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MASS Java & GraphX Benchmarks for 

Graph Computing 

1. Overview 

Distributed graph computing is an evolving field within distributed computing, and many 
organizations are expanding their systems to address large-scale graph processing. To 
determine which computing problems various systems’ implementations are best suited to 
solve, we can assess their performance and programmability. 

At the University of Washington Bothell, the Distributed Systems Laboratory (DSL) has 
developed MASS (Multi-Agent Spatial Simulation), a distributed memory system designed 
for agent-based spatial computations, including its graph computing system for distributed 
graph databases. This study compares MASS’s agent-based approach with GraphX, 
Apache Spark’s graph processing library, to evaluate their scalability, efficiency, and ease 
of use trade-offs. 

GraphX, built on Apache Spark, integrates graph computation with data-parallel processing 
by utilizing Resilient Distributed Datasets (RDDs) and a Pregel-inspired API to optimize 
iterative graph algorithms. In contrast, MASS distributes computations across agents that 
operate autonomously over partitions of the graph. Understanding the strengths and 
weaknesses of each model will offer insight into their suitability for different workloads. 

Previous MASS Java benchmarks were primarily developed by James Day, who created key 
benchmarking programs to evaluate MASS’s graph computing performance. Two MASS 
benchmarks not made by James are weakly connected and strongly connected 
components, which required a refactor to accommodate recent changes to MASS. By 
focusing on GraphX, I aim to evaluate its performance, programmability, and scalability 
compared to MASS, providing insights into the trade-offs between these two approaches to 
distributed graph computing. 

2. Background 

MASS (Multi-Agent Spatial Simulation) is a parallel computing library for distributed 
memory systems. It models computations using places, representing data distributed 
across computing nodes and agents. Agents navigate these places to perform tasks and 
exchange information. In MASS’s graph database implementation, graph nodes are defined 
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as places (GraphPlaces), and agents conduct operations such as triangle counting, 
clustering computations (e.g., connected components), and connectivity analysis. 

GraphX, a graph processing framework built on Apache Spark, takes a different approach 
by abstracting graph computation with Spark’s data-parallel model. GraphX represents 
graphs using Resilient Distributed Datasets (RDDs). Optimizations can be made when 
abstracting Spark RDDs for graph use, such as data locality partitioning. The performance 
gains from these optimizations are the key concepts we will compare with MASS. 

2.1. Graph Loading 
The version of MASS used for comparison with 
GraphX distributes GraphPlaces in a round-
robin fashion across the machine cluster, with 
each node being assigned sequentially to a 
different machine, as seen in Figure 1. Graphs 
are loaded using a proprietary DSL file, which 
defines the nodes and their edges in a text-
based format. These DSL files are also used to 
generate graphs in GraphX for a direct 
comparison.  

In GraphX, graphs are constructed by creating 
an RDD of vertices and edges, which is then 
used to generate the graph structure. In our 
comparison, we developed a program that 
parses MASS’s DSL files and converts them into 
a format suitable for loading graphs in GraphX. 

2.2. Clustering Coefficient 

Clustering Coefficients show how tightly knit each vertex in a graph is with its neighbors. 
They measure the degree to which vertices cluster together. Many real-world graphs, such 
as social network graphs, have a high degree of clustering due to cliques of people (small 
and dense groups of people who know each other). Calculating the clustering coefficient 
can help recognize these groups of people. Clustering coefficients are computed by 
examining whether a node’s neighbors are also connected, forming triangles of edges. The 
coefficient is determined by comparing the number of connections between a node’s 
neighbors to their total possible connections. The result ranges from 0 to 1, where 1 
indicates that all neighbors of a node are fully connected (forming a clique), and 0 means 
none of its neighbors are connected. This provides the local clustering coefficient, which 

Figure 1 
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measures how tightly a single vertex's neighbors are connected. To understand the overall 
connectivity of the graph, we compute the global clustering coefficient by averaging the 
local clustering coefficients across all vertices. A high global clustering coefficient 
indicates that, on average, most nodes exist within densely interconnected communities, 
suggesting strong network cohesion. In contrast, a low global clustering coefficient implies 
a sparser, more fragmented network structure. 

