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In conventional database systems, people consistently ignore the semantic meaning in autonomous 

databases. It is not easy to extract significant information based on different querying contexts 

from a database system. Mathematical Model of Meaning (MMM) is a meta database system that 

extracts features from the database and explains the database by those features. It provides users 

with the capabilities to extract significant information under different semantic spaces. The 

semantic space is created dynamically with user-defined impression words to compute semantic 

equivalence and similarity between data items. MMM computes semantic correlations between 

the key data item and other data items to achieve dynamic data querying.  

Multi-Agent Spatial Simulation library (MASS) is a parallel programming library that utilizes an 

agent-based model (ABM) to parallelize extensive data analysis. This project presents parallel 
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solutions to improve the performance of MMM using MASS. Multiple agent-based parallel 

solutions were implemented to improve the efficiency of MMM. Compared to the sequential 

MMM program, the parallel solution using MASS achieved 23 times speedup over the sequential 

program on matrix multiplication. MASS also reduced the processing time of distance sorting of 

multidimensional vectors by 23.70%. Additionally, this work also conducted benchmark analysis 

and programmability analysis between MASS and MPI Java to indicate the advantages of agent-

based behavior. 
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Chapter 1. INTRODUCTION  

1.1 MOTIVATION 

Nowadays, no matter what field you work in, data provide a unique way of looking the insights of 

a problem. In healthcare, datasets help epidemical study to predict the trend of a pandemic. In the 

advertising field, recommendation systems analyze millions of data items to present the most 

relevant ads to you. Data has become a vital part of people's life that is closely related to all aspects. 

In the context of computer, data refers to machine-readable information. Therefore, some human-

related sensitive recognition will be lost during the data transition, such as "semantic meaning", 

"impression", "human senses'', "feelings'', "sensitivity", "physiological reaction" and 

"psychological reaction" [1]. Mathematical Model of Meaning (MMM) provides a semantic 

associative computation method. It is a multidatabase system and was introduced by Dr. Kitagawa 

and Dr. Kiyoki [2]. In the traditional SQL-like multidatabase systems, the semantic meaning of 

data items is always being ignored. In MMM, it realizes semantic interoperability among data 

items. It takes context keywords to create semantic space and recognize data items disambiguously 

and dynamically according to the context [2]. Users can provide several context keywords to create 

a semantic space and use that semantic space to query data items. For instance, the word "buck" 

has a different meaning in the context of gambling and hunting. In the gambling context, "buck" 

is slang for a dollar. However, in the hunting context, it means some horned animals. Therefore, 

MMM is valuable for applications that require different query contexts.  

In MMM, features are extracted from database, which can explain data items by those 

features. For example, in Longman dictionary, people can use 850 basic feature words to express 

all entries in the dictionary. In the query process, a correlation matrix is created to show 
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interconnections between features. In addition, a semantic space is also extracted by user-provided 

impression words. MMM can query the meaning of data items dynamically under different 

semantic spaces. Finally, the semantic projection mapped data items onto a semantic space, so that 

users can query under the semantic context. MMM is a computationally intensive framework that 

includes three massive mathematical operations: calculation of correlation matrix, eigen 

decomposition, and sorting data items by Euclidean distance. Hence, the parallelization is 

necessary to improve the query performance of MMM.  

MASS is a parallelization framework that stores data in the distributed places and propagates 

agents to interact with places [3]. Places and agents are two important components in MASS. 

Place is a distributed array of elements that are dynamically allocated over a network cluster. 

Agents are a set of execution instances that can reside and migrate between places. Places are 

mapped onto the threads of computing nodes, whereas agents are mapped onto processes. Places 

and agents can both be running simultaneously to support parallel computing. 

Compared with conventional parallel programming frameworks such as Spark and 

MapReduce, MASS uses agent-based modeling (ABM) to perform data parallelization. ABM 

views computation as an emergent collective group behavior among many agents. It simulates the 

biological identification of moving agents, and it is more efficient to move the computational 

resource to the distributed places instead of passing data around distributed places [4]. Mobile 

agents use this approach, but ABM finds data attributes in their collaboration [5]. In MASS, data 

computation is enclosed in the agent, all of which is scheduled as periodic data exchange using 

agent propagation. 

1.2 PROJECT GOALS AND ACHIEVEMENTS 

The research goals of this project are as follows: 
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1) Reimplement MMM using Java and collect sequential performance benchmarks. 

MMM was first introduced in 1993, the software and hardware performance have been 

improved a lot since then. We want to evaluate the performance of MMM to see which part 

takes the most time of the application so that we will get a better idea of the parallelization 

strategy. 

2) Enhance the overall performance of MMM by applying MASS. We implemented four 

algorithms to parallelize MMM using agent-based approaches. We also conduct five 

benchmark analyses to evaluate performance improvement compared with the sequential 

program. In addition, we also compared MASS with MPI Java for some parts of the 

parallelization, which reveals MASS's strengths to some data streaming problems. 

3) Prove applicability of MASS in a real-world problem. Before we started this project, 

MASS was used for analyzing large datasets and paralleling data-science applications. 

MASS shows excellent performance when compared with other frameworks such as MPI, 

MapReduce, and Spark [5]. However, MASS hasn't approved much on real-world 

problems. This project gives us an opportunity to explore how MASS will perform when 

solving those problems. 

In our work, we split MMM into three different steps and implemented the MMM using Java. 

By analyzing the execution performance of MMM, we identified the performance bottleneck 

within it. Therefore, agent-based parallelization approaches with MASS were applied to MMM, 

which gave us a satisfactory result compared with sequential performance. The execution time of 

matrix multiplication using MASS improved by 95% in comparison with the sequential program 

and the distance sort of multidimensional vectors also improved by 24%. The details of our 

achievements can be viewed in Chapter 5.   
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1.3 STRUCTURE OF WHITE PAPER 

The rest of this white paper is organized as follows: Chapter 2 introduces the background of MMM 

and MASS. Chapter 3 reviews related works of semantic database and parallel database. Chapter 

4 discusses the related parallelization strategy of different steps in MMM. Chapter 5 presents the 

benchmarks analysis as well as the programmability analysis of MASS's implementations.  At last, 

Chapter 6 concludes the project with future enhancements and limitations.  

Chapter 2. BACKGROUND 

2.1 MATHEMATICAL MODEL OF MEANING 

The relational database is unarguably the most popular database model today. It has been widely 

used in almost every field that needs to save structural data. As in relational databases such as 

SQL, database model designers have to convert data interconnections to computer language, which 

requires an additional direction. In addition, relational database also shows weakness in capturing 

the semantic meaning of data items. During a data querying process, the results from relational 

database are usually abstracted and returned to unnatural structural relationships. These 

relationships are always defined by the pre-defined foreign key declarations [6]. It always captures 

the logical relationship but ignores the natural semantic structures.  

