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Agent based modeling has emerged as one of the foremost areas of research for tackling 

massively parallel simulation problems. In line with the broader move to special purpose 

processors and GPUs, ABM systems have been designed to take advantage of the massive 

amounts of parallelism available. Unfortunately, the amount of memory available on commodity 

GPUs has not scaled along with the increasingly larger amounts of data practitioners must work 

with and this has begun to impose limits on the size of problems, which can be solved.  

 

We present an extension to the MASS framework, which allows it to run large models on 

oversubscribed GPUs. We show that it scales similarly in terms of performance to pure CUDA 

implementations of three representative algorithms and that the ease of use and programmability 

afforded by the MASS framework is favorably preserved.  
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Chapter 1. INTRODUCTION  

1.1 ABMS AND THE MASS FRAMEWORK 

Agent-based modeling is a simulation technique used to simulate the actions and interactions of 

autonomous agents and their effects on the system as a whole. An agent-based model describes a 

system by representing it as a collection of agents often operating in a given space. Individually 

simplistic, these agents can collectively model behavior that is very complex. 

 

MASS, or Multi-Agent Spatial Simulation, is a library that brings a multi agent paradigm to code 

migration based programming models for a variety of problems requiring large scale parallelism 

including physics simulation algorithms, economics models, social networks and graphs as well 

as any problem which can be represented in a spatial manner [8]. Developed by Dr. Fukuda et 

al., MASS centers around two central concepts: Places and Agents. To illustrate them, consider a 

generic problem of connectivity in a directed acyclical graph. To map this problem to MASS, the 

most logical mapping would be of the nodes of the graph to Places while Agents would be 

executable code exploring connectivity on the graph.  

 

In terms of implementation, MASS is available as a Java library, a C++ library and a CUDA 

package. In all implementations, Places are statically assigned to threads while Agents move 
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autonomously over processes. The simulations run on multi-threaded processes over nodes and 

sockets are used for communication. 

 

1.2 MASS CUDA 

Mass CUDA is an implementation of the Multi-Agent Spatial Simulation framework on GPUs 

based on the CUDA platform by Nvidia. The key design goal of MASS CUDA is to abstract 

away the design and implementation of GPU programming specific concepts and allow a 

practitioner to benefit from the performance boost and massive parallelism available via the use 

of GPUs. 

 

The MASS CUDA library is based around the Model-View-Presenter design pattern: the View is 

the application programming interface (API) accessed by the end user, the Dispatcher class 

serves as the Presenter by taking care of host-device data transfers and launching GPU kernels, 

and the model is the view of the data or state present on both the device and host. Figure 1 shows 

the layout of MASS CUDA components. 

 

The maintenance of a data models on both the host and the device (GPU) is a key aspect of 

MASS CUDA’s design and solves the problem of mutual execution by splitting the Agent’s and 

Place’s implementation into Agent/AgentState and Place/PlaceState.  
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Figure 1 . Architectural design of MASS CUDA. 

 

1.3 NEED FOR HETEROGENEOUS COMPUTING IN MASS 

While graphics programming units (GPUs), field programmable gate arrays (FPGAs) and other 

application specific integrated circuit (ASIC) systems have seen large increases in performance 

and IPC counts, the memory has available on such systems has not grown on the same scale. 

Contrasted with the order of magnitude increases seen in the amountAs of data being collected in 

the world, it is not difficult to see how this situation might impose punishing limits on 

practitioners with respect to the size of problems they can realistically solve.  

 

As a real-world example, consider the influenza epidemic simulation tool FluTE. FluTE is based 

on epidemic simulation models from Germann et al. and was designed to aid in understanding 

the spread of the H1N1 outbreak of 2009[REF]. FluTE requires around 80 MB of memory for 

every million individuals it simulates. Further, a simulation involving 10 million people takes 

about 2 hours depending on the R0 rate, intervention etc. Resultantly, practitioners find 

themselves in a situation where both memory and compute capability are bottlenecks: while a 

CPU simulation would be too slow to be useful for practitioners, a typical GPU would soon run 
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out of memory – hence limiting the suitability of Agent Based Modeling for a very crucial and 

time sensitive analytics task. 

 

A further impediment to heterogeneous computing for practitioners is the steep learning curve 

involved in writing bespoke heterogeneous implementations of algorithms in CUDA and C. This 

goes beyond the already considerable difficulty of writing pure CUDA programs as there is very 

sparse developer support for heterogeneous computing and the process involves painstaking 

manual memory management, the selection and copying back and forth of data between the GPU 

and Host, and dependency management. Furthermore, ABM is an inherently stochastic process 

and fitting it to a heterogeneous mold is an exercise in the controlled adoption of tradeoffs; 

having to support all of this while also coming up with innovative solutions to the original 

problem would likely place too large a cognitive burden on researchers.  