The formal calculation of local clustering coefficients can be 
seen in Figure 2, where 𝑉 is a vertex in the graph, 𝑁𝑉 is the 
number of links between its neighbors and 𝐾𝑉  is its degree. 

  

2.3. Weakly Connected Components 

A Weakly Connected Component (WCC) is a subgraph in which all vertices are connected 
by some path, regardless of edge direction. In directed graphs, this means that even if 
some edges are one-way, there is still a way to traverse between any two nodes in the 
component when ignoring edge direction. 

WCCs help identify disconnected areas of a graph, which is helpful in applications such as 
social networks, where different communities may be loosely connected, or in web graphs, 
where certain pages are accessible only when considering undirected paths. 

The Weakly Connected Components (WCC) algorithm identifies subgraphs in which all 
vertices are reachable from one another when edge direction is ignored. It starts by treating 
the directed graph as undirected, ensuring all connections are bidirectional. The algorithm 
then groups nodes into connected subgraphs, where each node has at least one path to 
any other node within the same component. Once these subgraphs are identified, each is 
assigned a unique identifier, effectively labeling distinct weakly connected components. 
This method aids in analyzing a directed graph's overall structure and fragmentation, 
revealing how many different groups exist and how they are internally connected. 

2.4. Strongly Connected Components 

A Strongly Connected Component (SCC) is a subgraph of a directed graph in which every 
vertex is reachable from every other vertex in the component following the direction of 
edges. In other words, for any two vertices u and v in a strongly connected component, 
there must be a directed path from u to v and from v to u. 

SCCs are critical in understanding the internal structure of directed graphs, especially in 
systems where mutual reachability matters, such as control flow graphs in compilers, 
software dependency graphs, or web link structures. Identifying SCCs can help detect 

Figure 2 
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cycles, uncover tightly-knit modules, or isolate parts of a system that can function 
independently. 

The Strongly Connected Components algorithm decomposes a directed graph into 
maximal subsets of vertices where each vertex can reach every other vertex through 
directed paths. In distributed environments, algorithms typically use a vertex messaging 
paradigm (As well as for weakly connected components). 

 

1. Implementation 

1.1. Graph Loading 
MASS loads graphs by placing a GraphPlace at each node for each vertex seen in the DSL 
file, going round-robin across the machines, as explained in the overview. We created a 
Java GraphX program to parse the DSL file and create a GraphX graph by generating the 
RDDs for the vertices and edges. 

Figure 3: GraphX DSL Graph Generation 

 

Figure 3 illustrates in GraphX how the graph's vertices and edges persist in memory, 
leveraging Spark's in-memory processing capabilities. This enables graph transformations 
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to execute significantly faster than retrieving data from disks. More details about DSL graph 
loading with GraphX can be found in Appendix A. 

1.2. Clustering Coefficient 

1.2.1.  MASS Implementation 

The MASS implementation of the clustering coefficient begins by assigning an agent to 
each vertex in the graph. Each agent stores its original place ID before proceeding. The 
agent then creates additional agents equal to the number of its neighboring vertices, and 
these agents migrate to their respective neighbors. Once there, they collect a list of that 
vertex's second-degree neighbors and then return to their original vertex with this 
information. 

At this point, the GraphPlace stores the gathered second-degree neighbor lists. It then 
computes the local clustering coefficient by determining how many of its second-degree 
neighbors are directly connected. A function called CallAll retrieves the local clustering 
coefficients from all GraphPlaces to obtain the global clustering coefficient. The results are 
sent to the master node and averaged to compute the overall graph clustering coefficient. 

Figure 4: MASS Local Vertex Cluster Coefficient Computation 
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1.2.2. GraphX Implementation 

The GraphX implementation first gathers each vertex’s degree and triangle count. These 
values are then joined to construct a new graph, where each vertex is represented as 
<VertexID, Degree, Num. of Triangles>. Using the formula shown in Figure 1, the local 
clustering coefficient is computed for each vertex. The results are then collected and sent 
back to the master node as an array, where each entry contains the vertex ID and its 
corresponding local clustering coefficient. Finally, the master node calculates the average 
clustering coefficient for the entire graph. 