In a database, the semantics usually refer to three major categories: formal semantics, lexical 

semantics, and conceptual semantics [6]. The formal semantics means the feeling and sense of 

people. The lexical semantics represents the underlying meaning of a word and data item, and the 

conceptual semantics usually indicates the cognitive structure of data items. In order to realize the 

semantic meaning in the database, it not only focuses on the underlying meaning of data items but 

also the relationship of what they stand for. Data items always cannot be identified independently.  



 

 

13 

MMM is a semantic database model that helps users to discover data items with equivalent or 

similar meanings. In the normal SQL-like database, a data item is queried by pattern matching. 

The SELECT and WHERE clauses are used to filter data items through user-provided conditions. 

Comparing with a SQL-like database, the data item is queried by semantic associative search 

where data items are projected onto semantic spaces. MMM calculates the Euclidean distance 

between data items to find out the most relevant data items based on user-selected semantic spaces. 

The following sections present the technical details of three steps in MMM and discuss how does 

semantic associative work in MMM.  

2.1.1 Correlation Matrix Calculation  

Overall, MMM can be separated into three different steps. The first step is to formalize the initial 

input data into matrix A, which is an m rows by n columns matrix. In this matrix, each feature is 

translated into a column, and each data item is represented as a row in a matrix. To create the initial 

input matrix, we refer to the basic words that explain all the dictionary's vocabulary entries as 

features. For example, the word "nice" can be expressed by features "kind", "nice" and "friend" 

and the word "small" can be expressed by features "amount", "average", "importance", "-large", 

"size" and "small" itself. Figure 2.1 shows a matrix to use n features to explain all m words. For 

example, in the word "nice", each feature word is set to 1 to illustrate the positive relationship 

between feature word and data word. In the case of "small", the negative value "-1" is set on the 

column of "large" to explain the negative value of this column. If features are not used to explain 

vocabulary terms, the columns corresponding to those features are set to "0" [1]. 
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Figure 2.1. Creation of Input Matrix 

 
Afterward, we calculate the correlation matrix M in order to prepare for the eigen 

decomposition in step 2. During the correlation matrix calculation, we first normalize the matrix 

in the row direction. The Frobenius norm is applied to each row and a 1 * n normalized vector will 

be retrieved. The Frobenius norm is given by:  

||𝐹|| 	= 	 [&𝑎𝑏𝑠(𝑎!,#)$
!,#

]%/$ 

Next, the original matrix is normalized by the normalized vector to get a normalized matrix. 

Finally, we multiply the normalized matrix with its transpose matrix to get the final correlation 

matrix. This matrix multiplication operates on two m * n and n * m matrices which will take a 

significant amount of time when matrix size gets larger. Therefore, the parallelization of this step 

is necessary, which will be discussed in the following section. 

2.1.2 User-Defined Subspace Extraction with Eigen Decomposition 

In MMM, the semantic associative search is deployed on a semantic space. The queries and 

retrieval candidates are mapped onto the semantic space, the retrieval candidates and query items 

will be calculated in correlation to the semantic space. There are three steps to perform the 

associative search: 
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1) User provides a context by a set of impression words {𝑢%, 𝑢$, 𝑢', . . . , 𝑢(}. The impression 

words must be a subset of data items in original matrix A. 

2) A subspace will be created by given context impression words. 

3) All the data items will be mapped onto the subspace, and a normalization vector will be 

calculated as the correlation value between the context and the information resources. 

In the above steps, a user-defined semantic space is created, and an orthogonal matrix Q will 

be formed as Q	 = 	 (Q%, Q$, . . . , Q))*  where 𝑄%, 𝑄$, . . . 𝑄+	are eigenvectors from the previous-

generated correlation matrix. Eigenvectors are called semantic elements in MMM, and all 

eigenvalues are real. Eigenvectors are mutually orthogonal because the correlation matrix is 

symmetric. As shown in the following equation, we can get 2v potential semantic spaces to add up 

all the combinations together. 

𝐼	 = 	 {𝑞%, 𝑞$, …	𝑞, 

𝑞% 	+ 	𝑞$, … , 𝑞+-% 	+ 	𝑞+ 

… 

𝑞% 	+ 	𝑞$+	. . . +	𝑞+} 

In order to narrow it down into a smaller dimension of semantic space, Fourier expansion 

between user-provided impression words 𝑢%, 𝑢$, 𝑢', . . . , 𝑢(  and eigenvectors 𝑞%, 𝑞$, 𝑞', . . . 𝑞+	will 

be calculated. The vectors that are normalized in the infinity norm are called semantic center [2].  

The semantic center can be calculated by: 

𝐺 = 	
∑ 𝑢!%(
!.	% , . . . , ∑ 𝑢!+(

!.	%

|| ∑ 𝑢!%(
!.	% , . . . , ∑ 𝑢!+(

!.	% ||∞
 

Lastly, the semantic centers will be kept only if their values are greater than a positive real 

number 𝜀 (0 < 𝜀  < 1). The index of semantic centers will be recorded, and the corresponding 

semantic element will be formed into the semantic space. 
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2.1.3 Sorting the Data Items by Calculating Euclidean Distance 

In this step, we sort the data items by calculating Euclidean distance to finally get the query results. 

Upon finishing the previous steps, each data item has been projected onto the user-defined 

semantic space. By querying the data, there are two scenarios. The first one is to identify the nearest 

neighbors in the specified data item set W from keyword P in the semantic space (Figure 2.2 (b)). 

This corresponds to finding the closest data item between the given keyword in terms of meaning. 

The second one is to find the top N items from the user-defined semantic space (Figure 2.2 (c)). 

In this scenario, users don't provide a keyword to query against. MMM queries the top N items 

according to the current semantic space. 

 
Figure 2.2. Dynamic Semantic Spaces 

2.2 MASS 

Multi-Agent Spatial Simulation (MASS) is a parallel computing library built with agent-based 

model to parallelize applications by propagating agents onto different places. For the alternative 

parallelization framework to MASS, such as Spark and MapReduce, they all use parallel data 

streaming to exploit a form of parallel processing. The dataset is streamed from the input source 

and processed by multi-threads in a computing cluster. Computer nodes perform a sequence of 
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operations on the data stream in parallel and return the results to the downstream. In this way, each 

individual request has to go through the whole process of data streaming.  

On the other hand, with agent-based approach, MASS is able to save the data into a dedicated 

area so that further agents can retrieve data on demand. In addition, the database system requires 

the parallelization framework should be able to analyze data on the fly. Once the system receives 

a query request, the parallelization framework should minimize the data-reading process. MASS 

can also satisfy this requirement by spawning new agents to take charge of new requests. In MASS, 

there are two major components, Places and Agents. In the following sections, we will discuss the 

programming model of MASS as well as the main functionalities of places and agents. 

