
Aria Naderi CSS497: Spring 2025 Term Report

1

MASS Java & GraphX Benchmarks for

Graph Computing

1. Overview

Distributed graph computing is an evolving field within distributed computing, and many
organizations are expanding their systems to address large-scale graph processing. To
determine which computing problems various systems’ implementations are best suited to
solve, we can assess their performance and programmability.

At the University of Washington Bothell, the Distributed Systems Laboratory (DSL) has
developed MASS (Multi-Agent Spatial Simulation), a distributed memory system designed
for agent-based spatial computations, including its graph computing system for distributed
graph databases. This study compares MASS’s agent-based approach with GraphX,
Apache Spark’s graph processing library, to evaluate their scalability, efficiency, and ease
of use trade-offs.

GraphX, built on Apache Spark, integrates graph computation with data-parallel processing
by utilizing Resilient Distributed Datasets (RDDs) and a Pregel-inspired API to optimize
iterative graph algorithms. In contrast, MASS distributes computations across agents that
operate autonomously over partitions of the graph. Understanding the strengths and
weaknesses of each model will offer insight into their suitability for different workloads.

Previous MASS Java benchmarks were primarily developed by James Day, who created key
benchmarking programs to evaluate MASS’s graph computing performance. Two MASS
benchmarks not made by James are weakly connected and strongly connected
components, which required a refactor to accommodate recent changes to MASS. By
focusing on GraphX, I aim to evaluate its performance, programmability, and scalability
compared to MASS, providing insights into the trade-offs between these two approaches to
distributed graph computing.

2. Background

MASS (Multi-Agent Spatial Simulation) is a parallel computing library for distributed
memory systems. It models computations using places, representing data distributed
across computing nodes and agents. Agents navigate these places to perform tasks and
exchange information. In MASS’s graph database implementation, graph nodes are defined

Aria Naderi CSS497: Spring 2025 Term Report

2

as places (GraphPlaces), and agents conduct operations such as triangle counting,
clustering computations (e.g., connected components), and connectivity analysis.

GraphX, a graph processing framework built on Apache Spark, takes a different approach
by abstracting graph computation with Spark’s data-parallel model. GraphX represents
graphs using Resilient Distributed Datasets (RDDs). Optimizations can be made when
abstracting Spark RDDs for graph use, such as data locality partitioning. The performance
gains from these optimizations are the key concepts we will compare with MASS.

2.1. Graph Loading
The version of MASS used for comparison with
GraphX distributes GraphPlaces in a round-
robin fashion across the machine cluster, with
each node being assigned sequentially to a
different machine, as seen in Figure 1. Graphs
are loaded using a proprietary DSL file, which
defines the nodes and their edges in a text-
based format. These DSL files are also used to
generate graphs in GraphX for a direct
comparison.

In GraphX, graphs are constructed by creating
an RDD of vertices and edges, which is then
used to generate the graph structure. In our
comparison, we developed a program that
parses MASS’s DSL files and converts them into
a format suitable for loading graphs in GraphX.

2.2. Clustering Coefficient

Clustering Coefficients show how tightly knit each vertex in a graph is with its neighbors.
They measure the degree to which vertices cluster together. Many real-world graphs, such
as social network graphs, have a high degree of clustering due to cliques of people (small
and dense groups of people who know each other). Calculating the clustering coefficient
can help recognize these groups of people. Clustering coefficients are computed by
examining whether a node’s neighbors are also connected, forming triangles of edges. The
coefficient is determined by comparing the number of connections between a node’s
neighbors to their total possible connections. The result ranges from 0 to 1, where 1
indicates that all neighbors of a node are fully connected (forming a clique), and 0 means
none of its neighbors are connected. This provides the local clustering coefficient, which

Figure 1

Aria Naderi CSS497: Spring 2025 Term Report

3

measures how tightly a single vertex's neighbors are connected. To understand the overall
connectivity of the graph, we compute the global clustering coefficient by averaging the
local clustering coefficients across all vertices. A high global clustering coefficient
indicates that, on average, most nodes exist within densely interconnected communities,
suggesting strong network cohesion. In contrast, a low global clustering coefficient implies
a sparser, more fragmented network structure.