Figure 5: GraphX Local Vertex Cluster Coefficient Computation 

 

1.3. Weakly Connected Components 

1.3.1.  MASS Implementation 

The previous MASS implementation of Weakly Connected Components (WCC) uses agents 
to propagate the minimum vertex ID throughout the graph. Initially, an agent is created at 
each vertex, with its component ID assigned to the vertex’s ID. 

This previous implementation garnered poor results, as discussed in the results section. 
Noel Beraki, a member of the DSLab group, used a similar approach to his strongly 
connected components implementation (discussed in the SCC Implementation section) in 
a new implementation, where a single pivot vertex is selected and the graph is traversed 
with agents from there in a BFS fashion. 
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Beginning with a single agent at the pivot vertex, agents are spawned at neighboring nodes, 
marked as part of the current component, and visited. The master maintains a set of visited 
vertices to track which vertices have not been placed as part of a component. Once one 
BFS search is complete, another occurs, beginning with the following vertex not yet visited. 
You can find Noel Beraki’s term report on the DSLab website to read more about his 
approach. 

Figure 6: GraphX Weakly Connected Components Agent Vertex Arrival 
Code 

 

https://depts.washington.edu/dslab/MASS/index.html
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1.3.2.  GraphX Implementation 

GraphX weakly connected components can be found in the GraphX library. The algorithm 
employs an iterative label propagation method to identify subgraphs where all vertices are 
reachable from each other when edge direction is disregarded. The process begins by 
assigning each vertex a unique label, initially set to its vertex ID. Every vertex updates its 
label to the smallest ID among its connected neighbors in each iteration, effectively 
spreading the lowest ID throughout the component. Because edge directions are 
disregarded, label propagation occurs bidirectionally between vertices. This iterative 
process continues until convergence, meaning all vertices within the same connected 
component have the same label. Once there are no further label changes, the algorithm 
terminates, efficiently grouping weakly connected subgraphs within the graph. 

Figure 7: GraphX Weakly Connected Components Implementation (From 
the GraphX library) 
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1.4. Strongly Connected Components 

1.4.1. MASS Implementation 

For the MASS implementation of SCC (Strongly Connected Components), developed by 
Noel Beraki, we utilize a parallel-BFS approach instead of the traditional messaging 
method. First, some preprocessing steps are necessary for agents to follow reverse edges. 
Then, two agents are spawned at a randomly selected pivot vertex. These agents perform a 
BFS traversal to the predecessors and successors of the pivot vertex, spawning agents for 
each neighbor and marking them as part of the component. Once all reachable vertices 
have been visited, a new pivot vertex is chosen for the remaining components, and the 
process is repeated. 

1.4.2. GraphX Implementation 

The GraphX implementation for Strongly Connected Components (SCC) is structurally 
similar to the WCC implementation but includes additional pruning steps. Vertices with no 
incoming or outgoing edges (i.e., zero in-degree or out-degree) are initially removed from 
the graph and directly assigned to their component, reducing the graph size before the 
main computation. 

After pruning, the algorithm utilizes the Pregel API to propagate component IDs. Each 
vertex starts with its ID as its component label and sends messages to its neighbors 
indicating its current component ID. If a vertex receives a lower component ID than its own, 
it updates its label and propagates the new value. This message-passing continues 
iteratively until no further updates occur. 

2. Results 

All benchmarks have been run on the CSSMPI & Hermes machines using the same graph 
files. 

2.1. Load Time Performance 

MASS and GraphX have run times that are generally similar, although GraphX typically 
performs better on larger graphs and handles loading with a larger number of machines 
more gracefully. 
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However, MASS processes smaller graphs faster than GraphX because GraphPlaces are 
distributed in a simple round-robin fashion across computing nodes, while GraphX 
employs a partitioning algorithm that considers data locality. In contrast, GraphX incurs 
overhead from shuffling data due to the absence of pre-partitioned vertices. Since GraphX 
does not pre-partition vertices before processing, it must dynamically reorganize the data, 
introducing additional computational overhead. In contrast, MASS's round-robin 
assignment of GraphPlaces enables faster initialization and execution in smaller-scale 
graphs. 

2.2. Clustering Coefficient Results 

The GraphX performance curve remains relatively constant due to shuffling overhead when 
calculating the degree of each vertex. This overhead limits GraphX's ability to scale 
performance efficiently as more machines are added, reducing the benefits of increased 
parallelism. In contrast, MASS consistently outperforms GraphX as the number of 
machines increases and shows significant performance advantages on large graphs, such 
as those with 40K vertices. 