 

1.4 DESIGN CHALLENGES 

Having established the need for a compelling ABM framework with support for heterogeneous 

CPU-GPU computing support, we examine some of the key design challenges in supporting said 

functionality in the context of ABM frameworks in general and MASS in particular. 

 

Agent Based Modeling is an inherently stochastic process that aims to model aspects of the 

world to process large amounts of data by the use of active agents moving over static (fixed) 

places. As it is not possible to predict the movement of agents (it is after all dependent on the 

specific data being processed as well as the data scientist’s implementation), this poses a 

challenge in framework design on data partitioning.  
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In general, simulations can be partitioned along two dimensions: domain decomposition 

(decompose data) and functional decomposition (decompose on functionality). Further, these 

partitions can be done statically or dynamically (at run time). While all these strategies have 

strengths and weaknesses, as a framework designer our job is pick a partitioning scheme that is 

characterized by low amounts of imbalances and high performance. 

 

Another difficulty arises from the fact that an extremely large number of possible agent 

movements can occur, and it is difficult of supporting them all in a heterogeneous environment 

while still maintaining performance. While data shows that the vast majority of simulations tend 

to have agent movements in certain bands (citation needed), it is possible to imagine simulations 

where agents might jump from one edge of the ‘map’ to the other: i.e. a frog agent jumping 

across several stones across a water surface. Hence, design decisions must be focused on 

enabling support for the largest possible set of use cases without jeopardizing usability or 

performance.  

 

Finally, the invariant of not requiring any CUDA or heterogeneous programming expertise on 

the part of practitioners must be maintained. In practical terms, this means ensuring that the 

‘View’ layer (the end user API) remains maximally unchanged and requires a carefully thought 

out system architecture. 
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1.5 GOALS AND SCOPE OF WORK 

Hence, our overarching goal is to provide a robust, usable and performant ABM framework with 

support for heterogeneous CPU-GPU computing. We adopt an acceptable set of compromises to 

achieve this end. 

 

To minimize the impact on performance and reduce the level of indirection, we impose limits on 

agent migration depth: in each epoch, an agent cannot move more than X ‘paces’ (where a pace 

quantifies adjacent Places). This is necessary because in the context of heterogeneous computing, 

increasing the agent movement depth has a large performance penalty due to the increasing data 

transfer necessary at each epoch. 

 

We decompose the problem along the data dimension and use a mixture of static and dynamic 

assignment in line with design goals of the MASS library. While Places distribution is 

predetermined for every run, Agents migration is dynamically decided at each epoch and this 

leaves the door open for further optimizations in this area.  

 

Due to its intrinsically asymmetrical nature, adding heterogeneous support results in some 

architectural changes in MASS CUDA that overturn the designer’s choices. Most prominently, 

MASS CUDA laid heavy emphasis on maintaining an identical copy of the data (in the form of 

state arrays) on both the Host and the Device (GPU). Since the Host model is now much larger 

than the Device side data model, it’s role and application life cycle is now significantly different. 

Figure 2 shows the relationship between host and device memory in MASS CUDA and the 

heterogeneous version of MASS CUDA. 
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Figure 2 Data models in MASS CUDA vs. heterogeneous version 

After adding support for heterogeneous computing in MASS CUDA to handle memory 

oversubscription, we perform certain performance optimizations. Firstly, we enable support for 

pinned and non-pageable memory in the host side model to allow the GPU to directly copy data 

to and from the system memory. Secondly, we use a reference only staging memory design to 

prevent double copying of data while preserving the extensibility and abstraction benefits of a 

staging host side buffer. Thirdly, we minimize data transfers to those absolutely essential for the 

computation, such as only transferring those Places which an Agent can immediately move to. 

Fourthly, we merge the functionality of agent migration and spawning without affecting the 

MASS API and this helps significantly to reduce the overhead of memory swapping. 

 

Wherever the choice presents itself, we favor programmability, ease of use and a low barrier to 

entry over maximizing performance. This is in line with the goal of MASS to provide a general 

purpose, accessible and extensible ABM framework for data science practitioners. A large part 

of this comes down to maintaining the existing API and this is achieved by limiting changes in 

the library to those not requiring user assistance or guidance. 
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The contributions of this work are as follows: providing a general purpose ABM framework 

which can scale beyond GPU memory without requiring any specialized knowledge on the part 

of practitioners, adding heterogeneous functionality to the MASS project, optimizing the 

performance of our implementation, and providing an extensible base on which to add needed 

functionality such as multiple GPU support etc.  

 

The rest of this paper is laid out as follows. Section 2 presents a review of the existing body of 

work on heterogeneous CPU-GPU systems in general and agent-based modeling in particular. 

Section 3 presents our detailed methodology and Section 4 delineates results of bench marking 

on the three representative algorithms presents a quantitative and qualitative evaluation of our 

work in terms of performance, scalability and programmability followed by our concluding 

words. 