The formal calculation of local clustering coefficients can be
seen in Figure 2, where 𝑉 is a vertex in the graph, 𝑁𝑉 is the
number of links between its neighbors and 𝐾𝑉 is its degree.

2.3. Weakly Connected Components

A Weakly Connected Component (WCC) is a subgraph in which all vertices are connected
by some path, regardless of edge direction. In directed graphs, this means that even if
some edges are one-way, there is still a way to traverse between any two nodes in the
component when ignoring edge direction.

WCCs help identify disconnected areas of a graph, which is helpful in applications such as
social networks, where different communities may be loosely connected, or in web graphs,
where certain pages are accessible only when considering undirected paths.

The Weakly Connected Components (WCC) algorithm identifies subgraphs in which all
vertices are reachable from one another when edge direction is ignored. It starts by treating
the directed graph as undirected, ensuring all connections are bidirectional. The algorithm
then groups nodes into connected subgraphs, where each node has at least one path to
any other node within the same component. Once these subgraphs are identified, each is
assigned a unique identifier, effectively labeling distinct weakly connected components.
This method aids in analyzing a directed graph's overall structure and fragmentation,
revealing how many different groups exist and how they are internally connected.

2.4. Strongly Connected Components

A Strongly Connected Component (SCC) is a subgraph of a directed graph in which every
vertex is reachable from every other vertex in the component following the direction of
edges. In other words, for any two vertices u and v in a strongly connected component,
there must be a directed path from u to v and from v to u.

SCCs are critical in understanding the internal structure of directed graphs, especially in
systems where mutual reachability matters, such as control flow graphs in compilers,
software dependency graphs, or web link structures. Identifying SCCs can help detect

Figure 2

Aria Naderi CSS497: Spring 2025 Term Report

4

cycles, uncover tightly-knit modules, or isolate parts of a system that can function
independently.

The Strongly Connected Components algorithm decomposes a directed graph into
maximal subsets of vertices where each vertex can reach every other vertex through
directed paths. In distributed environments, algorithms typically use a vertex messaging
paradigm (As well as for weakly connected components).

1. Implementation

1.1. Graph Loading
MASS loads graphs by placing a GraphPlace at each node for each vertex seen in the DSL
file, going round-robin across the machines, as explained in the overview. We created a
Java GraphX program to parse the DSL file and create a GraphX graph by generating the
RDDs for the vertices and edges.

Figure 3: GraphX DSL Graph Generation

Figure 3 illustrates in GraphX how the graph's vertices and edges persist in memory,
leveraging Spark's in-memory processing capabilities. This enables graph transformations

Aria Naderi CSS497: Spring 2025 Term Report

5

to execute significantly faster than retrieving data from disks. More details about DSL graph
loading with GraphX can be found in Appendix A.

1.2. Clustering Coefficient

1.2.1. MASS Implementation

The MASS implementation of the clustering coefficient begins by assigning an agent to
each vertex in the graph. Each agent stores its original place ID before proceeding. The
agent then creates additional agents equal to the number of its neighboring vertices, and
these agents migrate to their respective neighbors. Once there, they collect a list of that
vertex's second-degree neighbors and then return to their original vertex with this
information.

At this point, the GraphPlace stores the gathered second-degree neighbor lists. It then
computes the local clustering coefficient by determining how many of its second-degree
neighbors are directly connected. A function called CallAll retrieves the local clustering
coefficients from all GraphPlaces to obtain the global clustering coefficient. The results are
sent to the master node and averaged to compute the overall graph clustering coefficient.

Figure 4: MASS Local Vertex Cluster Coefficient Computation

Aria Naderi CSS497: Spring 2025 Term Report

6

1.2.2. GraphX Implementation

The GraphX implementation first gathers each vertex’s degree and triangle count. These
values are then joined to construct a new graph, where each vertex is represented as
<VertexID, Degree, Num. of Triangles>. Using the formula shown in Figure 1, the local
clustering coefficient is computed for each vertex. The results are then collected and sent
back to the master node as an array, where each entry contains the vertex ID and its
corresponding local clustering coefficient. Finally, the master node calculates the average
clustering coefficient for the entire graph.