The MASS implementation is faster because agents autonomously compute the local 
clustering coefficients with much less communication than needed, as the GraphX 
implementation does with shuffling. 

Graph 1: Load Times for 1-24 
Computing Nodes w/ 1k vertices 
Graph 

Graph 2: Load Times for 1-24 
Computing Nodes w/ 40k vertices 
Graph 
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2.3. Weakly Connected Components Results 

The previous implementation of WCC uses an algorithm similar to GraphX’s WCC 
implementation, which uses agents to send messages to the vertices. However, this 
approach leads to an explosion of agents spawning. The memory overhead of transmitting 
agents as messages between vertices is too large and has made it apparent that a 
traditional parallel approach like this is unfeasible for MASS applications. GraphX also uses 
a partitioning algorithm that considers data locality, which is a significant boost for 
algorithms that send messages to neighboring vertices, since it limits inter-cluster 
communication. 
  

 
 

The new implementation uses the parallel-BFS approach that was developed when making 
the SCC implementation. This approach has led to more competitive results and better 

Graph 3: 1-24 Computing Nodes 
computing Clustering Coefficient 
on 20k vertices 

Graph 3: 1-24 Computing Nodes 
computing Clustering Coefficient 
on 20k vertices 

 

Graph 4: 1-24 Computing Nodes 
computing Clustering Coefficient 
on 40k vertices 

Graph 3: 1-24 Computing Nodes 
computing Clustering Coefficient 
on 20k vertices 

 

Graph 5: 1-24 Computing Nodes 
computing the previous WCC 
implementation on 5k vertices. 
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scales than GraphX. This is surprising because the version of MASS used for these 
benchmarks does not utilize a data partitioning algorithm that considers data locality. 

 

2.4. Strongly Connected Components 

The new SCC implementation in MASS yields competitive results. Reduced agent migration 
overhead and significantly fewer agents (compared to the WCC implementation) enable 
feasible computation times comparable to GraphX. While the vertex-messaging approach 
in GraphX appears to be the best method for a highly parallel implementation, utilizing a 
BFS that can run in parallel with fewer messages is equally effective in MASS. 

Graph 6: 1-24 Computing Nodes 
computing the previous WCC 
implementation on 40k vertices. 
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2.5. Programmability 

Spark, which includes the GraphX library, utilizes the MapReduce computing paradigm, 
making it straightforward and familiar. It is also part of the Apache Software Foundation, 
allowing numerous open-source contributions. These contributions have simplified Spark 
programs, making them easier to use than MASS, which requires more setup since it is still 
in development. 

In the clustering coefficient program for MASS, we require multiple files to create our 
program. One file is ClusteringVertex.java, which serves as the distributed data structure 
representing the vertices of a graph; it extends the existing VertexPlace to incorporate 
custom logic. Another file extends the agent class to implement tailored logic for the 
individual agents executing clustering coefficient calculations. We created a custom class 
to pass arguments to agents. Finally, we have the ClusteringCoefficient.java master 
program, which orchestrates the execution. This collection of files complicates creating 
the MASS program compared to GraphX’s straightforward one-file benchmark. The total 
number of files and other programming details is displayed in Table 1. All graph computing 
applications in MASS follow this class structure. Other programmability data can be found 
in the appendix. 

  

Graph 7: 1-24 Computing Nodes 
computing SCC on 40k vertices. 
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Table 1: MASS & GraphX Clustering Coefficient Programmability Data 

Measurement 
(MASS) 

Count 

Number of files 4 
Number of methods 14 
Number of 
variables declared 

51 

Total lines of code 528 
Lines of logic 224 

 

3. Conclusion 

Evaluating different distributed computing systems and understanding their underlying 
design choices has helped me develop a deeper understanding of how and why each 
implementation behaves the way it does. 

Three benchmark programs have been implemented in both MASS and GraphX. The 
benchmark results for weakly connected and strongly connected components illustrate 
the need for high-messaging algorithms in MASS to be implemented using a parallel-BFS 
approach rather than vertex messaging. The DSLToGraphX program was also implemented 
to load DSL graph files into GraphX. 