Chapter 2. LITERATURE REVIEW 

Although initially designed for outputting video to displays, GPUs have been used for an 

increasing amount of general purpose and high-performance computing tasks. This was greatly 

accelerated with the release and adoption of the CUDA framework by Nvidia in the 2000s and 

can be attributed to the massive amount of parallelism offered which cannot be matched by 

general purpose CPUs. 

 

As we have seen, the approaches may be categorized as working blindly to programmer (so no 

additional support is needed during the development process to manually manage resources), 

such as hardware level support for memory access, blind caching and prefetching of data etc., or 
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techniques which require some amount of manual resource management, such as compiler 

enhancements to decipher memory access patterns, effective data flow graph partitioning for 

work distribution etc.  

 

However, ever since the dawn of GPU computing, memory oversubscription has always been a 

problem as GPUs are equipped with significantly faster and more expensive memory than 

normal DRAM. Solutions for this have focused on all levels of the stack from hardware/platform 

designs to high level application specific solutions. 

 

A number of solutions have targeted the architecture and platform to come up with potential 

solutions to alleviate problems of GPU memory oversubscription. Kwon et al. provide an 

architecture level solution by aggregating a pool of memory modules locally within the device-

side interconnect, which are decoupled from the host interface and function as a vehicle for 

transparent memory capacity expansion [7]. Matsouka et al. presented DRAGON, which allows 

the GPU to have direct access to NVMe based high speed memory which can scale much larger 

than even conventional DRAM [12]. This was accomplished by directly mapping the GPU 

memory to the NVM storage. Zheng et al. attempt to close the gap between automatic memory 

management between GPU/CPU and that done manually by programmers by treating page faults 

as long latency memory operations and utilizing intelligent prefetching [17]. GPUswap is a novel 

approach to enabling oversubscription of GPU memory that does not rely on software scheduling 

of GPU kernels and uses the GPU's ability to access system RAM directly to extend the usable 

memory [5]. Zorua is a framework to virtualize access to GPU resources to enable more 

controlled and finetuned oversubscription of resources. It uses information from the compiler 
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decipher resource usage patterns and prioritize those [14]. While these techniques have shown 

promise and generalize well, they require support from the platform and architecture which 

limits their applicability. 

 

As the popularity of machine learning has exploded in recent years and it has become one of the 

most popular workloads for GPUs, a lot of solutions focusing on GPU memory oversubscription 

have focused on the learning tasks. Nonetheless, one caveat should be kept in mind regarding the 

generalizability of solutions designed for learning tasks: since gradient descent is a stochastic 

process, it is much more resilient to missed iterations and lost data as compared to deterministic 

workloads such as physics simulations or geometric algorithms. One of the first and influential 

works in this regard was vDDN by Nvidia which is a runtime memory manager that virtualizes 

the memory usage of DNNs so that both GPU and CPU memories can be used simultaneously 

[13]. Zhang et al. exploited the iterative nature of training algorithms to derive the lifetime read 

and write order of variables and hence exploit a memory pool with minimum fragmentation [16]. 

Similarly, Li et al. devise a memory scheme which does address translation between device and 

host memory while minimizing its performance impact [10]. The vDDN scheme was further 

improved by addressing PCI Express-bus contention problems and utilizing an intelligent 

prefetching algorithm [6]. Matsumiya et al. developed ooccuDNN, a computation blind scheme 

for processing data beyond GPU capacity by swapping target data whenever it is required for 

computation and overlapping communication and computation [4]. TOFU is a system to 

automatically partition dataflow graphs with minimum interdependencies to spread them across 

multiple GPUs for faster computation with minimum overhead [15]. In aggregate, work on 

probabilistic systems such as gradient descent has yielded good results, and this is partly due to 
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the inherently error resistant nature of these systems. However, the same does not apply to 

physics or geometric simulations which are highly precise in nature and cannot automatically 

recover from incorrect or missing data 

 

Existing big data processing frameworks such as Spark and Flink have also seen work targeted 

towards accelerating them using heterogenous CPU-GPU usage. Chen et al. presented a 

pipelined multi GPU architecture for MapReduce which is able to exploit multi-tier memory to 

process datasets which might not fit on GPU memory [2]. Endo exploited locality of calculations 

in stencil computations to provide an effective way to scale to multi-tier memory systems 

including GPU VRAM, DRAM, NVMe etc. [3]. HeteroSpark, a GPU-accelerated heterogeneous 

architecture integrated with Spark, which combines the massive compute power of GPUs and 

scalability of CPUs and system memory resources for applications [9]. GFlink adapts the Flink 

framework to provide an in-memory computing architecture on heterogeneous CPU-GPU 

clusters for big data processing [1]. 

 

As we saw, the existing solution either require specialized platform or hardware support, require 

explicit support from the practitioner for specific algorithms, are not suited to a deterministic 

environment or are not set designed around taking advantage of the unique execution lifecycle of 

agent based modeling. 



