuron parts, that is, the axon and dendrites. Agent functions belonging to place agents are as follows:

make_growth_decisions
This agent function determines the current growth step and notes the next growth the neuron will attempt. It also determines whether to randomly rotate or branch the direction of growth.

request_growth
This agent function consults the stored “Next Growth Data” variables and uses that information to send a growth request to a particular place agent. 

grow
This agent function receives a response from the Place agent’s approve_growth_request and will grow a new neuron part if the request is approved and do nothing if the request is denied. If the request is approved, the agent will grow by noting the location of the growth within its neuron part data and update the next growth location from that branch.

3.4. Implementation of Neural Net for MASS CUDA PlaceV2
Neural Net for MASS CUDA is largely the same program with a different implementation. Unlike FLAME GPU2 which does not make a distinction between places and agents, MASS CUDA treats them as separate entities. The MASS CUDA version of Neural Net is implemented using only places which communicate with their neighbors to grow neurons. The neurons are stored as variables contained by the places instead of being their own agents.
[image: ]
My work on Neural Net for MASS CUDA largely involved changing the way that variables were accessed. Previously, variables were attributes belonging to the class that represented the place to which they belonged.

In the new implementation, each variable had an entry in an enumeration. This enum value was used to access the variable with a function called getAttribute().
[image: ]
This function call requires three arguments. The first argument is an index that is obtained with a getIndex() function call. The index corresponds to a particular place, of which getIndex() gets the index of the place calling the function. The second argument is the enum value of the variable being fetched. The third argument is the quantity of the variable. For most variables including objects, this value is 1: a single item. For arrays, however, this value corresponds with the length of the array. For example, when getting data corresponding to a place’s Moore neighborhood, each place  having eight neighbors makes the size of such an array 8.[image: ]

The getAttribute() function call returns a pointer pointing at the data that was requested, and can be used to access and modify that data. 

[image: ]













Data can be written to that pointer as follows, and doesn’t require another function call to store that data.[image: ]








Finally, each variable that is used must be defined in the program’s <Program Name>.cu file.
[image: ]



4. Evaluation
4.1. Game of Life
Game of Life Execution Times
The following runtime data was collected by running Game of Life in both MASS CUDA and FLAME GPU2 for three game sizes of 165 by 165 places, 1000 by 1000 places, and 2000 by 2000 places for 250 steps.

MASS CUDA
	165 * 165
	1000 * 1000
	2000 * 2000

	3,349 ms
	4,441 ms
	14,688 ms



FLAME GPU2
	165 * 165
	1000 * 1000
	2000 * 2000

	31 ms
	113 ms
	359 ms



The results indicated that for all sizes, FLAME GPU2 was around two orders of magnitude faster than MASS CUDA. This data led to MASS being improved. The improved execution times are as follows.

MASS CUDA V2
	500 * 500
	1000 * 1000
	2000 * 2000

	47 ms
	135 ms
	481 ms




Game of Life Programmability Analysis
The following programmability metrics were collected by using Lizard, a Cyclomatic Complexity Analyzer for many languages including C++. In order for Lizard to accept the MASS CUDA and FLAME GPU2 programs, they had to be renamed to be .cpp files instead of .cu, which did not appear to affect Lizard’s functionality.

MASS CUDA
	LOC
	Cyclomatic Complexity
	Boilerplate code
	Boilerplate %

	147
	2.6
	8
	5.4%






FLAME GPU2
	LOC
	Cyclomatic Complexity
	Boilerplate code
	Boilerplate %

	114
	4
	78
	68%



The results indicated that FLAME GPU2 had an overwhelmingly higher amount of boilerplate code, which was consistent with my experiences in looking over Game of Life and writing Tuberculosis, where comparatively little of the code specified agent behavior. This was largely because in a FLAME GPU2 program, most elements such as agents, agent functions, and messages between agent functions have to have all of their properties specified beforehand, leading to many lines of code specifying their functionality before their actual use.

4.2. Tuberculosis
Tuberculosis Programmability Analysis

FLAME GPU2
	LOC
	Cyclomatic Complexity
	Boilerplate code
	Boilerplate %

	1057
	4.97
	265
	25%



Tuberculosis was a much longer and more intricate program than Game of Life, as indicated by its total lines of code. Each of the agents had much more complex behaviors, as denoted by the higher cyclomatic complexity.

Interestingly, the boilerplate code, while roughly four times greater than Game of Life, made up a smaller portion of the program. This is because, while like in Game of Life, the agent, message, and control flow specification took up a large amount of space, unlike Game of Life, the agent behaviors were, again, much more complex, taking up comparatively more lines of code.

It should be noted that the original implementation of Tuberculosis for FLAME GPU had taken advantage of many features present in FLAME GPU that were not in FLAME GPU2. Primarily, this was the functionality to receive multiple types of message originating from multiple different agent functions in a single agent function. To recreate the behaviors of the original program in FLAME GPU2, I had to add multiple extra agent functions to send and receive information at intermediate steps between the ported functions and save that data as properties within the agent. This increased the complexity of the FLAME GPU2 implementation by a significant amount.