Future work in MASS benchmarking could involve re-implementing weakly connected 
components using a parallel BFS approach, similar to SCC, to ensure its superiority over 
the obvious approach. Considering agent migration overhead to reduce communication 
time could benefit MASS. Implementing an articulation point benchmark in GraphX to 
evaluate it against the existing MASS BFS approach could provide further insights into BFS 
techniques in distributed agent computing. 

Measurement 
(GraphX) 

Count 

Number of files 1 
Number of methods 3 
Number of 
variables declared 

28 

Total lines of code 96 
Lines of logic 20 
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Appendix A: DSL File GraphX Parsing 
Figure 7: Parse Edges 

 

Figure 8: Parse Vertices 
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Appendix B: Cluster Coefficient & Graph Load Results 
Table 2: MASS Performance  

num-
members 

num-
vertices 

LoadTime agentsUsed avgCC RunTime 

1 1000 162 187960 0.108192 2320 
1 3000 302 590608 0.03807 5686 
1 5000 456 990780 0.023167 8173 
1 10000 571 1989980 0.011619 14452 
1 20000 1104 3992760 0.005841 28810 
1 4941 85 31317 0.080104 652 
2 1000 159 187960 0.108192 2861 
2 3000 292 590608 0.03807 7403 
2 5000 400 990780 0.023167 10781 
2 10000 544 1989980 0.011619 19788 
2 20000 710 3992760 0.005841 37185 
2 4941 112 31317 0.080104 788 
4 1000 238 187960 0.108192 2125 
4 3000 412 590608 0.03807 4860 
4 5000 438 990780 0.023167 7701 
4 10000 572 1989980 0.011619 12193 
4 20000 657 3992760 0.005841 20696 
4 40000 861 8028848 0.002922 38079 
4 4941 164 31317 0.080104 744 
8 1000 253 187960 0.108192 1921 
8 3000 438 590608 0.03807 3505 
8 5000 495 990780 0.023167 5190 
8 10000 648 1989980 0.011619 9172 
8 20000 825 3992760 0.005841 16136 
8 40000 941 8028848 0.002922 25680 
8 4941 235 31317 0.080104 1039 
12 1000 355 187960 0.108192 1988 
12 3000 526 590608 0.03807 3051 
12 5000 674 990780 0.023167 4512 
12 10000 721 1989980 0.011619 7584 
12 20000 822 3992760 0.005841 12959 
12 40000 1009 8028848 0.002922 21087 
12 4941 337 31317 0.080104 1076 
16 1000 579 187960 0.108192 2100 
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16 3000 829 590608 0.03807 5269 
16 5000 822 990780 0.023167 4541 
16 10000 957 1989980 0.011619 6480 
16 20000 1175 3992760 0.005841 12264 
16 40000 1213 8028848 0.002922 18201 
16 4941 485 31317 0.080104 1227 
20 1000 735 187960 0.108192 1944 
20 3000 1122 590608 0.03807 3056 
20 5000 1136 990780 0.023167 3958 
20 10000 1314 1989980 0.011619 6114 
20 20000 1342 3992760 0.005841 10580 
20 40000 1597 8028848 0.002922 17545 
20 4941 782 31317 0.080104 1312 
24 1000 875 187960 0.108192 2290 
24 3000 1262 590608 0.03807 3133 
24 5000 1173 990780 0.023167 4166 
24 10000 1399 1989980 0.011619 6050 
24 20000 1684 3992760 0.005841 11361 
24 40000 1910 8028848 0.002922 17106 
24 4941 902 31317 0.080104 1413 

 