2.2.1 Place 

Places is a multidimensional array of elements that are uniformly distributed over computing 

machines in a cluster. Each partition of places utilizes the multi-core of computing nodes, and 

further subdivided portion is allocated on a different computing core. The place is managed by a 

set of network-independent array indices, and it is capable of saving data and exchanging data with 

its neighbors. As visualized in Figure 2.3, remote nodes start the MASS application by forking 

processes over a cluster. Each computing node is connected over SSH channels through TCP 

connections [7]. In general, MASS splits places into smaller stripes vertically, and each strip is 

executed by a different thread. The most important function in places class is callAll(), that invokes 

a user-defined function in all array elements. The function is processed among multi-processes 

and threads. The user needs to pass a functionId as the identifier to the function.    
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Figure 2.3. MASS Programming Model 

2.2.2 Agent 

In MASS, Agents are a set of execution instances which can reside and migrate between places. 

Agents use array indices to indicate the next place's location. During agents migration, agents can 

carry data members from the source location to the destination location and terminate or replicate 

themselves upon arrival. Comparing with places, agents are grouped into bundles, and each bundle 

is assigned to a different process. Multiple threads periodically check agents in and out that are 

ready to execute the new agent [3]. Agents class have three important function interface, callAll(), 

migrate(), and manageAll(). The callAll() function invokes a user-created function on every active 
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agent, and the user-created function is pointed by functionId. migrate() function initiates an agent 

migration to a new place by calling places index. manageAll() function updates the status of an 

agent. Under the hood of manageAll() function, it checks the size of each agent bag and 

synchronizes all threads together. The most recent version of MASS also supports event-driven 

agent behaviors to allow users to associate functions upon agents' departure, arrival, and creation. 

Each of them is annotated as @OnDeparture, @OnArrival, and @OnCreation [8].   

Chapter 3. RELATED WORKS 

This chapter describes the existing semantic database and parallelized database. It discusses the 

advantage of our approach and the limitations of past research.  

3.1 PARALLEL DATABASE 

Parallel database has been widely adopted by data-intensive applications. It provides optimized 

performance and high scalability compared with traditional database. In the traditional database, 

the size of disk space and memory space always limits the number of data items that can be fit in 

a database. As data size grows bigger, parallel database can store the data item in a distributed 

fashion and improve its processing speed with multiple computing nodes and CPUs. In the parallel 

database system, where operations are performed simultaneously, a single task can be distributed 

onto multiple nodes and combine results by finishing the task.  

There are three types of architecture for parallel machines. They are shared-disk, shared-

memory, and shared-nothing architectures [9]. Shared-memory architecture typically means that 

all computer nodes share a global memory space. In [10], authors proposed multiple algorithms 

that use remote direct memory (RDMA) in parallel database system. The work dynamically 

manages RMDA-registered memory to improve the database performance. A shared-disk parallel 
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database system was proposed in [11]. The shared-disk system has a low communication overhead 

compared to other architectures. Especially for the reading actions, the operations can spread over 

multiple nodes to shorten the response time. It provides flexibility for the reading operations. 

Our proposed MMM and MASS integrated solution is a shared-nothing architecture. The 

advantage of shared-nothing architecture is high extensibility and high availability. Compare with 

other shared-nothing architecture, such as MySQL Cluster, MASS is easier to scale up the system 

without considering data partitioning. The data can be fed into places of new machines instead of 

syncing up with previously existing nodes. In addition, our solution also eliminates single points 

of failure. With agent-based approach, a single failure will only cause some agents to be terminated 

but other agents can continue work on their tasks. Moreover, MASS is capable to operate multiple 

concurrent requests and analyze data on the fly. Once places are initialized, agents can make use 

of the initialized data to do operations and analysis and concurrent requests can be handled by new 

spawned agents. Our solution is more flexible and reliable compared to other discussed work. 

3.2 SEMANTIC DATABASE 

In 1978, Semantic Data Model (SDM) was firstly introduced by Michael Hammer, which provides 

a high-level semantic-based modeling mechanism to capture and express the structural formalism 

for databases [12]. SDM facilitates data querying from different perspectives, where users can 

query data by declaring their views of a large database. Although SDM leads to some redundancy 

of data storage by providing multiple perspectives of a database, users can still benefit from its 

enriched relationship schema to better understand the data in a natural way. In World Wide Web, 

W3C introduced the standard of Web Ontology Language (OWL) and the Resource Description 

Format (RDF) to realize a semantic web. The purpose of introducing a semantic web is to make 

machines can understand and interpret complex human requests based on their meaning [13]. The 
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focus of OWL and RDF is known as triples, which is the form of subject-predicate-object. The 

subject and object denote the resources, and the predicate tells the relationship between subject 

and resources, as well as describes the traits or aspects of the resources. OWL and RDF utilize a 

metadata model to express semantic meaning in web resources and various syntax notations to 

make the semantic meaning understandable by machines. With the growing amount of web 

information being processed and extracted, the most valuable and related information can be 

filtered by domains. Also, the web crawler can be beneficial from the semantic web information. 

In [14], a semantic-based model to represent big multimedia data is proposed. The work describes 

a property-based graph that allows users to express the concept and relationship between 

multimedia data items. A graph database is utilized to save key-value pairs of data items and 

traverse their connections. Their work presents a machine-understandable representation that 

organizes the semantic associations between multimedia data items.  

Most semantic database models highly rely on either modeling information in a relational 

database or modeling the resources and their relationship of data items [6][14]. In addition, some 

semantic databases are limited to specific domains, and they usually don't provide a general 

semantic database solution. In the vision of MMM, it doesn't rely on any relational database. A 

group of features represents the value of data items. In addition, MMM can realize the dynamic 

recognition of the context by a semantic projection that cannot be achieved by other discussed 

literature.  

3.3 SUMMARY 

To summarize, our integrated system with MMM and MASS has the following advantages.  

1) MMM, as a semantic database model, is a complete mathematical model. MMM doesn't 

require assistance from any other relational database or graphs to save the semantic 
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structure. MMM can use semantic projection and semantic associative search to realize 

data search by semantic meaning under a different context.   

2) By using the agent-based model in our system, the system can achieve the best scalability 

and availability. Since MASS is based on shared-nothing architecture, we can add more 

computing resources on demand. Therefore, the architecture will not set any obstacles 

when scaling up the system.  

Chapter 4. PARALLELIZATION 

This chapter, it presents multiple agent-based parallelization algorithms, each applied to a different 

MMM step. Additionally, it also discusses the sequential results of MMM, which are programmed 

in Java. 