 

 

Chapter 3. METHODOLOGY 

3.1 OVERVIEW 

In this section, we detail our methodology and the engineering process undertaken to add 

heterogeneous computing support to the Multi Agent Spatial Simulation Library. 

 

We begin by describing the architecture of MASS CUDA, with special attention to salient 

features relevant to our implementation, and then proceed to. 

 

3.2 ARCHITECTURE OF MASS CUDA 

MASS CUDA is a version of the MASS library designed to run on Graphics Processing Units 

(GPUs) and take advantage of the parallelism available.  

 

It is designed to be functionally similar to the sequential versions of MASS and requires no 

specialized knowledge of CUDA from the practitioner. Figure 3 shows the major components of 

MASS CUDA: 
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Figure 3 Major components and their hierarchy in MASS CUDA  

 

An application first initializes the MASS environment by calling MASS::init(). This spawns an 

instance of the Dispatcher class which is the entry point for all library functionality.  

 

MASS CUDA is designed around having an identical data model stored on both the host and the 

device (GPU) and this is achieved by separating the state of a Place/Agent from its behavior. 

Hence, classes for MASS Agent and MASS Place define the behavior of an Agent or Place and 

AgentState/PlaceState store their behavior. These classes are designed in an extensible manner 

and it is expected that users will extend these to implement the functionality required by their 

specific use cases.  
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To illustrate this further, we can look at a simulation of an Ant colony as an example. As in the 

sequential version of MASS, groups of agents/places are identified by an ID and stored in a 

higher-level abstraction called the AgentsModel or PlacesModel, as shown in Figure 4. A 

singular state array holds the state information for all Places/Agents corresponding to that ID; 

this makes copying data from the device to the host much easier as the entire state array is simply 

copied to the host. 

 

Figure 4 AgentState and PlaceState classes 

 

It is expected that agents will be spawned simultaneously on both the host and device and that 

memory transfers will occur only when results need to be fetched.   

 

3.3 ADDING SUPPORT FOR PLACES 

The general idea for adding heterogeneous computing support is similar to running MASS across 

multiple nodes in a networked cluster, as illustrated in Figure 5: 
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Figure 5 The blue rectangle depicts a slice being shared while the orange outline shows the 

inactive border areas being transferred to the GPU. 

 

Essentially, we treat all the Places as a two-dimensional grid (currently, MASS CUDA is limited 

to 2D grids) and partition it into vertical stripes in accordance with the maximum available 

memory on the GPU. ‘Ghost’ space is included as read only border areas to allow continuity of 

computation between slices. 

 

As the Dispatcher class is responsible for all communications, the allocation and transfer of data 

between host/GPU, and the invocation of GPU kernels, all changes are made at this level. As 

outlined in Figure 6, we make another larger host side data model to store the entire Places grid. 

Though this breaks the assumption of having an identical model on both the host and device 

present in the original version of MASS CUDA, it is intrinsic to heterogeneous computing to 

have asymmetrical models. 
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Figure 6 Principal changes at Dispatcher level to enable heterogeneous upport for Places. 

 

Principally, all functionality for Places is provided through two methods: callAll() and 

exchangeAll(). Places.callAll() calls a user provided function on all the Places with a given ID 

and exchangeAll() results in all Places updating information about who their neighbors are. 

 

We augment the main callAll() and exchangeAll() functions by adding code to calculate offsets 

to for slice indexing and copy the state data to a staging data model and subsequently invoke the 

HostToDevice() method which copies data from the staging array to the GPU. The same process 

occurs in reverse to copy data back to the staging array via a call to refreshPlaces() from where it 

is merged into the global data model. 

 

 



 

 

22 

 

Figure 7 Example of augmented kernel code for ghost space handling. 

 

Once, the data has been copied to the device, kernel functions are invoked on it. The primary 

change needed in the kernel functions is to decompose the row major index to x and y 

coordinates and skip over any function calls for the ‘ghost’ space on either side of the actual 

data, as shown in Figure 7. To prevent performance degradation due to control divergence in the 

kernels, we do not have multiple branches in the kernel call and the overall implementation is 

kept very similar to the canonical CUDA programming paradigm of simply checking whether to 

execute the kernel functionality or not based on the index. 

 

3.4 ADDING SUPPORT FOR AUTONOMOUS AGENTS 

While much of the process described above also applies for adding heterogeneous Agents, there 

are several additional factors to take into consideration. 

 

Agents have a lifecycle process (shown in Figure 8) of which each stage must be handled. 

Principally, an Agent has a callAll() method, which is similar to it’s counterpart in a Place, and a 



 

 

23 

manageAll() method, which takes care of agent spawning, migration and termination.  