Table 3: GraphX Performance 

num-
members 

num-
vertices 

LoadTime avgCC RunTime 

1 1000 590 0.002234 2533 
1 3000 477 0.000786 4366 
1 5000 495 0.000478 5363 
1 10000 574 0.00024 8432 
1 20000 467 0.000121 18589 
1 40000 539 0.00006 108709 
2 1000 561 0.002234 2485 
2 3000 546 0.000786 4447 
2 5000 554 0.000478 5185 
2 10000 503 0.00024 9133 
2 20000 505 0.000121 18998 
2 40000 511 0.00006 113540 
4 1000 588 0.002234 3036 
4 3000 495 0.000786 4203 
4 5000 576 0.000478 5995 
4 10000 485 0.00024 8858 
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4 20000 596 0.000121 19461 
4 40000 467 0.00006 142373 
8 1000 823 0.002234 2764 
8 3000 617 0.000786 3901 
8 5000 691 0.000478 5490 
8 10000 783 0.00024 8561 
8 20000 633 0.000121 19928 
8 40000 856 0.00006 108826 
12 1000 914 0.002234 2310 
12 3000 662 0.000786 4052 
12 5000 818 0.000478 4770 
12 10000 780 0.00024 8992 
12 20000 655 0.000121 18201 
12 40000 724 0.00006 144105 
16 1000 812 0.002234 2323 
16 3000 792 0.000786 4299 
16 5000 809 0.000478 5178 
16 10000 884 0.00024 10196 
16 20000 672 0.000121 20271 
16 40000 742 0.00006 119723 
20 1000 768 0.002234 2700 
20 3000 705 0.000786 4539 
20 5000 778 0.000478 5590 
20 10000 797 0.00024 8563 
20 20000 792 0.000121 17635 
20 40000 808 0.00006 114159 
24 1000 1171 0.002234 2337 
24 3000 635 0.000786 4178 
24 5000 611 0.000478 5354 
24 10000 768 0.00024 8648 
24 20000 866 0.000121 18000 
24 40000 961 0.00006 135436 
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Appendix C: Weakly Connected Components Results 
Table 4: MASS Performance 

num-
members 

num-
vertices 

total-
agents-
generated 

load-
time 
(sec) 

runtime 
(sec) 

1 1000 92481 1.025 1.725 
2 1000 92481 2.53 1.799 
4 1000 92481 4.877 1.556 
8 1000 92481 9.821 1.776 

12 1000 92481 15.587 2.018 
16 1000 92481 31.594 2.419 
20 1000 92481 40.641 4.602 
24 1000 92481 55.086 20.897 

1 3000 290805 1.12 7.464 
2 3000 290805 2.642 4.796 
4 3000 290805 4.979 3.219 
8 3000 290805 9.907 2.853 

12 3000 290805 15.502 2.998 
16 3000 290805 32.163 3.325 
20 3000 290805 44.668 5.957 
24 3000 290805 56.991 22.528 

1 5000 487891 1.244 17.349 
2 5000 487891 2.665 8.469 
4 5000 487891 5.065 4.852 
8 5000 487891 10.168 3.812 

12 5000 487891 15.756 3.896 
16 5000 487891 32.166 4.155 
20 5000 487891 40.867 6.826 
24 5000 487891 55.292 23.319 

1 10000 979991 1.4 57.924 
2 10000 979991 2.871 21.852 
4 10000 979991 5.247 9.441 
8 10000 979991 10.16 6.271 

12 10000 979991 15.763 5.214 
16 10000 979991 31.962 5.549 
20 10000 979991 41.044 9.511 
24 10000 979991 58.009 30.984 

1 20000 1966381 1.898 206.237 
2 20000 1966381 3.091 68.935 
4 20000 1966381 5.404 24.402 
8 20000 1966381 10.344 11.588 

12 20000 1966381 16.046 8.259 
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16 20000 1966381 32.309 8.258 
20 20000 1966381 41.529 13.467 
24 20000 1966381 56.432 42.204 

1 40000 3954425 2.886 821.771 
2 40000 3954425 3.79 264.688 
4 40000 3954425 5.798 74.47 
8 40000 3954425 10.72 28.296 

12 40000 3954425 16.543 17.974 
16 40000 3954425 32.356 14.164 
20 40000 3954425 43.448 20.301 
24 40000 3954425 59.305 55.658 

 