4.1 SEQUENTIAL RESULTS OF MMM 

We first implemented MMM using Java to retrieve the sequential benchmarks. The sequential 

benchmarks are organized in 3 steps, as we previously mentioned. 

Figure 4.1 shows the execution time measured with System.currentTimeMillis() when 

handling different sizes of datasets. The datasets are generated with random double values. Overall, 

step 1 costs the most time in MMM. The matrix normalization and multiplication take over 90% 

of the overall time. When the matrix size reaches 40000 rows and 2000 columns, it takes more 

time than other datasets, which takes over 40 minutes to complete the calculation. As for step 2, it 

accounts for 7% of the total time on average. It has the highest percentage of overall time when 

the matrix size is at 10000 rows and 2000 columns, which is 17%. As of step 3, the performance 

of sorting all data items is based on the distance between themselves and the key data item. The 

benchmarks indicate step 3 has the smallest percentage of overall time, and the slowest one takes 
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1607 milliseconds. The benchmark of step 3 is conducted by using memory to retrieve. However, 

in the real world, data should be saved in the hard drive instead. Given this assumption, the 

execution time of data sorting will be much slower than what we measured.  

As the number of rows increased from 10,000 to 20,000, the total time of performance 

increased by 1.6 times. While the number of columns increased from 1000 to 2000, the total 

performance time increased almost five times. When calculating the eigen decomposition, the size 

of the symmetric matrix is determined by the original column size. And the time complexity of 

eigen decomposition is O(n3) [15]. Hence, column size has a more severe effect than row size on 

the overall performance. Based on the previous analysis, it is worthwhile parallelizing MMM. In 

the following session, we discuss the parallelization strategy for each step of MMM. 

 

Figure 4.1. MASS Sequential Benchmarks 

4.2 STEP I: MATRIX MULTIPLICATION 

4.2.1 Cannon's Algorithm 

Matrix multiplication is one of the most popular benchmarks for the parallel framework. In parallel 

computing, people use Cannon's Algorithm to improve performance [16]. In general, Cannon’s 
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algorithm includes two steps (Figure 4.2). The first step is to align the matrix of A and B so that 

in each processor Pi,j, the j value of A is the same as the i value of B. The second step is to move 

each submatrix A one step left and submatrix B one step up and perform block multiplication. 

Finally, the multiplication result is generated by adding up the products of each shifting.  

 
Figure 4.2. Programming Model of Cannon's Algorithm [17] 

 

In order to implement Cannon’s algorithm using MASS, we created a SubMatrix class and a 

Shifter class to extend Place and Agent respectively. The SubMatrix class provides memory and 

computing resources. Each place is initialized in the CPU cores of computing nodes. Upon 
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initialization, the place will read the data from the CSV file and save their corresponding portion 

into the memory space.  

In the Shifter class it spawns two agents at each place, one is responsible for the multiplier 

matrix A, and the other is responsible for the multiplier matrix B. As shown in Listing 1, In order 

to make the initial alignment, each agent grabs the data from the place where it is spawned and 

migrates to the designated places (line 3 and line 16). In line 7 to 11 and line 21 to 25, agent A and 

agent B are finding the coordinate of the next destination place. Agent A shifts i columns left, and 

agent B shifts j rows up. After initial alignment, each agent does the matrix calculation and saves 

the temporary result into the place's memory. When finishing the initial alignment, agents will 

collect data and sum it up to get the final calculation results. 

 

1. if (getAgentId() % 2 == 0) { // A agnet 
2.             this.tag = 'A'; 
3.             this.subMatrix = deepCopyMatrix(place.matrixA); 
4.             int row = place.getIndex()[0]; 
5.             int col = place.getIndex()[1]; 
6.             int newCol = 0; 
7.             if (row != 0){ 
8.                 newCol = (placeSize + getIndex()[1] - row) % placeSize; 
9.             } else { 
10.                 newCol = col; 
11.             } 
12.             this.nextSubMatrix = new int[]{row, newCol}; 
13.             place.matrixA = null; 
14.         } else { // B agent 
15.             this.tag = 'B'; 
16.             this.subMatrix = deepCopyMatrix(place.matrixB); 
17.             // alignment B matrix: for col j, shift j row up 
18.             int row = place.getIndex()[0]; 
19.             int col = place.getIndex()[1]; 
20.             int newRow = 0; 
21.             if (col != 0){ 
22.                 newRow = (placeSize + getIndex()[0] - col) % placeSize; 
23.             } else{ 
24.                 newRow = row; 
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25.             } 
26.             this.nextSubMatrix = new int[]{newRow, col}; 
27.             place.matrixB = null; 
28.         } 

 

Listing 1. Agent Migration of Shifter Class in Cannon's Algorithm 

 
Compared with other parallel approaches, agents move over matrices instead of the 

conventional approach to shifting data to neighboring elements. MASS provides a more flexible 

way for data exchange; developers do not need to worry about the potential deadlock, which is 

likely to happen with MPI. In MPI, MPI_SEND and MPI_RECV will block the program until the 

send or receive buffer can be reused [18]. If both ranks send data through the same buffer, the 

program will deadlock. 

4.2.2 Parallel I/O 

By implementing Cannon's Algorithm, the value of data items has to be read into memory first. In 

our former implementation, the data is read by the master node and distributed over the slave ranks. 

There are several drawbacks by doing this way. First, the size of the input matrix file is limited by 

the memory space of the master node, this will also bound the scalability. Next, the file reading 

speed is not optimized. Since only one node reads and distributes the data, it doesn't make use of 

the power of multiple machines. The speed of data I/O has a significant impact on the overall 

programming performance. The data I/O brings a large overhead in our parallelization program, 

which significantly curtails the effectiveness of MASS. Based on these considerations, we 

implement parallel I/O for csv files.  

In order to enhance the parallel I/O within the MASS library, each place must be able to open 

and read the same CSV file in parallel. Hence, all the implementations have been done within the 

Place class. We implemented the CSV file reading feature on top of the current MASS parallel I/O 
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implementations. In the new design of parallel I/O, it firstly opens the file by taking the given 

filePath argument, which determines the file's name and whether the file's type is supported. 

Currently, MASS parallel I/O supports NetCDF, TXT, and CSV files. If the given file type is not 

supported, then -1 is returned. Otherwise, this file will be opened and saved into the fileTable. The 

open method is a synchronized method so that only one place will perform the open task on 

individual computing node. The file reading is implemented by splitting the file into an equal 

number of bytes, and each computing node gets a corresponding portion. However, since each data 

record's character length is different for the CSV file, directly splitting the file will make records 

lose some digits. To solve this problem, we add paddings on each line to make sure they all have 

the same length. In this case, when we split the file by an equal number of bytes, every computing 

node gets the same number of rows. The following method is added in the CsvFile.java class, 

which is used explicitly for handling CSV parallel I/O. 

