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MASS Java & GraphX Benchmarks for 

Graph Computing 

1. Overview 

Distributed graph computing is an evolving field within distributed computing, with many 
organizations extending their systems to tackle large-scale graph processing. To determine 
which computing problems different graph computing implementations are best suited for, 
we can evaluate their performance and programmability. 

At the University of Washington Bothell, the Distributed Systems Laboratory (DSL) has 
developed MASS (Multi-Agent Spatial Simulation), a distributed memory system designed 
for agent-based spatial computations, including its graph computing system for distributed 
graph databases. This study compares MASS’s agent-based approach to GraphX, Apache 
Spark’s graph processing library, to assess their scalability, efficiency, and ease of use 
trade-offs. 

GraphX, built on Apache Spark, integrates graph computation with data-parallel 
processing, utilizing Resilient Distributed Datasets (RDDs) and a Pregel-inspired API to 
optimize iterative graph algorithms. In contrast, MASS distributes computations across 
agents operating independently over partitions of the graph. Understanding the strengths 
and weaknesses of each model will provide insight into their suitability for different 
workloads. 

Previous MASS Java benchmarks were primarily developed by James Day, who 
implemented key benchmarking programs to evaluate MASS’s graph computing 
performance. Rather than reimplementing MASS benchmarks, my role is developing 
GraphX benchmarks to compare the two systems directly. By focusing solely on GraphX, I 
aim to assess its performance, programmability, and scalability relative to MASS, providing 
insights into the trade-offs between these two approaches to distributed graph computing. 

2. Background 

MASS (Multi-Agent Spatial Simulation) is a parallel computing library for distributed 
memory systems. It models computations using places, representing data distributed 
across computing nodes and agents. Agents traverse these places to execute tasks and 
exchange information. Within MASS’s graph database implementation, graph nodes are 
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defined as places (GraphPlaces), and agents perform operations such as triangle counting, 
clustering computations (e.g., connected components), and connectivity analysis. 

GraphX, a graph processing framework built on Apache Spark, takes a different approach 
by abstracting graph computation with Spark’s data-parallel model. GraphX represents 
graphs using Resilient Distributed Datasets (RDDs). Unlike MASS, which distributes 
execution through mobile agents, GraphX leverages Spark’s underlying dataflow model and 
lazy evaluation to efficiently execute graph operations at scale. 

2.1. Graph Loading 
The version of MASS used for comparison with 
GraphX distributes GraphPlaces in a round-
robin fashion across the machine cluster, with 
each node being assigned sequentially to a 
different machine, as seen in Figure 1. Graphs 
are loaded using a proprietary DSL file, which 
defines the nodes and their edges in a text-
based format. These DSL files are also used to 
generate graphs in GraphX for a direct 
comparison.  

In GraphX, graphs are constructed by creating 
an RDD of vertices and edges, which is then 
used to generate the graph structure. In our 
comparison, we developed a program that 
parses MASS’s DSL files and converts them into 
a format suitable for loading graphs in GraphX. 

2.2. Clustering Coefficient 

Clustering Coefficients show how tightly knit each vertex in a graph is with its neighbors. 
They measure the degree to which vertices cluster together. Many real-world graphs, such 
as social network graphs, have a high degree of clustering due to cliques of people (small 
and dense groups of people who know each other). Calculating the clustering coefficient 
can help recognize these groups of people. Clustering coefficients are computed by 
examining whether a node’s neighbors are also connected, forming triangles of edges. The 
coefficient is determined by comparing the number of connections between a node’s 
neighbors to their total possible connections. The result ranges from 0 to 1, where 1 
indicates that all neighbors of a node are fully connected (forming a clique), and 0 means 
none of its neighbors are connected. This provides the local clustering coefficient, which 

Figure 1 
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measures how tightly a single vertex's neighbors are connected. To understand the overall 
connectivity of the graph, we compute the global clustering coefficient by averaging the 
local clustering coefficients across all vertices. A high global clustering coefficient 
indicates that, on average, most nodes exist within densely interconnected communities, 
suggesting strong network cohesion. In contrast, a low global clustering coefficient implies 
a sparser, more fragmented network structure. 

The formal calculation of local clustering coefficients can be 
seen in Figure 1, where 𝑉 is a vertex in the graph, 𝑁𝑉 is the 
number of links between its neighbors and 𝐾𝑉 is its degree. 

  

2.3. Weakly Connected Components 

A Weakly Connected Component (WCC) is a subgraph in which all vertices are connected 
by some path, regardless of edge direction. In directed graphs, this means that even if 
some edges are one-way, there is still a way to traverse between any two nodes in the 
component when ignoring edge direction. 

WCCs help identify disconnected regions of a graph, which is helpful in applications such 
as social networks, where different communities may be loosely linked, or in web graphs, 
where certain pages are reachable only when considering undirected paths. 

The Weakly Connected Components (WCC) algorithm identifies subgraphs in which all 
vertices are reachable from one another when edge direction is ignored. It begins by 
treating the directed graph as undirected, ensuring all connections are bidirectional. The 
algorithm then groups nodes into connected subgraphs, where each node has at least one 
path to any other node within the same component. Once these subgraphs are identified, 
each is assigned a unique identifier, effectively labeling distinct weakly connected 
components. This approach helps analyze a directed graph's overall structure and 
fragmentation, revealing how many different groups exist and how they are internally 
connected. 