Table 5: GraphX Performance 

num-
members 

num-
vertices 

Time 
elapsed 
of 
reading 
graph 

Time 
elapsed of 
grouping 
components 

Time 
elapsed of 
collecting 
components 

Total 
time 
elapsed 

1 1000 488 5511 130 6144 
1 3000 486 6086 200 6797 
1 5000 425 7381 144 7966 
1 10000 453 10024 196 10687 
1 20000 439 16158 250 16863 
1 40000 512 87254 262 88052 
2 1000 556 5046 1794 7413 
2 3000 486 5833 169 6511 
2 5000 443 6688 1787 8938 
2 10000 503 10031 175 10725 
2 20000 432 15200 212 15867 
2 40000 574 87962 265 88819 
4 1000 528 5195 140 5879 
4 3000 492 5785 1677 7970 
4 5000 416 6650 177 7262 
4 10000 538 9285 203 10042 
4 20000 453 15378 228 16074 
4 40000 496 72916 1678 75113 
7 1000 694 5578 1690 7983 
8 3000 880 5819 144 6860 
8 5000 665 6758 1596 9038 
8 10000 680 9950 1831 12478 
8 20000 608 15612 1738 17978 
8 40000 1311 27702 2883 31968 

12 1000 776 25282 2202 28286 
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12 3000 871 6037 1672 8601 
12 5000 663 6782 1545 9011 
12 10000 677 9255 1495 11445 
12 20000 659 15202 1621 17502 
12 40000 1007 25805 2438 29323 
16 1000 808 4954 1419 7202 
16 3000 748 6819 1639 9228 
16 5000 789 6928 1538 9277 
16 10000 710 9470 1523 11724 
16 20000 767 15359 1567 17708 
16 40000 996 23169 2627 26812 
20 1000 751 4805 1793 7366 
20 3000 734 5810 1681 8242 
20 5000 768 6849 1722 9361 
20 10000 790 9109 1600 11520 
20 20000 713 15306 1723 17759 
20 40000 1873 34359 2446 38696 
24 1000 851 5093 1671 7637 
24 3000 699 5870 2098 8684 
24 5000 661 6697 2132 9507 
24 10000 786 8310 1497 10614 
24 20000 721 15814 1348 17902 
24 40000 2188 27691 325 30221 

 

Appendix D: Strongly Connected Components Results 
Table 6: MASS Performance 

num-
members 

num-
vertices 

total-
agents-
generated 

load-
time 
(sec) 

runtime 
(sec) 

1 1000 367926 1.092 6.391 
2 1000 367926 2.601 7.882 
4 1000 367926 5.222 6.37 
8 1000 367926 10.295 6.529 

12 1000 367926 25.006 14.679 
16 1000 367926 24.355 8.429 
20 1000 367926 32.504 9.814 
24 1000 367926 48.897 31.079 

1 3000 1157222 1.099 18.41 
2 3000 1157222 2.517 20.679 
4 3000 1157222 5.22 18.155 
8 3000 1157222 10.206 16.125 
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12 3000 1157222 23.777 34.037 
16 3000 1157222 25.747 16.111 
20 3000 1157222 30.478 20.65 
24 3000 1157222 46.875 62.471 

1 5000 1941566 1.214 32.711 
2 5000 1941566 2.62 30.87 
4 5000 1941566 5.173 27.232 
8 5000 1941566 10.049 24.565 

12 5000 1941566 23.958 52.344 
16 5000 1941566 22.529 22.971 
20 5000 1941566 30.387 33.54 
24 5000 1941566 46.823 77.886 

1 10000 3899966 1.476 61.159 
2 10000 3899966 2.98 60.681 
4 10000 3899966 5.255 47.76 
8 10000 3899966 10.328 41.672 

12 10000 3899966 24.826 76.454 
16 10000 3899966 23.72 41.478 
20 10000 3899966 30.927 52.704 
24 10000 3899966 49.191 133.243 

1 20000 7825526 1.92 122.66 
2 20000 7825526 3.151 118.97 
4 20000 7825526 5.252 98.179 
8 20000 7825526 10.404 76.721 

12 20000 7825526 26.041 119.219 
16 20000 7825526 23.006 71.258 
20 20000 7825526 31.704 96.708 
24 20000 7825526 48.066 217.065 

1 40000 15737702 2.865 234.301 
2 40000 NA NA NA 
4 40000 NA NA NA 
8 40000 15737702 10.802 192.977 

12 40000 15737702 16.901 159.211 
16 40000 15737702 23.838 170.845 
20 40000 15737702 33.193 167.496 
24 40000 15737702 53.377 416.598 

 