Additionally, when a certain Agent is placed on the GPU, it’s environment, which comprised of 

the Place it lives on and those it surrounds, must be copied to the device as well. Finally, unlike 

Places which are statically allocated, Agents are spawned and killed dynamically. 

 

 

Figure 8 Life cycle of an autonomous Agent 

As Agents are spread out over a two-dimensional grid of Places, there are multiple ways to split 

them into chunks for heterogeneous computing. Two of the most logical partitioning schemes, 

illustrated in Figure 9, are: split the Place grid into slices and copy all Agents within a specific 

slice, or alternatively, copy N number of Agents and a slice of Places immediately surrounding 

each of them. To maximize the number of Agents which can fit onto device memory at each 

epoch and minimize memory transfers, the latter scheme is chosen. 
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Figure 9 Two natural ways to distribute Agents to slices 

 For every epoch, the maximum number of agents which can fit onto the GPU memory are 

selected and copied into a host side staging container for copying. Following this, for each agent 

in the staging memory, the place it lives as well as its neighboring places are copied into another 

staging array for Places. Subsequently, host to device memory transfers are initiated and kernel 

methods are invoked. 

 

To ensure slice to slice migration of Agents, we ensure that agents present in the ‘ghost space’ at 

the edge of a slice do not have their kernel methods invoked.  

 

3.5 OPTIMIZATIONS, DESIGN CONSIDERATIONS AND EXTENSIBILITY 

In this section, we present some of the performance optimizations we made, the design 

considerations underlying them and our overall architecture, and the emphasis on 

programmability and extensibility. 
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One key consideration in the design of our heterogeneous implementation of MASS CUDA was 

extensibility and the ability to build different features on top of the core functionality. As we 

form slices in each epoch and copy them to staging areas before a host to device copy for kernel 

invocation, it would require minimal changes to adapt this for utilizing multiple GPUs connected 

to the same host CPU (we can simply copy successive slices to different GPUs). 

 

Additionally, granular sizing for individual slices is possible and this opens the door to having 

multiple devices with asymmetric compute capabilities. As an example, we can imagine a 4-core 

host with 2 GPUs connected. After analyzing the compute capabilities of all devices, we can 

push different sized slices to them per epoch from the main memory data model and hence 

optimally distribute work among them (in case of devices with the same capability, identical 

slices would be used).  

 

 

Figure 10 Pageable vs non pageable memory transfer. 

 

Normally, system memory (RAM) is paged by the CPU and operating system. Resultantly, any 

page in the memory can be invalidated and evicted at any time by the CPU based on its eviction 

policy (i.e. due to running low on systems memory it might write sections of memory to a page 
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file on the disk). Due to this, memory transfers in CUDA are routed through the CPU which 

serves as a bottleneck and can reduce the transfer speed by as much as 50%. We optimize the 

memory transfers by adding support for making the host side memory buffers non pageable and 

pinned by using the CUDA API to register our host side data model as non-pageable memory. 

This allows the GPU to directly copy the data from the system memory and hence take 

advantage of the full bandwidth of the PCI bus.  Using the Nvidia profiler, we find that the 

runtime is improved by 11% and the memory bandwidth, which is dependent on CPU 

performance in the case of pinned memory, increases from 3.9 GBPS to 6.1 GBPS. Figure 10 

illustrates this change. 

 

As described in the previous section, we initially designed the system around copying data from 

a slice to an intermediary staging memory buffer before flushing to the device. While this design 

was motivated to achieve gains in extensibility and abstraction (by essentially decoupling the 

logic for slice formation from that of workload assignment), it was found to have a performance 

overhead due to double copying (first from host to staging and then subsequently to the device). 

We optimize our design by modifying the staging memory to hold only references to the actual 

Agents and Places in the host side data model rather than storing complete copies of them. This 

preserves extensibility and abstraction benefits of a staging step while ameliorating the 

performance concerns. We are able to record a 13% performance improvement due to this 

change in terms of run time as measured by the Nvidia profiler.  

 

As discussed in the previous section, agents have a manageAll() method in their API (in addition 

to callAll()) which in turns calls three methods: terminateAgents(), migrateAgents() and 
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spawnAgents(). As migrateAgents() and spawnAgents() do not cause side effects in each other’s 

domains, we can safely merge them to realize performance improvements. Due to MASS CUDA 

(and hence Heterogeneous MASS CUDA) program lifecycle, there is a significant performance 

penalty for each invocation in terms of the memory management cycle. Hence, by merging them 

into a new migrateAndSpawnAgents() call, we minimize this overhead. The reduction in 

memory copying nets us a performance gain of 8.5% in terms of execution time and reduces the 

amount of memory transferred each epoch in the SugarScape user program (described in the next 

section) by 11%. Further, this change does impact the API as manageAll() abstracts away the 

individual calls to migrateAgents() and spawnAgents().  