Figure 5: GraphX Local Vertex Cluster Coefficient Computation

1.3. Weakly Connected Components

1.3.1. MASS Implementation

The previous MASS implementation of Weakly Connected Components (WCC) uses agents
to propagate the minimum vertex ID throughout the graph. Initially, an agent is created at
each vertex, with its component ID assigned to the vertex’s ID.

This previous implementation garnered poor results, as discussed in the results section.
Noel Beraki, a member of the DSLab group, used a similar approach to his strongly
connected components implementation (discussed in the SCC Implementation section) in
a new implementation, where a single pivot vertex is selected and the graph is traversed
with agents from there in a BFS fashion.

Aria Naderi CSS497: Spring 2025 Term Report

7

Beginning with a single agent at the pivot vertex, agents are spawned at neighboring nodes,
marked as part of the current component, and visited. The master maintains a set of visited
vertices to track which vertices have not been placed as part of a component. Once one
BFS search is complete, another occurs, beginning with the following vertex not yet visited.
You can find Noel Beraki’s term report on the DSLab website to read more about his
approach.

Figure 6: GraphX Weakly Connected Components Agent Vertex Arrival
Code

https://depts.washington.edu/dslab/MASS/index.html

Aria Naderi CSS497: Spring 2025 Term Report

8

1.3.2. GraphX Implementation

GraphX weakly connected components can be found in the GraphX library. The algorithm
employs an iterative label propagation method to identify subgraphs where all vertices are
reachable from each other when edge direction is disregarded. The process begins by
assigning each vertex a unique label, initially set to its vertex ID. Every vertex updates its
label to the smallest ID among its connected neighbors in each iteration, effectively
spreading the lowest ID throughout the component. Because edge directions are
disregarded, label propagation occurs bidirectionally between vertices. This iterative
process continues until convergence, meaning all vertices within the same connected
component have the same label. Once there are no further label changes, the algorithm
terminates, efficiently grouping weakly connected subgraphs within the graph.

Figure 7: GraphX Weakly Connected Components Implementation (From
the GraphX library)

Aria Naderi CSS497: Spring 2025 Term Report

9

1.4. Strongly Connected Components

1.4.1. MASS Implementation

For the MASS implementation of SCC (Strongly Connected Components), developed by
Noel Beraki, we utilize a parallel-BFS approach instead of the traditional messaging
method. First, some preprocessing steps are necessary for agents to follow reverse edges.
Then, two agents are spawned at a randomly selected pivot vertex. These agents perform a
BFS traversal to the predecessors and successors of the pivot vertex, spawning agents for
each neighbor and marking them as part of the component. Once all reachable vertices
have been visited, a new pivot vertex is chosen for the remaining components, and the
process is repeated.

1.4.2. GraphX Implementation

The GraphX implementation for Strongly Connected Components (SCC) is structurally
similar to the WCC implementation but includes additional pruning steps. Vertices with no
incoming or outgoing edges (i.e., zero in-degree or out-degree) are initially removed from
the graph and directly assigned to their component, reducing the graph size before the
main computation.

After pruning, the algorithm utilizes the Pregel API to propagate component IDs. Each
vertex starts with its ID as its component label and sends messages to its neighbors
indicating its current component ID. If a vertex receives a lower component ID than its own,
it updates its label and propagates the new value. This message-passing continues
iteratively until no further updates occur.

2. Results

All benchmarks have been run on the CSSMPI & Hermes machines using the same graph
files.

2.1. Load Time Performance

MASS and GraphX have run times that are generally similar, although GraphX typically
performs better on larger graphs and handles loading with a larger number of machines
more gracefully.

Aria Naderi CSS497: Spring 2025 Term Report

10

However, MASS processes smaller graphs faster than GraphX because GraphPlaces are
distributed in a simple round-robin fashion across computing nodes, while GraphX
employs a partitioning algorithm that considers data locality. In contrast, GraphX incurs
overhead from shuffling data due to the absence of pre-partitioned vertices. Since GraphX
does not pre-partition vertices before processing, it must dynamically reorganize the data,
introducing additional computational overhead. In contrast, MASS's round-robin
assignment of GraphPlaces enables faster initialization and execution in smaller-scale
graphs.