• public double[][] readToArray(int placeOrder): this method takes place’s order as 

argument and returns a 2d double array back. The whole CSV string is retrieved from the 

memory buffer as well as the row size and column size. Afterward, we loop through every 

line and assign corresponding columns to each place. As shown in Listing 2, each 

computing node breaks the data vertically, and data in array[row][col] will be read later 

into each place. This design aligns with Cannon's algorithms' requirement which requires 

slave nodes to save the data as a submatrix and start doing the calculation right away. 

 

1.        String csvString = new String(entireCsvFileBuffer); 
2.         String[] rows = csvString.split("\n"); 
3.         String[] cols = rows[0].split(","); 
4.         int nRow = rows.length; 
5.         int nCol = cols.length / myTotalPlaces; 
6.         double arr[][] = new double[nRow][nCol]; 
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7.         for (int row = 0; row < nRow; row++) { 
8.             cols = rows[row].split(","); 
9.             int colOffset = placeOrder * nCol; 
10.             for (int col = 0; col < nCol; col++) { 
11.                 arr[row][col] = Double.parseDouble(cols[colOffset++].replace("\uFEFF", "")); 
12.             } 

13.         } 

 
 Listing 2. Read Data to Array of MASS places 

4.3 STEP II: EIGEN DECOMPOSITION 

4.3.1 Householder Transformation 

In step 2, the most time-consuming operation is eigen decomposition. The eigenvalue problem is 

one of the fundamental problems in linear algebra. Eigenvectors make understanding linear 

transformation easy. It represents the directions along when linear transformation performs. The 

fundamental linear transformations are stretching, compressing and flipping [19]. The eigenvalues 

represent the factors when this linear transformation happens. In MMM, the eigenvectors define 

user-defined semantic space characteristics, which provide essential information for semantic 

projection and distance calculation. 

Upon the completion of step 1, we get a real symmetric matrix A. A scalar 𝜆 is called an 

eigenvalue and a nonzero column vector z is the corresponding eigenvector if 𝐴𝑧 = 	𝜆𝑧 . 𝜆  is 

always a real number when matrix A is real symmetric [20]. In order to find eigenvalue and 

eigenvectors, the eigen decomposition will be calculated to get the eigenvectors. In general, this 

decomposition often goes under the name matrix diagonalization [21]. The matrix diagonalization 

of a matrix transfers this process into a product of three other matrices and only one of which is 

diagonal [19] [20]. 
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Figure 4.3. Sample Diagonal Matrix [21] 

 
The real symmetric matrix A is reduced to real tridiagonal form T (Figure 4.3), which can be 

expressed as 𝐴 = 𝑄𝑇𝑄0 . In this process, we utilize householder factorization, which applied 

orthogonal projector in an iteration process. For n * n matrix, we need to do n – 2 iterations to get 

a tridiagonal system. For k = 1, 2, 3, … n – 2 as follows: 

𝐴1 = 𝐻1𝐴1-%𝐻1 

where H is householder matrix and 𝐴1-% is the result from the last iteration. Upon getting the 

symmetric tridiagonal matrix T, we need to factorize T as 𝑇 = 𝑆𝛬𝑆0. The diagonal entries of 𝛬 are 

the eigenvalues of T, which are also the eigenvalues of input matrix A [22].  

4.3.2 Parallelization of Eigen Decomposition 

Typically, the eigen decomposition is solved in two successive steps: tridiagonal transformation 

and extract solution from the tridiagonal matrix. In the first step, there are multiple iterations 

applied to get the tridiagonal form. Since each iteration relies on the results from the previous 

iteration, we cannot simply distribute those into subprocesses. In [23], Dongarra et al. introduced 

a divide and conquer approach to implement the parallelization. In their implementation, the given 

matrix is split into smaller subproblems.  

 𝑇 = 	C𝑇% 𝑇$
D + 𝑝𝑤𝑤0 (4.1) 
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As shown in 4.1, the original input matrix is divided into two half-sized submatrices. For 1	 ≤

𝑘	 ≤ 𝑛, the 𝑇%and 𝑇$are the kth diagonal elements. When subproblems are small enough, the QR 

refactor is called so that 

 𝑇% = 𝑄%Λ%𝑄%0 	 (4.2) 

 𝑇$ = 𝑄$Λ$𝑄$0 	 (4.3) 

 

Finally, the backward computation will be called to form the tridiagonal matrix and compute 

the eigenvectors of matrix T. Because of the time restriction of this project, we don't have chance 

to implement this parallelization algorithm with MASS. We wish we can tackle this problem in 

future. 

4.4 STEP III: EUCLIDEAN DISTANCE SORT OF MULTI-DIMENSIONAL VECTORS 

4.4.1 Parallelization Algorithm 

In step 3 of MMM, it requires sorting data items by the distance from the key data item to others. 

In our original proposal, we wanted to use agent propagation for the parallelization 

implementation. An agent spawns at the location of a test data item. They will propagate to the 

surrounding places until one agent collides with others. As shown in Figure 4.4, this approach 

works well in one-dimension to three-dimensional spaces. However, it would be tough to find out 

the number of surrounding data items for agents to migrate to when it comes to higher-dimensional 

space than three-dimension. Therefore, we cannot make use of this methodology in our 

implementation. Instead, a modified agent propagation algorithm is introduced for the distance 

calculation of multi-dimensional vectors. 
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Figure 4.4. Agent Propagation in Three-Dimensional Space. 

 
In this modified algorithm, we firstly evenly distribute the input data into multiple layers. For 

instance, as illustrated in Figure 4.5, if the value of data items falls into the range from 0 to 1, and 

we have three layers in total, each layer will be in the interval of 0 to 0.33, 0.34 to 0.66, and 0.67 

to 1. Then we initialize 3 * n places in MASS where n is the dimension of the vector. During 

agents’ initialization, agents migrate to the starting place where the key data item has valid data in 

the corresponding column and agent level. Agents will traverse along the vertical direction to 

discover if surrounding places contain the value of other data items. Upon arriving at a new place 

that maintains a value between 0 and 1, the agent calculates the distance between the key data item 

and corresponding data item and then saves the results in memory. To avoid duplicate distance 

calculation, we assign each agent with a group of consecutive data items. The index of data item 

can be determined from sizeOfDataItem	/	agentSize	 ∗ 	agentIndex	 to sizeOfDataItem	/

	agentSize	 ∗ 	 (agentIndex	 + 	1). This can also give us a number of data items that an agent is 

responsible for (x). The migration will stop when the following conditions reached: 
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1) agents have visited all levels so that all distances between key data items and other 

data items have been recorded. 

