
Aria Naderi CSS497: Winter 2025 Term Report

1

MASS Java & GraphX Benchmarks for

Graph Computing

1. Overview

Distributed graph computing is an evolving field within distributed computing, with many
organizations extending their systems to tackle large-scale graph processing. To determine
which computing problems different graph computing implementations are best suited for,
we can evaluate their performance and programmability.

At the University of Washington Bothell, the Distributed Systems Laboratory (DSL) has
developed MASS (Multi-Agent Spatial Simulation), a distributed memory system designed
for agent-based spatial computations, including its graph computing system for distributed
graph databases. This study compares MASS’s agent-based approach to GraphX, Apache
Spark’s graph processing library, to assess their scalability, efficiency, and ease of use
trade-offs.

GraphX, built on Apache Spark, integrates graph computation with data-parallel
processing, utilizing Resilient Distributed Datasets (RDDs) and a Pregel-inspired API to
optimize iterative graph algorithms. In contrast, MASS distributes computations across
agents operating independently over partitions of the graph. Understanding the strengths
and weaknesses of each model will provide insight into their suitability for different
workloads.

Previous MASS Java benchmarks were primarily developed by James Day, who
implemented key benchmarking programs to evaluate MASS’s graph computing
performance. Rather than reimplementing MASS benchmarks, my role is developing
GraphX benchmarks to compare the two systems directly. By focusing solely on GraphX, I
aim to assess its performance, programmability, and scalability relative to MASS, providing
insights into the trade-offs between these two approaches to distributed graph computing.

2. Background

MASS (Multi-Agent Spatial Simulation) is a parallel computing library for distributed
memory systems. It models computations using places, representing data distributed
across computing nodes and agents. Agents traverse these places to execute tasks and
exchange information. Within MASS’s graph database implementation, graph nodes are

Aria Naderi CSS497: Winter 2025 Term Report

2

defined as places (GraphPlaces), and agents perform operations such as triangle counting,
clustering computations (e.g., connected components), and connectivity analysis.

GraphX, a graph processing framework built on Apache Spark, takes a different approach
by abstracting graph computation with Spark’s data-parallel model. GraphX represents
graphs using Resilient Distributed Datasets (RDDs). Unlike MASS, which distributes
execution through mobile agents, GraphX leverages Spark’s underlying dataflow model and
lazy evaluation to efficiently execute graph operations at scale.

2.1. Graph Loading
The version of MASS used for comparison with
GraphX distributes GraphPlaces in a round-
robin fashion across the machine cluster, with
each node being assigned sequentially to a
different machine, as seen in Figure 1. Graphs
are loaded using a proprietary DSL file, which
defines the nodes and their edges in a text-
based format. These DSL files are also used to
generate graphs in GraphX for a direct
comparison.

In GraphX, graphs are constructed by creating
an RDD of vertices and edges, which is then
used to generate the graph structure. In our
comparison, we developed a program that
parses MASS’s DSL files and converts them into
a format suitable for loading graphs in GraphX.

2.2. Clustering Coefficient

Clustering Coefficients show how tightly knit each vertex in a graph is with its neighbors.
They measure the degree to which vertices cluster together. Many real-world graphs, such
as social network graphs, have a high degree of clustering due to cliques of people (small
and dense groups of people who know each other). Calculating the clustering coefficient
can help recognize these groups of people. Clustering coefficients are computed by
examining whether a node’s neighbors are also connected, forming triangles of edges. The
coefficient is determined by comparing the number of connections between a node’s
neighbors to their total possible connections. The result ranges from 0 to 1, where 1
indicates that all neighbors of a node are fully connected (forming a clique), and 0 means
none of its neighbors are connected. This provides the local clustering coefficient, which

Figure 1

Aria Naderi CSS497: Winter 2025 Term Report

3

measures how tightly a single vertex's neighbors are connected. To understand the overall
connectivity of the graph, we compute the global clustering coefficient by averaging the
local clustering coefficients across all vertices. A high global clustering coefficient
indicates that, on average, most nodes exist within densely interconnected communities,
suggesting strong network cohesion. In contrast, a low global clustering coefficient implies
a sparser, more fragmented network structure.

The formal calculation of local clustering coefficients can be
seen in Figure 1, where 𝑉 is a vertex in the graph, 𝑁𝑉 is the
number of links between its neighbors and 𝐾𝑉 is its degree.

2.3. Weakly Connected Components

A Weakly Connected Component (WCC) is a subgraph in which all vertices are connected
by some path, regardless of edge direction. In directed graphs, this means that even if
some edges are one-way, there is still a way to traverse between any two nodes in the
component when ignoring edge direction.

WCCs help identify disconnected regions of a graph, which is helpful in applications such
as social networks, where different communities may be loosely linked, or in web graphs,
where certain pages are reachable only when considering undirected paths.