2.2. Clustering Coefficient Results

The GraphX performance curve remains relatively constant due to shuffling overhead when
calculating the degree of each vertex. This overhead limits GraphX's ability to scale
performance efficiently as more machines are added, reducing the benefits of increased
parallelism. In contrast, MASS consistently outperforms GraphX as the number of
machines increases and shows significant performance advantages on large graphs, such
as those with 40K vertices.

The MASS implementation is faster because agents autonomously compute the local
clustering coefficients with much less communication than needed, as the GraphX
implementation does with shuffling.

Graph 1: Load Times for 1-24
Computing Nodes w/ 1k vertices
Graph

Graph 2: Load Times for 1-24
Computing Nodes w/ 40k vertices
Graph

Aria Naderi CSS497: Spring 2025 Term Report

11

2.3. Weakly Connected Components Results

The previous implementation of WCC uses an algorithm similar to GraphX’s WCC
implementation, which uses agents to send messages to the vertices. However, this
approach leads to an explosion of agents spawning. The memory overhead of transmitting
agents as messages between vertices is too large and has made it apparent that a
traditional parallel approach like this is unfeasible for MASS applications. GraphX also uses
a partitioning algorithm that considers data locality, which is a significant boost for
algorithms that send messages to neighboring vertices, since it limits inter-cluster
communication.

The new implementation uses the parallel-BFS approach that was developed when making
the SCC implementation. This approach has led to more competitive results and better

Graph 3: 1-24 Computing Nodes
computing Clustering Coefficient
on 20k vertices

Graph 3: 1-24 Computing Nodes
computing Clustering Coefficient
on 20k vertices

Graph 4: 1-24 Computing Nodes
computing Clustering Coefficient
on 40k vertices

Graph 3: 1-24 Computing Nodes
computing Clustering Coefficient
on 20k vertices

Graph 5: 1-24 Computing Nodes
computing the previous WCC
implementation on 5k vertices.

Aria Naderi CSS497: Spring 2025 Term Report

12

scales than GraphX. This is surprising because the version of MASS used for these
benchmarks does not utilize a data partitioning algorithm that considers data locality.

2.4. Strongly Connected Components

The new SCC implementation in MASS yields competitive results. Reduced agent migration
overhead and significantly fewer agents (compared to the WCC implementation) enable
feasible computation times comparable to GraphX. While the vertex-messaging approach
in GraphX appears to be the best method for a highly parallel implementation, utilizing a
BFS that can run in parallel with fewer messages is equally effective in MASS.

Graph 6: 1-24 Computing Nodes
computing the previous WCC
implementation on 40k vertices.

Aria Naderi CSS497: Spring 2025 Term Report

13

2.5. Programmability

Spark, which includes the GraphX library, utilizes the MapReduce computing paradigm,
making it straightforward and familiar. It is also part of the Apache Software Foundation,
allowing numerous open-source contributions. These contributions have simplified Spark
programs, making them easier to use than MASS, which requires more setup since it is still
in development.

In the clustering coefficient program for MASS, we require multiple files to create our
program. One file is ClusteringVertex.java, which serves as the distributed data structure
representing the vertices of a graph; it extends the existing VertexPlace to incorporate
custom logic. Another file extends the agent class to implement tailored logic for the
individual agents executing clustering coefficient calculations. We created a custom class
to pass arguments to agents. Finally, we have the ClusteringCoefficient.java master
program, which orchestrates the execution. This collection of files complicates creating
the MASS program compared to GraphX’s straightforward one-file benchmark. The total
number of files and other programming details is displayed in Table 1. All graph computing
applications in MASS follow this class structure. Other programmability data can be found
in the appendix.

Graph 7: 1-24 Computing Nodes
computing SCC on 40k vertices.

Aria Naderi CSS497: Spring 2025 Term Report

14

Table 1: MASS & GraphX Clustering Coefficient Programmability Data

Measurement
(MASS)

Count

Number of files 4
Number of methods 14
Number of
variables declared

51

Total lines of code 528
Lines of logic 224

3. Conclusion

Evaluating different distributed computing systems and understanding their underlying
design choices has helped me develop a deeper understanding of how and why each
implementation behaves the way it does.