2) when there are only m active agents left, the program will stop agents' migration 
 

The reason for having the second condition is that users tend only to get top N-related data 

items in step 3. Threshold m can be retrieved by n - (sizeOfDataItems – N) / x. By using the 

threshold of active agents left, we can save up the time and resources to skip those low-relevant 

data items. 

 
Figure 4.5. Agent Propagation in Multi-Dimensional Space. 

Listing 3, it illustrates the shifting process of agents. Each agent that finds data in the current 

place iterates all target vector indexes (line 1 - 9). Once an unvisited vector is found, agents will 

calculate the Euclidean distance between two vectors and save it to a HashMap. Finally, the index 

of destination place will be determined by calculating the current index modulo size of layers, and 

agents will migrate to the next place. 

 

1.         for(int i = this.targetVectorIndexMin; i < this.targetVectorIndexMax; i++) { 
2.             if(valueMap.containsKey(i)) { 
3.                 double [] value = place.getArrayFromRandomAccessFile(dataSetFile, i, 

this.dataSize); 
4.                 double distance = calculateDistance(place.keyData, value); 
5.                 this.results.put(i, distance); 
6.           } 
7.      } 
8.         int newY = currY; 
9.         int newX = (currX + 1) % this.levels; 

10.         migrate(newY, newX); 
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 Listing 3. Distance Calculation and Agent Migration 

4.4.2 File I/O with RandomAccessFile 

In this implementation, the size of memory space limits the data that can be retrieved, 8GB 

memory space can only fit 500,000 rows with 2000 features. In addition, in the real database 

system, data is usually saved in the hard disk instead of memory space. Therefore, we decide to 

bring RandomAccessFile for agents to retrieve values of data items.  

A random access file behaves like a large array of bytes [24]. A file pointer, which is similar 

to a cursor, can be moved to any position on the byte array. It reads bytes starting at the file pointer 

and advances a certain number of bytes to read the content. Similar to previously mentioned 

parallel I/O, this feature is also added to the place class. 

By implementing these functions, MASS is able to access the data directly from the hard drive 

instead of saving all of them into RAM. There are several tradeoffs of using this methodology. 

First of all, MASS gets rid of the restrictions of memory space. Place doesn't need to keep a copy 

of the whole database. Instead, agents can access their required records on demand. This behavior 

simulates data querying in the real database. Technically, we can handle any size of database using 

this methodology. Moreover, in MMM, users don't query all related data items under a semantic 

space. Instead, only top N items will be returned. In this case, the number of file I/O can be limited. 

While the frequency of file I/O is narrowed down, the speed of reading a file from a hard drive is 

still much slower than directly taking it from memory space. If the number of file I/O gets bigger, 

it will inevitably reduce efficiency. 
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Chapter 5. RESULTS 

This chapter shows experimental results of MASS and MPI implementations discussed in 

Chapter 3. It also compares the experimental results with sequential. The detailed benchmarks 

data can be found in Appendix. 

5.1 EXECUTION ENVIRONMENT 

The experiments are conducted in cssmpi cluster at the University of Washington Bothell. There 

are eight computing nodes in cssmpi cluster which provides us with 4-core Intel(R) Xeon(R) 

Gold 6130 CPU with 20GB memory space. The MASS library 1.3.0 and MPI Java [25] are used 

in our experiment. The MASS java is configured with 4GB initial heap size and 12GB maximum 

heap space. The testing dataset is random generated with double precision. 

5.2 MATRIX MULTIPLICATION 

5.2.1 Computation Results 

The experiments were conducted to evaluate and compare large-scale matrix multiplication 

performance using MASS, MPI Java and sequential Java programs. Previous students have 

conducted benchmark comparisons between MASS with Spark and MapReduce. The results 

showed that Spark and MapReduce were much slower than MASS [26]. Therefore, we only 

compare MASS with MPI Java in our benchmark.  

For MASS and MPI Java, they use Cannon's algorithm, and the sequential Java program uses 

the basic matrix multiplication algorithm. The testing data is a square matrix that has 2048 rows 

and 2048 columns. We used four computing nodes to conduct benchmarks with both MPI and 

MASS. The number of computing nodes must be divisible by the matrix size in Cannon’s 
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algorithm. Therefore, this project would only be able to test with four nodes in a cluster. To gain 

the best performance of data I/O, we used the /tmp folder of each computing node in cssmpi cluster. 

The /tmp folder is directly connected to each computer in the cluster that no longer requires data 

to be transferred over a distributed network. In this way, we are able to reduce the network 

overhead.  

Figure 5.1 visualizes the execution time, we include MASS initialization time, MASS place 

initialization time, file reading time as well as the actual calculation time. The MASS initialization 

time consists of the time of processing MASS.init(). During this process, MASS establishes the ssh 

connection between the master node and slave nodes and passes messages between nodes to verify 

the connections. The MASS place initialization time includes the bootstrap of places over 

computing nodes and assigns places onto different computing nodes. 

 
Figure 5.1. Matrix Multiplication Benchmarks 
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MPI Java takes 15319.6 milliseconds in total, which exceeded MASS and sequential 

program's performance. MASS also has good performance results, which achieves 20370.83 

milliseconds using parallel I/O and 20587.67 milliseconds without using parallel I/O. When we 

look at the calculation time only, MASS has the best performance. It takes around 5000 

milliseconds while MPI Java takes 12937.2 milliseconds and the sequential program takes over 

115693.8 milliseconds. By comparing the calculation performance between MASS and MPI, we 

can see that MASS improves over 95% from the sequential program while MPI Java improves 

around 88% from the sequential program. This is because MASS uses multi-core capability, 

whereas MPI only uses a single core on each machine. In this case, the number of computing nodes 

of MASS increases from 4 to 16, and each computing node is responsible for a smaller submatrix 

size so that the overall performance is faster than MPI. In MASS, the MASS initialization time 

takes the most time. This time is static, and it will not change with the change of the number of 

computing nodes. In this case, we expect the percentage of MASS initialization will be relatively 

small when we use more computing nodes, and MASS will have a chance to surpass MPI in terms 

of overall performance.     

In MPI Java programs, the file reading time is around 2300 milliseconds, accounting for 15% 

of the overall processing time. MASS improves the file reading time significantly by implementing 

the parallel I/O. It dropped the file reading time from 1507 milliseconds to 993 milliseconds which 

is a 34% improvement.  

5.2.2 MASS Programmability Analysis 

This section discusses programmability analysis between MASS with MapReduce, Spark, and 

MPI Java. 
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MapReduce and Spart introduce a new programming paradigm. With MapReduce, operations 

are separated into two types of procedures, Map and Reduce. The map procedure filters and sorts 

the input data, and the reduce method behaves like a summary operation [27]. The whole process 

is very similar to the divide and conquer algorithm. This programming model with multi-threaded 

implementations provides better scalability and fault tolerance. In order to fit the model of 

MapReduce, developers need to be familiar with new data structures (Map and Queue), which will 

bring extra learnings to developers.  