The Weakly Connected Components (WCC) algorithm identifies subgraphs in which all
vertices are reachable from one another when edge direction is ignored. It begins by
treating the directed graph as undirected, ensuring all connections are bidirectional. The
algorithm then groups nodes into connected subgraphs, where each node has at least one
path to any other node within the same component. Once these subgraphs are identified,
each is assigned a unique identifier, effectively labeling distinct weakly connected
components. This approach helps analyze a directed graph's overall structure and
fragmentation, revealing how many different groups exist and how they are internally
connected.

3. Implementation/Progress

3.1. Graph Loading
MASS loads graphs by placing a GraphPlace at each node for each vertex seen in the DSL
file, going round-robin across the machines, as explained in the overview. We created a

Figure 2

Aria Naderi CSS497: Winter 2025 Term Report

4

Java GraphX program to parse the DSL file and create a GraphX graph by generating the
RDDs for the vertices and edges.

Figure 3: GraphX DSL Graph Generation

Figure 3 illustrates in GraphX how the graph's vertices and edges persist in memory,
leveraging Spark's in-memory processing capabilities. This enables graph transformations
to execute significantly faster than retrieving data from disks. More details about DSL graph
loading with GraphX can be found in Appendix A.

3.2. Clustering Coefficient

3.2.1. MASS Implementation

The MASS implementation of the clustering coefficient begins by assigning an agent to
each vertex in the graph. Each agent stores its original place ID before proceeding. The
agent then creates additional agents equal to the number of its neighboring vertices, and
these agents migrate to their respective neighbors. Once there, they collect a list of that
vertex's second-degree neighbors and then return to their original vertex with this
information.

At this point, the GraphPlace stores the gathered second-degree neighbor lists. It then
computes the local clustering coefficient by determining how many of its second-degree
neighbors are directly connected. A function called CallAll retrieves the local clustering

Aria Naderi CSS497: Winter 2025 Term Report

5

coefficients from all GraphPlaces to obtain the global clustering coefficient. The results are
sent to the master node and averaged to compute the overall graph clustering coefficient.

Figure 4: MASS Local Vertex Cluster Coefficient Computation

3.2.2. GraphX Implementation

The GraphX implementation first gathers each vertex’s degree and triangle count. These
values are then joined to construct a new graph, where each vertex is represented as
<VertexID, Degree, Num. of Triangles>. Using the formula shown in Figure 1, the local
clustering coefficient is computed for each vertex. The results are then collected and sent
back to the master node as an array, where each entry contains the vertex ID and its
corresponding local clustering coefficient. Finally, the master node calculates the average
clustering coefficient for the entire graph.

Aria Naderi CSS497: Winter 2025 Term Report

6

Figure 5: GraphX Local Vertex Cluster Coefficient Computation

3.3. Weakly Connected Components

3.3.1. MASS Implementation

The current MASS implementation of weakly connected components had been completed
previously; however, it does not load a graph but generates a random graph on each run. To
keep benchmarks fair, we must modify this program to load graphs.

3.3.2. GraphX Implementation

GraphX weakly connected components can be found in the GraphX library. The algorithm
follows an iterative label propagation approach to identify subgraphs in which all vertices
are reachable from one another when edge direction is ignored. The process begins by
assigning each vertex to a unique label, initially set to its vertex ID. Every vertex updates its
label to the smallest ID among its connected neighbors in each iteration, effectively
propagating the lowest ID throughout the component. Since edge directions are ignored,
label propagation occurs bidirectionally between vertices. This iterative process continues
until convergence, meaning all vertices within the same connected component share the
same label. Once no further label changes occur, the algorithm terminates, efficiently
grouping weakly connected subgraphs within the graph.

Aria Naderi CSS497: Winter 2025 Term Report

7

Figure 6: GraphX Weakly Connected Components Function

4. Results

All benchmarks have been run on the CSSMPI machines.

4.1. Load Time Performance

MASS and GraphX have run times that are generally similar, although GraphX typically
performs better on larger graphs and handles loading with a more significant number of
machines more gracefully.

Graph 1: Load Times for 1-24
Computing Nodes w/ 1k vertices
Graph

Graph 2: Load Times for 1-24
Computing Nodes w/ 40k vertices
Graph

Aria Naderi CSS497: Winter 2025 Term Report

8

However, MASS processes smaller graphs faster than GraphX, likely because GraphPlaces
are distributed more efficiently across computing nodes. In contrast, GraphX incurs
overhead from shuffling data due to the lack of pre-partitioned vertices. Since GraphX does
not pre-partition vertices before processing, it must reorganize the data dynamically, which
introduces additional computational overhead. In contrast, MASS's round-robin
assignment of GraphPlaces allows for faster initialization and execution in smaller-scale
graphs.