Three benchmark programs have been implemented in both MASS and GraphX. The
benchmark results for weakly connected and strongly connected components illustrate
the need for high-messaging algorithms in MASS to be implemented using a parallel-BFS
approach rather than vertex messaging. The DSLToGraphX program was also implemented
to load DSL graph files into GraphX.

Future work in MASS benchmarking could involve re-implementing weakly connected
components using a parallel BFS approach, similar to SCC, to ensure its superiority over
the obvious approach. Considering agent migration overhead to reduce communication
time could benefit MASS. Implementing an articulation point benchmark in GraphX to
evaluate it against the existing MASS BFS approach could provide further insights into BFS
techniques in distributed agent computing.

Measurement
(GraphX)

Count

Number of files 1
Number of methods 3
Number of
variables declared

28

Total lines of code 96
Lines of logic 20

Aria Naderi CSS497: Spring 2025 Term Report

15

Appendix A: DSL File GraphX Parsing
Figure 7: Parse Edges

Figure 8: Parse Vertices

Aria Naderi CSS497: Spring 2025 Term Report

16

Appendix B: Cluster Coefficient & Graph Load Results
Table 2: MASS Performance

num-
members

num-
vertices

LoadTime agentsUsed avgCC RunTime

1 1000 162 187960 0.108192 2320
1 3000 302 590608 0.03807 5686
1 5000 456 990780 0.023167 8173
1 10000 571 1989980 0.011619 14452
1 20000 1104 3992760 0.005841 28810
1 4941 85 31317 0.080104 652
2 1000 159 187960 0.108192 2861
2 3000 292 590608 0.03807 7403
2 5000 400 990780 0.023167 10781
2 10000 544 1989980 0.011619 19788
2 20000 710 3992760 0.005841 37185
2 4941 112 31317 0.080104 788
4 1000 238 187960 0.108192 2125
4 3000 412 590608 0.03807 4860
4 5000 438 990780 0.023167 7701
4 10000 572 1989980 0.011619 12193
4 20000 657 3992760 0.005841 20696
4 40000 861 8028848 0.002922 38079
4 4941 164 31317 0.080104 744
8 1000 253 187960 0.108192 1921
8 3000 438 590608 0.03807 3505
8 5000 495 990780 0.023167 5190
8 10000 648 1989980 0.011619 9172
8 20000 825 3992760 0.005841 16136
8 40000 941 8028848 0.002922 25680
8 4941 235 31317 0.080104 1039
12 1000 355 187960 0.108192 1988
12 3000 526 590608 0.03807 3051
12 5000 674 990780 0.023167 4512
12 10000 721 1989980 0.011619 7584
12 20000 822 3992760 0.005841 12959
12 40000 1009 8028848 0.002922 21087
12 4941 337 31317 0.080104 1076
16 1000 579 187960 0.108192 2100

Aria Naderi CSS497: Spring 2025 Term Report

17

16 3000 829 590608 0.03807 5269
16 5000 822 990780 0.023167 4541
16 10000 957 1989980 0.011619 6480
16 20000 1175 3992760 0.005841 12264
16 40000 1213 8028848 0.002922 18201
16 4941 485 31317 0.080104 1227
20 1000 735 187960 0.108192 1944
20 3000 1122 590608 0.03807 3056
20 5000 1136 990780 0.023167 3958
20 10000 1314 1989980 0.011619 6114
20 20000 1342 3992760 0.005841 10580
20 40000 1597 8028848 0.002922 17545
20 4941 782 31317 0.080104 1312
24 1000 875 187960 0.108192 2290
24 3000 1262 590608 0.03807 3133
24 5000 1173 990780 0.023167 4166
24 10000 1399 1989980 0.011619 6050
24 20000 1684 3992760 0.005841 11361
24 40000 1910 8028848 0.002922 17106
24 4941 902 31317 0.080104 1413