Spark is a cluster computing platform, and it extends MapReduce to support nonlinear 

dataflow structure on distributed programs [28]. The core of Spark is Resilient Distributed Dataset 

(RDD), which is a read-only collection of items distributed across computing nodes in a cluster. 

The input data is transformed into RDDs in a Spark application, and each computing node receives 

a corresponding portion of RDD partitions. In Spark application, there are two types of operations. 

Transformation converts the data input into a new RDD, and Action performs operations on input 

RDD to return results. Same as the abovementioned MapReduce, this new programming paradigm 

brings a steep learning curve to developers. Moreover, during the data stream, the data 

transformation in MapReduce and Spark leads to extra unnecessary efforts to satisfy the 

framework's requirements. This drawback in iterative MapReduce or RDD transformations results 

in additional overhead due to the need to exchange data over clusters. 

On the contrary, MASS uses an agent-based approach, and it simulates the problem-solving 

process using agents. Although Spark has a built-in matrix multiplication library, RDD requires 

transforming all input data instead of submatrix only. Since communication among data items is 

only allowed from data shuffling and sorting in Spark and MapReduce, their implementation of 

matrix multiplication is extremely difficult. On the other hand, a matrix is laid out smoothly over 
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a cluster system with places, and agents work as messengers in Cannon’s algorithm. That’s why 

MASS can parallelize Cannon’s algorithm much easier than Spark and MapReduce. 

When we look at Cannon’s algorithm with MASS and MPI Java, the most challenging part in 

Cannon’s algorithm is data transmission between different ranks. In MPI, this can be achieved 

using MPI_SEND and MPI_RECV. Since MPI doesn’t support multiple dimension array data 

transmission, we have to allocate arrays into a contiguous format. Moreover, MPI ranks are 

organized in linear order. Developers have to map their rank numbers into a 2d array to get the 

relationship between rank number and submatrices' id. MPI provides users with MPI_Cart_create 

method to create a communicator in a 2d topology format. We utilize this method to achieve rank 

mapping. In contrast, MASS offers a more convenient way to work with Cannon's algorithm than 

MPI Java. Places are a multidimensional array so that they can easily be mapped with submatrices. 

MASS utilizes agents to carry data among computing nodes, and this gives developers a more 

intuitive way to think about data transactions.  

Lastly, the deadlock is the most common mistake in MPI. Developers have to be aware that 

for every MPI_SEND there must be a pairing MPI_RECV. For example, as shown in Figure 5.2, 

this may end in deadlock as rank 0 and rank 1 are sending simultaneously, but none of them are 

receiving data. In comparison with MPI, MASS allows flexible communication between 

submatrices that won't cause deadlock during data transmission. Thus, matrix multiplication 

requiring frequent data transmission between submatrices benefit from MASS's flexibility and 

reliability. 
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Figure 5.2. Deadlocks in MPI 

5.3 MULTI-DIMENSIONAL VECTOR DISTANCE SORTING 

In this section, we present the experimental results of multi-dimensional vector distance sorting 

using MASS. We test on different data set and the value of data is in double precision. We also 

compare the benchmarks between MASS and the sequential Java program. There are multiple 

processes in the MASS program. The first one is to initialize MASS and places, which includes 

starting MASS processes and saving the index of valid data into places. Secondly, in the MASS 

program, we didn't take account of the place's initialization time. This is because we consider the 

database as a read-intensive database, so that the place initialization won't be processed in a 

frequent manner. We only focus on the agent shifting time to sort the distance of multi-dimensional 

vectors. In the sequential program, we conduct experiments using random access files. The value 

of data items is retrieved by random access file pointer and the distances between general data 

items and the key data item are sorted to get the final ranks. 
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5.3.1 Computational Results 

As shown in Figure 5.3, the performance of MASS using memory space is slower than the 

sequential program. The testing data size is 50,000 rows and 2000 columns. MASS retrieves the 

top 5452 data items and the sequential program retrieves all 50,000 data items. The MASS program 

executes three iterations, and the iteration ends when 1500 or fewer agents are alive. 

 
Figure 5.3. Data Sorting with Memory Space 

 
When we compare the benchmarks using RandomAccessFile to retrieve data values, MASS 

has some advantages compared to the sequential Java program when the data size gets larger. 

When the data size is at 50,000 rows * 2000 columns, it takes MASS 7285 milliseconds to sort 

3831 top data items and takes sequential program 9549 milliseconds to sort 50000 data items. 

However, when data size decreases to 20,000 rows * 2000 columns, the advantage of MASS no 

longer exists. MASS becomes slower than the sequential program, which is 38.8% slower than the 

sequential program (Figure 5.4). 
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Figure 5.4. Data Sorting with Random Access File 

In the MASS implementation, the number of layers (i.e., the number of partitioned ranges 

between 0.0 and 1.0) also affects the overall performance. In general, the bigger the number of 

layers, the faster performance would be. When the number of layers increases, the data distribution 

to the place becomes more granular. Each place gets a smaller number of data items than bigger 

layers. In this case, when agents traverse into a new place, it takes less time to calculate distance 

and sort data items. 

Table 5.1. Execution Time with Different Data Size and Levels 

Levels Data Size Time (ms) 

10 50000 * 2000 15690 

20 50000 * 2000 7285 

10 20000 * 2000 7750 

20 20000 * 2000 5208 
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Considering the scenarios in real-world database systems, MASS can be utilized to query 

large-scale databases. Once MASS applications and places are initialized, the performance of data 

querying is superior to the sequential Java program. In addition, MASS is also able to handle 

multiple querying requests in parallel. Upon a new request arrives, a new group of agents could be 

spawned onto places and migrate to the neighbors to fulfill the user's request. However, the 

sequential program has to re-calculate the distance whenever the key data item got changed. 

Additionally, when data size gets larger, MASS can easily pick up the most related data items 

using the agent migration approach, while a sequential program needs to sort all data items that 

put it in a disadvantaged position. Therefore, MASS is well suited for multi-dimensional vector 

distance sorting in the data querying context. 

Chapter 6. CONCLUSION 

6.1 ACHIEVEMENT 

As a database, MMM handles data queries on the fly in accordance with the user-provided 

impression words. It applied semantic correlations computations between different data items with 

context computation mechanisms. After examining the performance conducted by the sequential 

program, we found MMM is a high computational framework that requires large-scale 

mathematical operations. When the data size is 40,000 rows * 2000 columns, the total execution 

time of MMM is over 40 minutes. MMM creates a space to save data items, and places of MASS 

can support this space. Therefore, we applied MASS to parallelize MMM using the agent-based 

methodology.  