4.2. Clustering Coefficient Results

The GraphX performance curve remains relatively constant due to shuffling overhead when
calculating the degree of each vertex. This overhead limits GraphX's ability to scale
performance efficiently as more machines are added, reducing the benefits of increased
parallelism. In contrast, MASS consistently outperforms GraphX as the number of
machines increases and shows significant performance advantages on large graphs, such
as those with 40K vertices.

The MASS implementation is faster because agents autonomously compute the local
clustering coefficients with much less communication than needed, as the GraphX
implementation does with shuffling.

4.3. Programmability

Spark, the library GraphX is a part of, utilizes the MapReduce computing paradigm, which
makes it straightforward and familiar. It is also part of the Apache Software Foundation,
which gives it many open-source contributions. These contributions have made Spark

Graph 3: 1-24 Computing Nodes
computing Clustering Coefficient
on 20k vertices

Graph 3: 1-24 Computing Nodes
computing Clustering Coefficient
on 20k vertices

Graph 4: 1-24 Computing Nodes
computing Clustering Coefficient
on 40k vertices

Graph 3: 1-24 Computing Nodes
computing Clustering Coefficient
on 20k vertices

Aria Naderi CSS497: Winter 2025 Term Report

9

programs simpler and easier to use than MASS, which requires more setup since MASS is
still in development.

In the clustering coefficient program for MASS, we require multiple files to create our
program. One file is ClusteringVertex.java, which is the distributed data structure that
represents the vertices of a graph; this extends the existing VertexPlace to create custom
logic. We also have a file that extends the agent class to implement custom logic for the
individual agents executing clustering coefficient calculations. We made a custom class to
be able to pass arguments to agents. We finally have the ClusteringCoefficient.java master
program, which orchestrates the execution. This file collection complicates MASS program
creation compared to GraphX’s simple one-file benchmark. The total number of files and
other programmability data is in Table 1.

Table 1: MASS & GraphX Clustering Coefficient Programmability Data

Measurement
(MASS)

Count

Number of files 4
Number of methods 14
Number of
variables declared

51

Total lines of code 528
Lines of logic 224

5. Conclusion

Programming with GraphX has allowed me to gain great insight into the world of distributed
computing programming and has helped me understand how to approach new computing
systems. So far, two benchmarks have been written, and one MASS benchmark needs to be
modified to compare with GraphX appropriately, which is where my new knowledge of
distributed systems programming will be handy. Graph loading with DSL files in GraphX has
been implemented, allowing for fair benchmarks between the two systems using the same
graph files.

The following term's steps are to tweak the MASS weakly connected components
benchmark for an accurate comparison to GraphX. We also want to compare MASS’s
articulation points and strongly connected components to GraphX implementation.

Measurement
(GraphX)

Count

Number of files 1
Number of methods 3
Number of
variables declared

28

Total lines of code 96
Lines of logic 20

Aria Naderi CSS497: Winter 2025 Term Report

10

Appendix A: DSL File GraphX Parsing
Figure 7: Parse Edges

Figure 8: Parse Vertices

Appendix B: Cluster Coefficient & Graph Load Results
Table 2: MASS Performance

num-
members

num-
vertices

LoadTime agentsUsed avgCC RunTime

Aria Naderi CSS497: Winter 2025 Term Report

11

1 1000 162 187960 0.108192 2320
1 3000 302 590608 0.03807 5686
1 5000 456 990780 0.023167 8173
1 10000 571 1989980 0.011619 14452
1 20000 1104 3992760 0.005841 28810
1 4941 85 31317 0.080104 652
2 1000 159 187960 0.108192 2861
2 3000 292 590608 0.03807 7403
2 5000 400 990780 0.023167 10781
2 10000 544 1989980 0.011619 19788
2 20000 710 3992760 0.005841 37185
2 4941 112 31317 0.080104 788
4 1000 238 187960 0.108192 2125
4 3000 412 590608 0.03807 4860
4 5000 438 990780 0.023167 7701
4 10000 572 1989980 0.011619 12193
4 20000 657 3992760 0.005841 20696
4 40000 861 8028848 0.002922 38079
4 4941 164 31317 0.080104 744
8 1000 253 187960 0.108192 1921
8 3000 438 590608 0.03807 3505
8 5000 495 990780 0.023167 5190
8 10000 648 1989980 0.011619 9172
8 20000 825 3992760 0.005841 16136
8 40000 941 8028848 0.002922 25680
8 4941 235 31317 0.080104 1039
12 1000 355 187960 0.108192 1988
12 3000 526 590608 0.03807 3051
12 5000 674 990780 0.023167 4512
12 10000 721 1989980 0.011619 7584
12 20000 822 3992760 0.005841 12959
12 40000 1009 8028848 0.002922 21087
12 4941 337 31317 0.080104 1076
16 1000 579 187960 0.108192 2100
16 3000 829 590608 0.03807 5269
16 5000 822 990780 0.023167 4541
16 10000 957 1989980 0.011619 6480
16 20000 1175 3992760 0.005841 12264
16 40000 1213 8028848 0.002922 18201
16 4941 485 31317 0.080104 1227
20 1000 735 187960 0.108192 1944

