An Agent-Based Multidatabase System

XTAOTIAN LI

Term Report
CSS 595: Masters Project

Professor Munehiro Fukuda

Autumn, 2020

1. Introduction

The Mathematical Model of Meaning (MMM) is a multidimensional database system different
from the SQL-like database [1]. In the traditional SQL database, it uses SQL language to query
the database by compare user-defined conditions. In MMM, it extracts features from a database
and explains the database using the data item's feature. For example, in the Longman dictionary,
MMM utilizes 871 features words to explain 2115 words. Each feature is translated into a
column, and each data item is represented as a row in a matrix. Besides, MMM is also able to
realize semantic meaning among data items. It can distinguish the meaning of data items under
different contexts, and users can define the different context to customize their query. For
instance, the word "buck" has a different meaning in the context of gambling and haunting. In
the gambling context, "buck" is slang for a dollar. However, in the hunting context, it means
some horned animals. Therefore, MMM is valuable for the applications which require different
query context. MMM consists of three steps. Step 1 is a high-dimensional space creation with a
correlation matrix, this step includes large-scale matrix multiplication. Step 2 is a user-defined
subspace extraction with eigen-decomposition. Step 3 is sorting of data through Euclid distance
calculation. All of these 3 steps are computationally intensive; therefore, the Parallelization is
necessary for MMM.

In the past quarter, we have been working on parallelizing MMM with the MASS library. The
MASS library is an Agent-Based Modeling library that stores data in the distributed places and
propagates agents to interact with the data [2]. For the first step of MMM, we were able to
parallelize matrix multiplication to get 85% performance improvement over MPI and 95%
performance improvement over sequential program. Moreover, since MMM requires extensive
file reading on computing nodes, we also implemented parallel I/O to support csv file reading,
which generated a satisfying result as well.

2. Matrix Multiplication

2.1 Cannon’s Algorithm with MASS

The matrix multiplication is one of the most popular benchmarks for the parallel framework. In
parallel computing, people use Cannon’s algorithm to improve the performance. In general,
Cannon’s algorithm includes two steps. The first step is to align the matrix of A and B so that in
each processor P;j, the j value of A is same as the i value of B. The second step is to move each
submatrix A one step left and submatrix B one step up and to perform block multiplication.
Finally, the multiplication result is generated by adding up results of each shifting.

In order to implement cannon’s algorithm using MASS, we created a SubMatrix class and a
Shifter class to extend Place and Agent respectively. For the SubMatrix class, it provides
memory and computing resources. Each place is initialized in the CPU core of a different
computing node. Upon initialization, place will read the data from a CSV file and save their
corresponding portion into the memory space.

In the Shifter class, it firstly spawns two agents at each place. One agent is responsible for the
matrix A, and the other one is responsible for the matrix B. As shown in the Listing 1, In order to
make the initial alignment, each agent needs to grab the data from place where it was born and
migrate it to the designated places (line 43 and line 58). In line 48 to 52 and line 63 to 67, agent
A and agent B are finding the coordinate of destination place. Agent A needs to shift i columns
left and agent B needs to shift j rows up. After initial alignment, each agent does the matrix
calculation and saves the temporary result into the place’s memory. When finishing the initial
alignment, agents will be responsible to exchange data. Compared with the MPI approach, agents
move over matrix instead of the conventional approach to shifting data to neighboring elements.
MASS provides a more flexible way for data exchange; developers do not need to worry about
the potential deadlock, which is likely to happen with MPIL. In MPI, MPI SEND and MPI RECV
will block the program until the send/receive buffer can be reused. If both ranks send data
through a same buffer, the program will deadlock.

Listing 1. Alignment of submatrix in Cannon’s Algorithm
(getAgentId() % 2 == 0) {
.tag =

.subMatrix = deepCopyMatrix(place.matrixA)

row = place.getIndex()[0]
col = place.getIndex()[1]
newCol =
(row != 0){
newCol = (placeSize + getIndex()[1] - row) % placeSize
} {
newCol = col
}
MASS.getLogger () .debug(+ row + + newCol)
.nextSubMatrix = [1{row, newCol}
place.matrixA =
{
.tag =
.subMatrix = deepCopyMatrix(place.matrixB)

row = place.getIndex()[0]

col = place.getIndex()[1]

newRow =

(col != 0){

newRow = (placeSize + getIndex()[0] - col) % placeSize

} {

newRow = row
}
MASS.getLogger () .debug(+ row + + newRow + + col)
.nextSubMatrix = [1{newRow, col}
place.matrixB =
}

migrate(nextSubMatrix)

2.2 Parallel 1/0 for CSV Files

After examining the performance results, we found the most prominent overhead in our
implementation is the csv file reading. It takes over 4500 ms to read the 48mb csv file into the
memory space. This sequential file reading methodology does not fully use the power of every

computing node. Instead, only one computing node is reading the CSV file at one time.
Therefore, we decide to add a CSV feature to MASS parallel 1/O.