Table 3: GraphX Performance

num-
members

num-
vertices

LoadTime avgCC RunTime

1 1000 590 0.002234 2533
1 3000 477 0.000786 4366
1 5000 495 0.000478 5363
1 10000 574 0.00024 8432
1 20000 467 0.000121 18589
1 40000 539 0.00006 108709
2 1000 561 0.002234 2485
2 3000 546 0.000786 4447
2 5000 554 0.000478 5185
2 10000 503 0.00024 9133
2 20000 505 0.000121 18998
2 40000 511 0.00006 113540
4 1000 588 0.002234 3036
4 3000 495 0.000786 4203
4 5000 576 0.000478 5995
4 10000 485 0.00024 8858

Aria Naderi CSS497: Spring 2025 Term Report

18

4 20000 596 0.000121 19461
4 40000 467 0.00006 142373
8 1000 823 0.002234 2764
8 3000 617 0.000786 3901
8 5000 691 0.000478 5490
8 10000 783 0.00024 8561
8 20000 633 0.000121 19928
8 40000 856 0.00006 108826
12 1000 914 0.002234 2310
12 3000 662 0.000786 4052
12 5000 818 0.000478 4770
12 10000 780 0.00024 8992
12 20000 655 0.000121 18201
12 40000 724 0.00006 144105
16 1000 812 0.002234 2323
16 3000 792 0.000786 4299
16 5000 809 0.000478 5178
16 10000 884 0.00024 10196
16 20000 672 0.000121 20271
16 40000 742 0.00006 119723
20 1000 768 0.002234 2700
20 3000 705 0.000786 4539
20 5000 778 0.000478 5590
20 10000 797 0.00024 8563
20 20000 792 0.000121 17635
20 40000 808 0.00006 114159
24 1000 1171 0.002234 2337
24 3000 635 0.000786 4178
24 5000 611 0.000478 5354
24 10000 768 0.00024 8648
24 20000 866 0.000121 18000
24 40000 961 0.00006 135436

Aria Naderi CSS497: Spring 2025 Term Report

19

Appendix C: Weakly Connected Components Results
Table 4: MASS Performance

num-
members

num-
vertices

total-
agents-
generated

load-
time
(sec)

runtime
(sec)

1 1000 92481 1.025 1.725
2 1000 92481 2.53 1.799
4 1000 92481 4.877 1.556
8 1000 92481 9.821 1.776

12 1000 92481 15.587 2.018
16 1000 92481 31.594 2.419
20 1000 92481 40.641 4.602
24 1000 92481 55.086 20.897

1 3000 290805 1.12 7.464
2 3000 290805 2.642 4.796
4 3000 290805 4.979 3.219
8 3000 290805 9.907 2.853

12 3000 290805 15.502 2.998
16 3000 290805 32.163 3.325
20 3000 290805 44.668 5.957
24 3000 290805 56.991 22.528

1 5000 487891 1.244 17.349
2 5000 487891 2.665 8.469
4 5000 487891 5.065 4.852
8 5000 487891 10.168 3.812

12 5000 487891 15.756 3.896
16 5000 487891 32.166 4.155
20 5000 487891 40.867 6.826
24 5000 487891 55.292 23.319

1 10000 979991 1.4 57.924
2 10000 979991 2.871 21.852
4 10000 979991 5.247 9.441
8 10000 979991 10.16 6.271

12 10000 979991 15.763 5.214
16 10000 979991 31.962 5.549
20 10000 979991 41.044 9.511
24 10000 979991 58.009 30.984

1 20000 1966381 1.898 206.237
2 20000 1966381 3.091 68.935
4 20000 1966381 5.404 24.402
8 20000 1966381 10.344 11.588

12 20000 1966381 16.046 8.259

Aria Naderi CSS497: Spring 2025 Term Report

20

16 20000 1966381 32.309 8.258
20 20000 1966381 41.529 13.467
24 20000 1966381 56.432 42.204

1 40000 3954425 2.886 821.771
2 40000 3954425 3.79 264.688
4 40000 3954425 5.798 74.47
8 40000 3954425 10.72 28.296

12 40000 3954425 16.543 17.974
16 40000 3954425 32.356 14.164
20 40000 3954425 43.448 20.301
24 40000 3954425 59.305 55.658