For step 1 of MMM, we utilized Cannon’s Algorithm with MASS. MASS showed a 

significant performance improvement over the sequential program and MPI Java program. On 
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average, MASS with parallel I/O achieved 23 times speedup over the sequential program on 2048 

* 2048 matrix multiplication. By comparison with other parallel frameworks, it also improved the 

efficiency by 2.47 times over MPI Java. With the new parallel I/O feature added into MASS, 

MASS utilized the advantage of distributed systems to reduce the overhead in data I/O. The file 

reading time reduced by 57% compared to the sequential execution. This feature also enhanced 

the scalability of MASS to deal with millions of data with a moderate performance 

impact. Concluding that, MMM delivered the best computation performance with reactive agents 

and facilitated user-defined submatrices mapping in distributed arrays.  

The work of sorting distance of multidimensional vectors indicates that MASS is capable of 

solving real-world problems. In comparison with the sequential problem, MASS provides a 

solution for high concurrency scenarios. MASS is suitable to handle multiple requests concurrently 

with multi-threading programming. Additionally, MASS also offers a competitive benchmark to 

acquire the top related data items in MMM.  

6.2 FUTURE WORK 

As for future work, the following tasks can be implemented. In step 2 of MMM, the parallelization 

of eigen decomposition is not finished. In the future, eigen decomposition can be parallelized along 

with divide and conquer techniques to improve the performance significantly. In MMM, we want 

to clarify some technical details of step 3. The projections between vectors to the semantic space 

are still ambiguous. We want to identify the accurate math formulas to identify the projections 

between vectors to the semantic space. Besides, in our implementations, we tried handling multiple 

querying requests at the same time. However, we are not clear what the maximum limitations of 

MASS are. Hence, we want to test the max number of concurrent requests that the system can 

handle. Furthermore, MASS and MMM require a real-world database to verify correctness and 
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efficiency. This would give us more confidence in our integrated system to apply to more practical 

applications in the future. 
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APPENDIX A 
 

Appendix 1. MMM sequential results, execution time are measured in milliseconds 

Table 1. MASS Sequential Benchmark 

Data Items Features Context Size  Step 1 Step 2 Step 3  Total 

10000 1000 4 88180 5604 173 93957 

10000 2000 4 372887 77729 306 450922 

20000 1000 4 141277 6773 424 148474 

20000 2000 4 783085 84470 661 868216 

40000 1000 4 381504 6015 738 388257 

40000 2000 4 2312785 86487 1607 2400879 

 

Appendix 2. Benchmark performance of MMM step 1, execution time are measured in 
milliseconds 

 Table 2. Execution Benchmark of MMM Step 1 

No. MASS 
Initialization 
Time 

MASS Place 
Initialization 

File Reading 
Time 

Calculation 
Time 

Total 
Time 

Type 

1 15607 89 973 4612 21281 MASS(Tmp Folder w/ 
parallel IO) 

2 13277 96 939 4626 18938 MASS(Tmp Folder w/ 
parallel IO) 

3 13122 117 1207 5261 19707 MASS(Tmp Folder w/ 
parallel IO) 

4 14661 83 857 4541 20142 MASS(Tmp Folder w/ 
parallel IO) 

5 15241 97 965 4633 20936 MASS(Tmp Folder w/ 
parallel IO) 
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6 14627 101 1019 5474 21221 MASS(Tmp Folder w/ 
parallel IO) 

7 14361 92 1324 4688 20465 MASS(Tmp Folder w/o 
parallel IO) 

8 13207 88 1629 4836 19760 MASS(Tmp Folder w/o 
parallel IO) 

9 13169 101 1503 5108 19881 MASS(Tmp Folder w/o 
parallel IO) 

10 13240 92 1625 5923 20880 MASS(Tmp Folder w/o 
parallel IO) 

11 15115 90 1321 5697 22223 MASS(Tmp Folder w/o 
parallel IO) 

12 13430 98 1640 5149 20317 MASS(Tmp Folder w/o 
parallel IO) 

13 
  

2390 13084 15474 MPI 4 nodes 

14 
  

2379 13242 15621 MPI 4 nodes 

15 
  

2435 12356 14791 MPI 4 nodes 

16 
  

2377 13100 15477 MPI 4 nodes 

17     2331 12904 15235 MPI 4 nodes 

18 
  

2337 118997 121334 Sequential 

19 
  

2226 115706 117932 Sequential 

20 
  

2320 114138 116458 Sequential 

21 
  

2301 115687 117988 Sequential 

22 
  

2268 113941 116209 Sequential 
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Appendix 3. Benchmark performance of MMM step 3, execution time are measured in 
milliseconds 

Table 3. Execution Benchmark of MMM Step 3 
DataSize Framework Time Type Levels 

50000*2000 MASS 7285 RandomAccessFile 20 

50000*2000 Sequential 9549 RandomAccessFile 
 

20000*2000 MASS 5208 RandomAccessFile 20 

20000*2000 Sequential 3750 RandomAccessFile 
 

50000*2000 MASS 15690 RandomAccessFile 10 

20000*2000 MASS 7750 RandomAccessFile 10 

 

Appendix 4. Screenshot of running MMM step 1 with MASS 
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Appendix 5. Screenshot of running MMM step 1 with MPI Java 

 

Appendix 6. Screenshot of running MMM step 3 with MASS 

 

Appendix 7. Functions that are used in RandomAccessFile 

protected void openWithRandomAccessFile(String filePath): this method takes the given 

filePath, determines the file’s location and whether its type is supported. For reading with 

RandomAccessFile, currently we only accept CSV files. If the file type is supported, it creates a 

random access file stream to read from. Additionally, the random access file also expects each 
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line in the input file to have the same alignment so that the user can use row index to access data 

of full row. To meet the even alignment requirement, rows need to have the same number of 

characters. Since we don't support writing bytes back to the file, we use “r” (read only) mode to 

open the file. A new FileDescriptor object is created to represent the connection to the file, and a 

random access file stream will be put into the random access file table of the current working 

place. The openWithRandomAccessFile method is synchronized to ensure only one place opens 

the file as well as the file table. The file table is organized using filePath as the key and random 

access file stream object as the value. 

 

public RandomAccessFile getFileFromRandomAccessFileTable(String filePath): this method 

takes one parameter and returns the corresponding random access file stream object. This method 

is also synchronized for preventing thread interference and memory consistency errors. 

 

public double[] getArrayFromRandomAccessFile(RandomAccessFile file, int rowIndex, int 

rows): this method takes three parameters in total, which are random access file stream object, 

the row index and the number of total rows. This method calculates the length of the file and 
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divides it by the number of rows to get byte length of each row. The file-pointer offset is set to 

the starting point of the corresponding row and reads the whole line. This method converts byte 

array to double array and returns the data back. 

 

 

 