 

To minimize the amount of memory which needs to be transferred, in the case of Agent.callAll() 

and Agent.manageAll(), we copy only those Places which immediately surround an agent 

according to the look ahead setting as opposed to copying entire slices. This allows a larger 

number of agents to fit on the device memory and helps to minimize the memory transfers 

needed. 

 

As different simulations have differing requirements for the depth of border area exchange 

needed, we add a parameter to the API to allow the user to manually set the exchange boundary 

for all Places. As an example, while a heat dispersion algorithm only needs to check the 

temperature of the adjoining Places, certain wave propagation simulations might need to view 

data from up 3 places away in each direction. The same principle applies in the case of Places 

where an agent might need to hop multiple Places in an epoch. To account for the vast majority 
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of use cases without incurring too heavy a performance penalty, we limit the look ahead to 3 in 

the case of both Agents and Places. 

  

Finally, as discussed earlier, an important design goal of this work is to ensure that practitioners 

are able to benefit from heterogeneous computing on ABM systems with oversubscribed 

memory without needing specialized skills or knowledge of CUDA/memory systems. For 

example, a possible optimization would be to have users annotate functions which do not have 

temporal/spatial dependencies so the MASS library could optimize these into the same memory 

cycle. However, as it requires assistive information from the user, it, along with other such 

optimizations, was excluded.  

 

Chapter 4. PERFORMANCE AND USABILITY EVALUATION 

4.1 TESTING METHODOLOGY 

In this section, we test and evaluate our work in terms of performance and ease of 

programmability. We select three representative algorithms and perform a qualitative and 

quantitative analysis for each of them.  

 

4.2 EVALUATION ENVIRONMENT 

To successfully test and evaluate our work, we require a modern x86 CPU, a Nvidia CUDA 9.0 

compatible graphics processor (GPU), a Unix based OS and the NVCC compiler. 
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We utilize the following hardware and software to form our test bed, shown in Table 1. 

 

Table 1 Summary of testing environment 

CPU Intel Skylake Xeon Platform 

CPU Frequency 2.6/3.2 GHz 

RAM 12 GB 

CUDA Version CUDA 9 

GPU Nvidia Tesla K80 

CUDA Cores 4,992 

Memory bandwidth 480 GB/s 

CUDA Compute Capability 3.7 

Graphics Memory 4 GB (limit set) 

  

 

4.3 BENCHMARK SIMULATIONS 

We select three representative algorithms to benchmark the performance of our work, namely, 

Heat 2D, SugarScape and Neural Network Growth Simulation. 

 

Heat 2D models heat dispersion across a two-dimensional grid and is modeled using Places as 

areas on the grid. The problem is well suited for benchmarking performance across a large static 

system. SugarScape simulates the struggle for survival among agents as they compete to find 
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food and resources. We implement this using autonomous Agents which move around a 2-

dimensional grid modeled with Places. This simulation is well suited for measuring performance 

for a dynamic system and testing our implementation’s strengths and weaknesses. Finally, we 

run a Neural Network Growth simulation which models Axon and Dendrite growth from 

Neurons across a surface. This is a considerably more complex problem encompassing both 

Places and Agents in a stochastic environment and a good addition to our benchmark suite.  

 

4.4 EVALUATION OUTLINE 

We begin by testing the performance of our heterogeneous implementation of MASS CUDA in 

4.5-4.7 by comparing it to MASS CUDA, pure CUDA heterogeneous implementations, and 

sequential CPU versions. Here we set the memory oversubscription level to 2x to simulate the 

most common use case. Execution time is used as a suitable benchmark to compare performance 

as it provides a good quantitative comparison point across different implementations. 

 

In 4.8, we illustrate how Heterogeneous MASS CUDA is able to scale past the device memory 

limitations in contrast to MASS CUDA by measuring the amount of memory used and time 

taken to solve a problem size. Section 4.9 takes a deeper look into how performance scales with 

the degree of oversubscription. 4.10 looks at the execution time distribution to gauge how much 

time is spent. 

 

Finally, 4.11 presents a qualitative analysis of the programmability and ease of use of 

heterogeneous MASS CUDA. 
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4.5 HEAT 2D 

The Heat 2D algorithm models the dispersion of heat across a two-dimensional surface. Each 

‘cell’ in the grid is initialized with a temperature of zero degrees. Following this, heat is applied 

for a given amount of time to a subset of cells and the heat then diffuses to the remainder of the 

cells according to the Euler formula. 

 

Our simulation runs for 100 iterations on an MxN grid. In addition to heterogenous MASS 

CUDA, results from a heterogeneous version of the algorithm written in Pure CUDA C, non-

heterogeneous version of MASS CUDA, as well as a sequential implementation are given in 

Figure 11. 