Table 5: GraphX Performance

num-
members

num-
vertices

Time
elapsed
of
reading
graph

Time
elapsed of
grouping
components

Time
elapsed of
collecting
components

Total
time
elapsed

1 1000 488 5511 130 6144
1 3000 486 6086 200 6797
1 5000 425 7381 144 7966
1 10000 453 10024 196 10687
1 20000 439 16158 250 16863
1 40000 512 87254 262 88052
2 1000 556 5046 1794 7413
2 3000 486 5833 169 6511
2 5000 443 6688 1787 8938
2 10000 503 10031 175 10725
2 20000 432 15200 212 15867
2 40000 574 87962 265 88819
4 1000 528 5195 140 5879
4 3000 492 5785 1677 7970
4 5000 416 6650 177 7262
4 10000 538 9285 203 10042
4 20000 453 15378 228 16074
4 40000 496 72916 1678 75113
7 1000 694 5578 1690 7983
8 3000 880 5819 144 6860
8 5000 665 6758 1596 9038
8 10000 680 9950 1831 12478
8 20000 608 15612 1738 17978
8 40000 1311 27702 2883 31968

12 1000 776 25282 2202 28286

Aria Naderi CSS497: Spring 2025 Term Report

21

12 3000 871 6037 1672 8601
12 5000 663 6782 1545 9011
12 10000 677 9255 1495 11445
12 20000 659 15202 1621 17502
12 40000 1007 25805 2438 29323
16 1000 808 4954 1419 7202
16 3000 748 6819 1639 9228
16 5000 789 6928 1538 9277
16 10000 710 9470 1523 11724
16 20000 767 15359 1567 17708
16 40000 996 23169 2627 26812
20 1000 751 4805 1793 7366
20 3000 734 5810 1681 8242
20 5000 768 6849 1722 9361
20 10000 790 9109 1600 11520
20 20000 713 15306 1723 17759
20 40000 1873 34359 2446 38696
24 1000 851 5093 1671 7637
24 3000 699 5870 2098 8684
24 5000 661 6697 2132 9507
24 10000 786 8310 1497 10614
24 20000 721 15814 1348 17902
24 40000 2188 27691 325 30221

Appendix D: Strongly Connected Components Results
Table 6: MASS Performance

num-
members

num-
vertices

total-
agents-
generated

load-
time
(sec)

runtime
(sec)

1 1000 367926 1.092 6.391
2 1000 367926 2.601 7.882
4 1000 367926 5.222 6.37
8 1000 367926 10.295 6.529

12 1000 367926 25.006 14.679
16 1000 367926 24.355 8.429
20 1000 367926 32.504 9.814
24 1000 367926 48.897 31.079

1 3000 1157222 1.099 18.41
2 3000 1157222 2.517 20.679
4 3000 1157222 5.22 18.155
8 3000 1157222 10.206 16.125

Aria Naderi CSS497: Spring 2025 Term Report

22

12 3000 1157222 23.777 34.037
16 3000 1157222 25.747 16.111
20 3000 1157222 30.478 20.65
24 3000 1157222 46.875 62.471

1 5000 1941566 1.214 32.711
2 5000 1941566 2.62 30.87
4 5000 1941566 5.173 27.232
8 5000 1941566 10.049 24.565

12 5000 1941566 23.958 52.344
16 5000 1941566 22.529 22.971
20 5000 1941566 30.387 33.54
24 5000 1941566 46.823 77.886

1 10000 3899966 1.476 61.159
2 10000 3899966 2.98 60.681
4 10000 3899966 5.255 47.76
8 10000 3899966 10.328 41.672

12 10000 3899966 24.826 76.454
16 10000 3899966 23.72 41.478
20 10000 3899966 30.927 52.704
24 10000 3899966 49.191 133.243

1 20000 7825526 1.92 122.66
2 20000 7825526 3.151 118.97
4 20000 7825526 5.252 98.179
8 20000 7825526 10.404 76.721

12 20000 7825526 26.041 119.219
16 20000 7825526 23.006 71.258
20 20000 7825526 31.704 96.708
24 20000 7825526 48.066 217.065

1 40000 15737702 2.865 234.301
2 40000 NA NA NA
4 40000 NA NA NA
8 40000 15737702 10.802 192.977

12 40000 15737702 16.901 159.211
16 40000 15737702 23.838 170.845
20 40000 15737702 33.193 167.496
24 40000 15737702 53.377 416.598