Table 6: GraphX Performance 

num-
members 

num-
vertices LoadTime RunTime 

1 1000 614 13136 
1 3000 558 19180 
1 5000 579 20335 
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1 10000 543 38710 
1 20000 615 107210 
1 40000 628 1300491 
2 1000 569 4218 
2 3000 610 5150 
2 5000 569 5433 
2 10000 545 8762 
2 20000 575 23435 
2 40000 575 277070 
4 1000 654 3953 
4 3000 571 4824 
4 5000 568 4816 
4 10000 635 8217 
4 20000 615 20049 
4 40000 586 233869 
8 1000 582 3667 
8 3000 592 4857 
8 5000 633 4555 
8 10000 584 7407 
8 20000 648 19918 
8 40000 506 239168 

12 1000 1065 3526 
12 3000 1196 4795 
12 5000 833 4791 
12 10000 909 7857 
12 20000 916 8878 
12 40000 915 38263 
16 1000 909 4280 
16 3000 818 4510 
16 5000 918 5013 
16 10000 1241 6400 
16 20000 961 9422 
16 40000 1048 37154 
20 1000 988 3633 
20 3000 1139 5031 
20 5000 894 6216 
20 10000 1280 6298 
20 20000 1072 9688 
20 40000 885 326216 
24 1000 1062 4804 
24 3000 1144 4772 
24 5000 910 5278 
24 10000 1226 5742 
24 20000 920 9674 
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24 40000 932 44778 
 

Appendix E: More Programmability Data 
Table 3: MASS & GraphX Weakly Connected Components Programmability 
Data 

 

Measurement 
(MASS) 

Count 

Number of files 4 
Number of methods 20 
Number of 
variables declared 

74 

Total lines of code 631 
Lines of logic 126 

 

Table 4: MASS & GraphX Strongly Connected Components 
Programmability Data 

 

 

 

 

Appendix F: How to Run Benchmark Programs 

MASS 
1. Install the latest version of MASS core 

A. git clone -b develop 
https://bitbucket.org/mass_library_developers/mass_java_core.git 

Measurement 
(GraphX) 

Count 

Number of files 2 
Number of methods 2 
Number of 
variables declared 

24 

Total lines of code 190 
Lines of logic 11 

Measurement 
(MASS) 

Count 

Number of files 4 
Number of methods 22 
Number of 
variables declared 

89 

Total lines of code 625 
Lines of logic 82 

Measurement 
(GraphX) 

Count 

Number of files 2 
Number of methods 2 
Number of 
variables declared 

24 

Total lines of code 197 
Lines of logic 33 
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B. cd mass_java_core 
C. mvn clean package install 
D. Return to the previous directory 

2. Clone repo: (currently under jaday2/graphbenchmarks) 
git clone -b jaday2/graph-benchmarks --single-branch  
https://bitbucket.org/mass_application_developers/mass_java_appl.git 

3. Navigate to the project directory 
cd mass_java_appl/Graphs/ClusteringCoefficient 

4. maven package 
Use included make file: make 

5. Update node file 

Change nodes.xml‘s mass home tag to point to the jar file, and use the correct 
nodes you’d like to be in the compute cluster. Add the username tag with your username as 
well. 

6. Running the benchmark.  

The path for the graph file should be the absolute path.  

java -jar ClusteringCoefficient-1.0.0-RELEASE.jar <Path to input file> <print 
boolean> 
 

GraphX 
1. Clon repo: (currently under arian23/GraphXBenchmarks) or switch branch if already 

cloned MASS application repo. 
Git clone -b arian23/GraphXBenchmarks –-single-branch 
Or 
Git checkout arian23/GraphXBenchmarks 

2. Navigate to the project directory 

Cd GraphXBenchmarks/GraphXBenchmarks 

3. Install dependencies 

Mvn clean install 

4. Run benchmark 
spark-submit --master spark://<Spark-Master> --total-executor-cores <#> --
executor-cores <#> --class edu.uw.bothell.css.dsl.mass.ClusterCoefficient -



Aria Naderi  CSS497: Spring 2025 Term Report 

26 
 

-jars ClusteringCoefficients/target/ClusteringCoefficients-1.0-SNAPSHOT-
jar-with-dependencies.jar target/classes <DSL Graph File Name> 