 

 

Figure 11 Performance testing results for Heat 2D 
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As shown by Figure 11, the implementation of the heat dispersion algorithm on our 

heterogeneous version of MASS CUDA provides scales up reasonably well when compared to 

the heterogeneous version written in pure CUDA. The performance difference can be explained 

by two main reasons: firstly, there is some overhead intrinsic to the MASS CUDA library, 

secondly, the pure CUDA C version is optimized to fold all functionality into a single kernel 

invocation needing one memory swap per epoch whereas the MASS CUDA version is limited by 

the API.  Hence, while slower than a handwritten version, the additional memory copying is 

minimal due to there being only invocations of Places.callAll() in every epoch. In addition, the 

heterogeneous version manages to maintain a positive performance difference as compared to the 

sequential implementation. 

 

4.6 SUGARSCAPE 

Our second algorithm is SugarScape, a popular social survival simulation which first appeared in 

the 1990’s. While the original author’s aim to model ancient civilizations on it turned out to be 

too optimistic, it is nonetheless an interesting program and one which is well suited for our 

benchmark suite. 

 

We model organisms as Agents in MASS while grids containing sugar are modeled as Places. 

The simulation begins with mountains of Sugar across the grid and randomly assigned agents 

having randomly assigned metabolisms. Based on the amount of food and pollution present, 

agents go to different grid points and either feed or die off.   
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Once again, we run the simulation for 100 iterations and tabulate our results, shown in Figure 12. 

 

Figure 12 SugarScape benchmarking results 

 

The results of benchmarking SugarScape show that our heterogeneous implementation of MASS 

CUDA is (relatively speaking) slower to start as compared to the rest of the implementations 

though it scales well and manages to close the gap, ending up faster than the sequential version 

for large problem sizes.  

 

The discrepancy in performance can be explained by the implementation of SugarScape (Figure 

13). As shown in the diagram below, SugarScape makes multiple calls to the MASS API per 

epoch. While this not significantly impact the normal version of MASS CUDA, in the case of the 

heterogeneous version it will lead to memory swapping for each of these calls which incurs a 

performance penalty.  
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Figure 13 SugarScape main loop 

 

4.7 NEURAL NETWORK GROWTH 

The third and last algorithm in our testing suite is a Neural Network Growth simulation.  We 

model the problem as a two-dimensional grid comprised of Places where a predefined number of 

Neurons (modelled as Agents) live. At every epoch, there is a probability of the Neuron growing 

an Axon or up to 4 Dendrons. As MASS lacks the ability to have an Agent live over multiple 

Places, an Axon is modeled as both an Agent (head of the Axon) and a Place (tail of the Axon), 

while Dendrites are modeled entirely using Places. These Dendrites and Axons grow over the 

grid until one of two termination conditions is met: there is either no more space to grow (every 

Place is limited to hosting a set number of Axons/Dendrites) or when an Axon ‘fuses’ with a 

Dendrites having an opposite direction of growth. 
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Once more, we run the simulation for 100 epochs and set an occupancy limit of 5 

Axons/Dendrites per Place. The results of our simulation are tabulated in Figure 14. 

 

Figure 14 Neural Network Growth benchmarking results. 

 

Despite being a relatively complex problem, neural network growth exhibits good performance 

on Heterogeneous MASS CUDA. Barring very small problem sizes, it is consistently faster than 

the sequential version and scales similarly to a pure CUDA C implementations.  

 

4.8 SCALING PAST MEMORY LIMITS 

We now turn our attention to scaling Heterogeneous MASS CUDA beyond the limits of device 

memory. We run Heat 2D and Neural Network Growth on both MASS CUDA and our 

heterogeneous versions and tabulate our results.  
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Figure 15 Heat 2D: Scaling past the GPU memory limit. 

 

Figure 15 shows Heat 2D running on both MASS CUDA and Heterogeneous MASS CUDA. As 

shown, MASS CUDA exits with an out of memory runtime error while allocating 500,000 Places 

when the memory consumption begins to exceed 3 GB while our heterogeneous version can 

work in the oversubscribed environment. There is a deterioration in performance at 3.25 million 

Places as the degree of over subscription goes from 2x to 3x. 

 

 

Figure 16 Neural Network Growth: Scaling past the GPU memory limit. 
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Figure 16 shows the results for running Neural Network Growth on MASS CUDA vs 

Heterogeneous MASS CUDA. The grid size is shown in the x axis and the number of Agents is 

set as the number of Places divided by 5. MASS CUDA runs out of memory at 320,000 places 

and 64,000 agents while our heterogeneous implementations continues to scale. As would be 

expected due to the more complex program, Neural Network Growth scales slightly worse than 

Heat 2D. 

 

4.9 SCALABILITY IN TERMS OF SLICES 

While the size of a model our heterogeneous implementation of MASS CUDA can run is limited 

only by the system ram size (which can scale to terabytes), the degree of oversubscription does, 

of course, incur a correspondingly large performance penalty.  