5. Conclusion

To summarize, over the last two quarters, I have worked on developing the following benchmarking programs for FLAME GPU2 and MASS CUDA:

· Game of Life for FLAME GPU2
· Tuberculosis for FLAME GPU2
· Neural Net  for FLAME GPU2
· Neural Net for MASS CUDA

I was also assigned to work on updating Tuberculosis for MASS CUDA to the PlaceV2 but I was not able to finish due to time constraints.
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Appendix A: Code
The implementations for Game of Life, Tuberculosis, and Neural Net can be found at the following locations:

	Game of Life
	https://github.com/FLAMEGPU/FLAMEGPU2/tree/master/examples/cpp/game_of_life

	Tuberculosis
	https://bitbucket.org/alexhilwa/flamegpu2_tuberculosis/src/main/

	Neural Net (FLAME GPU2)
	https://bitbucket.org/alexhilwa/flamegpu2_neuralnet/src/main/

	Neural Net
(MASS CUDA)
	https://bitbucket.org/alexhilwa/masscuda_neuralnet/src/main/



Appendix B: How to Run
In order to run Game of Life, follow these instructions:
1. Download the FLAME GPU2 library from:
a. https://github.com/FLAMEGPU/FLAMEGPU2/tree/master
2. Unzip FLAMEGPU2-master
3. Mkdir -p build && cd build
4. cmake .. -DCMAKE_CUDA_ARCHITECTURES=61 -DCMAKE_BUILD_TYPE=Release
5. cmake --build . --target game_of_life -j 8
6. ./bin/Release/game_of_life --verbose --steps 10
a. This command will run the program in verbose mode, for 10 steps.
b. Using the --help command will explain argument usage.

In order to run Tuberculosis, follow these instructions:
1. Download the FLAME GPU2 library from:
a. https://github.com/FLAMEGPU/FLAMEGPU2/tree/master
2. Unzip FLAMEGPU2-master
3. In FLAMEGPU2-master/examples/cpp add the tuberculosis directory from the BitBucket link
4. Return to FLAMEGPU2-master
5. Mkdir -p build && cd build
6. Edit FLAMEGPU2-master/CMakeLists.txt
a. Under the section: # Options to enable building individual examples, if FLAMEGPU_BUILD_ALL_EXAMPLES is off. 
b. Include the line: cmake_dependent_option(FLAMEGPU_BUILD_EXAMPLE_TUBERCULOSIS "Enable building examples/cpp/tuberculosis" OFF "FLAMEGPU_PROJECT_IS_TOP_LEVEL; NOT FLAMEGPU_BUILD_ALL_EXAMPLES" OFF)
c. Under the section: # Add each example
d. Include the lines: 
e. if(FLAMEGPU_BUILD_ALL_EXAMPLES OR FLAMEGPU_BUILD_EXAMPLE_TUBERCULOSIS)
f.     add_subdirectory(examples/cpp/tuberculosis)
g. endif()
h. Alternatively, find an already edited version of the CMakeLists.txt in the root directory of the Tuberculosis BitBucket
7. cmake .. -DCMAKE_CUDA_ARCHITECTURES=61 -DCMAKE_BUILD_TYPE=Release
8. cmake --build . --target tuberculosis -j 8
9. ./bin/Release/tuberculosis --verbose --steps 100

In order to run Neural Net, follow these instructions:
1. Download the FLAME GPU2 library from:
a. https://github.com/FLAMEGPU/FLAMEGPU2/tree/master
2. Unzip FLAMEGPU2-master
3. In FLAMEGPU2-master/examples/cpp add the neural_net directory from the BitBucket link
4. Return to FLAMEGPU2-master
5. Mkdir -p build && cd build
6. Edit FLAMEGPU2-master/CMakeLists.txt
a. Under the section: # Options to enable building individual examples, if FLAMEGPU_BUILD_ALL_EXAMPLES is off. 
b. Include the line: cmake_dependent_option(FLAMEGPU_BUILD_EXAMPLE_NEURAL_NET "Enable building examples/cpp/neural_net" OFF "FLAMEGPU_PROJECT_IS_TOP_LEVEL; NOT FLAMEGPU_BUILD_ALL_EXAMPLES" OFF)
c. Under the section: # Add each example
d. Include the lines: 
e. if(FLAMEGPU_BUILD_ALL_EXAMPLES OR FLAMEGPU_BUILD_EXAMPLE_NEURAL_NET
f.     add_subdirectory(examples/cpp/neural_net)
g. endif()
h. Alternatively, find an already edited version of the CMakeLists.txt in the root directory of the Neural Net BitBucket
7. cmake .. -DCMAKE_CUDA_ARCHITECTURES=61 -DCMAKE_BUILD_TYPE=Release
8. cmake --build . --target neural_net -j 8
9. ./bin/Release/neural_net --verbose --steps 100
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