In order to enhance the parallel I/O within the MASS library, each place must be able to open
and read the same CSV file in parallel. All the current implementations have been done within
the Place class. We implemented this CSV file reading feature on top of the current parallel I/O
class. In the current design of parallel 1/0, it firstly opens the file by taking the given filePath
argument, which determines the file’s name and whether the file’s type is supported. Currently,
MASS parallel I/O supports Netedf, Text and Csv file. If the given file type is not supported,
then -1 is returned. Otherwise, this file will be opened and saved into the fileTable. The open
method is a synchronized method that means only one place will handle each computing node's
open task. The file reading is implemented by splitting the file into an equal number of bytes,
and each computing node will get a corresponding portion. However, for the csv file, since each
data record's character length is different, directly splitting the file will make records lose some
digits. To solve this problem, we add paddings on each line to make sure every line will have the
same length. Therefore, when we split the file by an equal number of bytes, every computing
node will get the same number of line data. As shown in Listing 2, we first retrieve the whole
string from the memory buffer and get number of rows and columns. Afterwards, we loop
through every line and assign corresponding columns to each place. In our current
implementation, each computing node breaks the data vertically and distributes it to each place.
This design aligns with Cannon's algorithms' requirement so that each place can save the data as
a submatrix and start doing the calculation right away.

Listing 2. Read and distribute a corresponding portion to places

InvalidNumberOfPlacesException

[1[] readToArray(placeOrder)
String csvString = String(
String[] rows = csvString.split(
String[] cols = rows[0].split(
nRow = rows.
nCol = cols. /
.debug(String.format(nRow, nCol))
arr[][] = [nRow] [nCol]

(row = row < nRow; row++) {

cols = rows[row].split()
colOffset = placeOrder * nCol
(col = col < nCol; col++) {

arr[row] [col] = Double.parseDouble(cols[colOffset++].replace(

3 Results

We conducted our matrix calculation results on the cssmpiXh clusters using the latest MASS
version 1.3.0. We also compared performance among MASS, MPI, and sequential program.
Overall, as shown in Table 1, MASS has the fastest file reading performance at 1023ms, which is
2.2 times faster than the sequential program and 4.12 times faster than MPI. When we look at the
calculation time, MASS also won the competition. The average computation time on MASS was
at 5961ms. On the other hand, MPI and the sequential program took 38791ms and 129816ms,
respectively. By comparing the performance between MASS and MPI, we can see that MASS
improves around 85%. This is because MASS uses multi-core capability whereas MPI only uses
a single core on each machine. In this case, the number of computing nodes of MASS increases
from 4 to 16. Therefore, each computing node will be responsible for a smaller submatrix size so
that the performance is faster than MPI. Overall, in our experimental results, MASS shows a
convincing result at both system I/O time and at calculation time.

Table 1. Performance comparison for Matrix Calculation

MASS MASS Place File Readin
No. Initialization Initialization Time 8 Calculation Time Total Time Type
Time Time
1 N/A N/A 2120 115604 117724 Seq
2 N/A N/A 2396 137150 139546 Seq
3 N/A N/A 2259 136696 138955 Seq
4 N/A N/A 4198 38711 42909 MPI
5 N/A N/A 4122 38910 43032 MPI
6 N/A N/A 4346 38752 43098 MPI
7 15255 117 1092 5828 22292 MASS
8 15034 134 962 5953 22083 MASS
9 15169 112 1015 6102 22398 MASS

4. Future Research

The next steps for this research are to parallelize the step 2 and step 3 with MASS. For step 2, we
would like to use Householder transformation and figure out an approach to apply MASS on. In
step 3, the distance calculation is a perfect scenario to utilize agents' mobility to discover the
closest agent.

Upon finishing MMM's implementation with MASS, we would like to test the whole system
with large-scale datasets. There are two aspects we are looking at the test. Firstly, we want to
know the practicability of MASS in resolving real-world problems. MASS has shown significant
potential for scientific and biological problems, but it has not been used on many real-world
problems. It would be a perfect opportunity for MASS to test its practicability. Moreover, the
query accuracy and our system's overall performance is another part we want to test. If the
testing results are satistfying, we would like to apply our multidimensional database on problems
such as image and video retrieval, semantic search, recommender systems, etc.

5. References

1. “MASS: A parallelizing library for multi-agent spatial simulation.” [Online]. Available:
http://depts.washington.edu/dslab/MASS/
2. T. Kitagawa and Y. Kiyoki, "A mathematical model of meaning and its application to

multidatabase systems," Proceedings RIDE-IMS "93: Third International Workshop on Research
Issues in Data Engineering: Interoperability in Multidatabase Systems, Vienna, Austria, 1993,
pp. 130-135, doi: 10.1109/RIDE.1993.281933.