Aria Naderi CSS497: Winter 2025 Term Report

12

20 3000 1122 590608 0.03807 3056
20 5000 1136 990780 0.023167 3958
20 10000 1314 1989980 0.011619 6114
20 20000 1342 3992760 0.005841 10580
20 40000 1597 8028848 0.002922 17545
20 4941 782 31317 0.080104 1312
24 1000 875 187960 0.108192 2290
24 3000 1262 590608 0.03807 3133
24 5000 1173 990780 0.023167 4166
24 10000 1399 1989980 0.011619 6050
24 20000 1684 3992760 0.005841 11361
24 40000 1910 8028848 0.002922 17106
24 4941 902 31317 0.080104 1413

Table 3: GraphX Performance

num-
members

num-
vertices

LoadTime avgCC RunTime

1 1000 590 0.002234 2533
1 3000 477 0.000786 4366
1 5000 495 0.000478 5363
1 10000 574 0.00024 8432
1 20000 467 0.000121 18589
1 40000 539 0.00006 108709
2 1000 561 0.002234 2485
2 3000 546 0.000786 4447
2 5000 554 0.000478 5185
2 10000 503 0.00024 9133
2 20000 505 0.000121 18998
2 40000 511 0.00006 113540
4 1000 588 0.002234 3036
4 3000 495 0.000786 4203
4 5000 576 0.000478 5995
4 10000 485 0.00024 8858
4 20000 596 0.000121 19461
4 40000 467 0.00006 142373
8 1000 823 0.002234 2764
8 3000 617 0.000786 3901
8 5000 691 0.000478 5490
8 10000 783 0.00024 8561
8 20000 633 0.000121 19928

Aria Naderi CSS497: Winter 2025 Term Report

13

8 40000 856 0.00006 108826
12 1000 914 0.002234 2310
12 3000 662 0.000786 4052
12 5000 818 0.000478 4770
12 10000 780 0.00024 8992
12 20000 655 0.000121 18201
12 40000 724 0.00006 144105
16 1000 812 0.002234 2323
16 3000 792 0.000786 4299
16 5000 809 0.000478 5178
16 10000 884 0.00024 10196
16 20000 672 0.000121 20271
16 40000 742 0.00006 119723
20 1000 768 0.002234 2700
20 3000 705 0.000786 4539
20 5000 778 0.000478 5590
20 10000 797 0.00024 8563
20 20000 792 0.000121 17635
20 40000 808 0.00006 114159
24 1000 1171 0.002234 2337
24 3000 635 0.000786 4178
24 5000 611 0.000478 5354
24 10000 768 0.00024 8648
24 20000 866 0.000121 18000
24 40000 961 0.00006 135436

Appendix C: How to Run the Benchmark Programs

MASS
1. Install the latest version of MASS core

A. git clone -b develop
https://bitbucket.org/mass_library_developers/mass_java_core.git

B. cd mass_java_core
C. mvn clean package install
D. Return to the previous directory

2. Clone repo: (currently under jaday2/graphbenchmarks)
git clone -b jaday2/graph-benchmarks --single-branch
https://bitbucket.org/mass_application_developers/mass_java_appl.git

Aria Naderi CSS497: Winter 2025 Term Report

14

3. Navigate to the project directory
cd mass_java_appl/Graphs/ClusteringCoefficient

4. maven package
Use included make file: make

5. Update node file

Change nodes.xml‘s mass home tag to point to the jar file, and use the correct
nodes you’d like to be in the compute cluster. Add the username tag with your username as
well.

6. Running the benchmark
java -jar ClusteringCoefficient-1.0.0-RELEASE.jar <Path to input file> <print
boolean>

GraphX
1. Clon repo: (currently under arian23/GraphXBenchmarks) or switch branch if already

cloned MASS application repo.
Git clone -b arian23/GraphXBenchmarks –-single-branch
Or
Git checkout arian23/GraphXBenchmarks

2. Navigate to the project directory

Cd GraphXBenchmarks/GraphXBenchmarks

3. Install dependencies

Mvn clean install

4. Run benchmark
spark-submit --master spark://<Spark-Master> --total-executor-cores <#> --
executor-cores <#> --class edu.uw.bothell.css.dsl.mass.ClusterCoefficient -
-jars ClusteringCoefficients/target/ClusteringCoefficients-1.0-SNAPSHOT-
jar-with-dependencies.jar target/classes <DSL Graph File Name>