Table 6: GraphX Performance

num-
members

num-
vertices LoadTime RunTime

1 1000 614 13136
1 3000 558 19180
1 5000 579 20335

Aria Naderi CSS497: Spring 2025 Term Report

23

1 10000 543 38710
1 20000 615 107210
1 40000 628 1300491
2 1000 569 4218
2 3000 610 5150
2 5000 569 5433
2 10000 545 8762
2 20000 575 23435
2 40000 575 277070
4 1000 654 3953
4 3000 571 4824
4 5000 568 4816
4 10000 635 8217
4 20000 615 20049
4 40000 586 233869
8 1000 582 3667
8 3000 592 4857
8 5000 633 4555
8 10000 584 7407
8 20000 648 19918
8 40000 506 239168

12 1000 1065 3526
12 3000 1196 4795
12 5000 833 4791
12 10000 909 7857
12 20000 916 8878
12 40000 915 38263
16 1000 909 4280
16 3000 818 4510
16 5000 918 5013
16 10000 1241 6400
16 20000 961 9422
16 40000 1048 37154
20 1000 988 3633
20 3000 1139 5031
20 5000 894 6216
20 10000 1280 6298
20 20000 1072 9688
20 40000 885 326216
24 1000 1062 4804
24 3000 1144 4772
24 5000 910 5278
24 10000 1226 5742
24 20000 920 9674

Aria Naderi CSS497: Spring 2025 Term Report

24

24 40000 932 44778

Appendix E: More Programmability Data
Table 3: MASS & GraphX Weakly Connected Components Programmability
Data

Measurement
(MASS)

Count

Number of files 4
Number of methods 20
Number of
variables declared

74

Total lines of code 631
Lines of logic 126

Table 4: MASS & GraphX Strongly Connected Components
Programmability Data

Appendix F: How to Run Benchmark Programs

MASS
1. Install the latest version of MASS core

A. git clone -b develop
https://bitbucket.org/mass_library_developers/mass_java_core.git

Measurement
(GraphX)

Count

Number of files 2
Number of methods 2
Number of
variables declared

24

Total lines of code 190
Lines of logic 11

Measurement
(MASS)

Count

Number of files 4
Number of methods 22
Number of
variables declared

89

Total lines of code 625
Lines of logic 82

Measurement
(GraphX)

Count

Number of files 2
Number of methods 2
Number of
variables declared

24

Total lines of code 197
Lines of logic 33

Aria Naderi CSS497: Spring 2025 Term Report

25

B. cd mass_java_core
C. mvn clean package install
D. Return to the previous directory

2. Clone repo: (currently under jaday2/graphbenchmarks)
git clone -b jaday2/graph-benchmarks --single-branch
https://bitbucket.org/mass_application_developers/mass_java_appl.git

3. Navigate to the project directory
cd mass_java_appl/Graphs/ClusteringCoefficient

4. maven package
Use included make file: make

5. Update node file

Change nodes.xml‘s mass home tag to point to the jar file, and use the correct
nodes you’d like to be in the compute cluster. Add the username tag with your username as
well.

6. Running the benchmark.

The path for the graph file should be the absolute path.

java -jar ClusteringCoefficient-1.0.0-RELEASE.jar <Path to input file> <print
boolean>

GraphX
1. Clon repo: (currently under arian23/GraphXBenchmarks) or switch branch if already

cloned MASS application repo.
Git clone -b arian23/GraphXBenchmarks –-single-branch
Or
Git checkout arian23/GraphXBenchmarks

2. Navigate to the project directory

Cd GraphXBenchmarks/GraphXBenchmarks

3. Install dependencies

Mvn clean install

4. Run benchmark
spark-submit --master spark://<Spark-Master> --total-executor-cores <#> --
executor-cores <#> --class edu.uw.bothell.css.dsl.mass.ClusterCoefficient -

Aria Naderi CSS497: Spring 2025 Term Report

26

-jars ClusteringCoefficients/target/ClusteringCoefficients-1.0-SNAPSHOT-
jar-with-dependencies.jar target/classes <DSL Graph File Name>