 

Figure 17 shows the rate at which the time taken to solve a given problem size scales in 

accordance with the number of times the GPU memory is oversubscribed for Heat 2D and 

SugarScape.  
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Figure 17 Scalability in terms of degree of memory oversubscription. 

 

As heterogeneous MASS CUDA is primarily IO bound (that is, the performance bottleneck is 

generally caused by host to device memory transfers), the time taken to solve a given problem 

size increases significantly as the platform device becomes increasingly oversubscribed.  

 

4.10 A DEEPER LOOK AT EXECUTION TIME DISTRIBUTION  

We now take a deeper look at the execution lifecycle of heterogeneous MASS CUDA to 

decipher where the program spends the most time during execution. Figure 18 below presents the 

execution time distribution data obtained by profiling a run a of Heat 2D with 2000x2000 grid 

size and 50 epochs. 
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Figure 18 Execution time distribution for Heat 2D. 

 

As shown in Figure 18, nearly 94% of the total execution time is spent copying data back and 

forth between the host and device. While our results show that heterogeneous MASS CUDA 

scales relatively well in terms of performance, these findings do raise questions about the 

possibility of further performance improvements without a platform/hardware level improvement 

(i.e. using NV Link rather than PCI etc.) 

 

4.11 PROGRAMMABILITY ANALYSIS 

Having presented an analysis of the performance characteristics of our work, we now 

qualitatively analyze it in terms of programmability. As mentioned in the introduction, one of the 
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main goals of heterogeneous MASS CUDA was to maintain the invariant of not requiring any 

CUDA or heterogeneous programming knowledge. 

 

Based on a comparison of the pure CUDA implementations and our MASS CUDA 

heterogeneous implementations, we can surmise that we have favorably achieved this goal.  

 

To implement Heat 2D in heterogeneous MASS CUDA, we derive child classes from Places and 

implement the Euler method to calculate heat diffusion from the neighboring Places. As all 

CUDA and heterogeneous functionality is abstracted away in the library, the user does not need 

any specialized knowledge. The only restriction imposed is that the C++ standard library cannot 

be used as it is not available in the device’s execution environment.  Contrasted with a pure 

CUDA heterogeneous implementation, we need to manually copies slices of memory for each 

iteration in addition to writing kernel functions to do the actual temperature dispersion 

calculation on the device.  

 

Similarly, the case Neural Network Simulation is even more complicated as we have to account 

for the growth of Axons and Dendrites across Places, fusing them upon meeting etc. Once the 

cognitive overhead of manually implementing heterogeneous computing is added, it is likely to 

place too large a burden for the average practitioner. 

 

Hence, we have managed to maintain the programmability of MASS CUDA and there are 

essentially no changes needed to run most MASS CUDA user programs on our heterogeneous 

version. 
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Chapter 5. CONCLUSION 

5.1 CONCLUSION 

This project presented a heterogenous implementation of MASS CUDA to scale up agent-based 

multiprocessing beyond GPU memory limits. By maintaining a host side data model and only 

selectively offloading Places and Agents to the GPU as needed for computation, we are able to 

limit memory transfers to those strictly necessary and minimize the impact to performance. 

Three representative benchmark programs, heat dispersion, sugar scape and neural network 

growth simulation were used to evaluate our work and demonstrated that it scales similarly in 

terms of performance to bespoke heterogeneous implementations in pure CUDA C. Further, we 

emphasize ease of use over performance optimizations where presented with a tradeoff and 

qualitatively show that the programmability of MASS CUDA is favorably preserved. 

 

5.2 FUTURE WORK 

There are several interesting directions to pursue with regards to future work. 

 

In terms of improving the performance of heterogeneous MASS CUDA, we note that the 

majority of execution time is spent in transferring data to and from the device. A possible 

approach to reduce this would be to employ on device compression to compress to initially 

compress the data and then only transferring the compressed data to the GPU where it would be 
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decompressed, processed and recompressed before sending to the host. Recent advances in GPU 

based compression make this option more attractive [11]. 

 

Secondly, the next logical step would be to expand our work to encompassing multiple GPUs. 

We believe our overarching system design goes a long way to assisting this and the mechanism 

for assigning work to the GPU could relatively easily be extended to farm out work to multiple 

GPUs per epoch with dynamically shared border areas. This would allow multiple GPUs to run 

in an oversubscribed manner with the host data model being used to swap Agents and Places in 

and out of the devices as needed.  

 

Thirdly, in conjunction with multiple GPU support as described above, CPU computation could 

be enabled as well so that host and device cores could work together to process slices with slice 

sizing per device dynamically calculated based on compute performance for the previous epoch.  

 

Lastly, MASS CUDA (as well as our version with heterogenous computing support) is limited to 

working with two dimensional grids at the moment. As more and more of the data practitioners 

need to process is spatial in nature, adding a native internal graph representation would go a long 

to increasing its real-world usability and applicability. 
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