3. Implementation/Progress 

3.1. Graph Loading 
MASS loads graphs by placing a GraphPlace at each node for each vertex seen in the DSL 
file, going round-robin across the machines, as explained in the overview. We created a 

Figure 2 
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Java GraphX program to parse the DSL file and create a GraphX graph by generating the 
RDDs for the vertices and edges. 

Figure 3: GraphX DSL Graph Generation 

 

Figure 3 illustrates in GraphX how the graph's vertices and edges persist in memory, 
leveraging Spark's in-memory processing capabilities. This enables graph transformations 
to execute significantly faster than retrieving data from disks. More details about DSL graph 
loading with GraphX can be found in Appendix A. 

3.2. Clustering Coefficient 

3.2.1.  MASS Implementation 

The MASS implementation of the clustering coefficient begins by assigning an agent to 
each vertex in the graph. Each agent stores its original place ID before proceeding. The 
agent then creates additional agents equal to the number of its neighboring vertices, and 
these agents migrate to their respective neighbors. Once there, they collect a list of that 
vertex's second-degree neighbors and then return to their original vertex with this 
information. 

At this point, the GraphPlace stores the gathered second-degree neighbor lists. It then 
computes the local clustering coefficient by determining how many of its second-degree 
neighbors are directly connected. A function called CallAll retrieves the local clustering 
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coefficients from all GraphPlaces to obtain the global clustering coefficient. The results are 
sent to the master node and averaged to compute the overall graph clustering coefficient. 

 

Figure 4: MASS Local Vertex Cluster Coefficient Computation 

 

 

3.2.2. GraphX Implementation 

The GraphX implementation first gathers each vertex’s degree and triangle count. These 
values are then joined to construct a new graph, where each vertex is represented as 
<VertexID, Degree, Num. of Triangles>. Using the formula shown in Figure 1, the local 
clustering coefficient is computed for each vertex. The results are then collected and sent 
back to the master node as an array, where each entry contains the vertex ID and its 
corresponding local clustering coefficient. Finally, the master node calculates the average 
clustering coefficient for the entire graph. 
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Figure 5: GraphX Local Vertex Cluster Coefficient Computation 

 

3.3. Weakly Connected Components 

3.3.1.  MASS Implementation 

The current MASS implementation of weakly connected components had been completed 
previously; however, it does not load a graph but generates a random graph on each run. To 
keep benchmarks fair, we must modify this program to load graphs. 

3.3.2.  GraphX Implementation 

GraphX weakly connected components can be found in the GraphX library. The algorithm 
follows an iterative label propagation approach to identify subgraphs in which all vertices 
are reachable from one another when edge direction is ignored. The process begins by 
assigning each vertex to a unique label, initially set to its vertex ID. Every vertex updates its 
label to the smallest ID among its connected neighbors in each iteration, effectively 
propagating the lowest ID throughout the component. Since edge directions are ignored, 
label propagation occurs bidirectionally between vertices. This iterative process continues 
until convergence, meaning all vertices within the same connected component share the 
same label. Once no further label changes occur, the algorithm terminates, efficiently 
grouping weakly connected subgraphs within the graph. 
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Figure 6: GraphX Weakly Connected Components Function 

 

4. Results 

All benchmarks have been run on the CSSMPI machines. 

4.1. Load Time Performance 

MASS and GraphX have run times that are generally similar, although GraphX typically 
performs better on larger graphs and handles loading with a more significant number of 
machines more gracefully. 

 

  

Graph 1: Load Times for 1-24 
Computing Nodes w/ 1k vertices 
Graph 

 

Graph 2: Load Times for 1-24 
Computing Nodes w/ 40k vertices 
Graph 
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However, MASS processes smaller graphs faster than GraphX, likely because GraphPlaces 
are distributed more efficiently across computing nodes. In contrast, GraphX incurs 
overhead from shuffling data due to the lack of pre-partitioned vertices. Since GraphX does 
not pre-partition vertices before processing, it must reorganize the data dynamically, which 
introduces additional computational overhead. In contrast, MASS's round-robin 
assignment of GraphPlaces allows for faster initialization and execution in smaller-scale 
graphs. 

4.2. Clustering Coefficient Results 

The GraphX performance curve remains relatively constant due to shuffling overhead when 
calculating the degree of each vertex. This overhead limits GraphX's ability to scale 
performance efficiently as more machines are added, reducing the benefits of increased 
parallelism. In contrast, MASS consistently outperforms GraphX as the number of 
machines increases and shows significant performance advantages on large graphs, such 
as those with 40K vertices. 

The MASS implementation is faster because agents autonomously compute the local 
clustering coefficients with much less communication than needed, as the GraphX 
implementation does with shuffling. 

 

 

 

 

4.3. Programmability 

Spark, the library GraphX is a part of, utilizes the MapReduce computing paradigm, which 
makes it straightforward and familiar. It is also part of the Apache Software Foundation, 
which gives it many open-source contributions. These contributions have made Spark 

Graph 3: 1-24 Computing Nodes 
computing Clustering Coefficient 
on 20k vertices 

Graph 3: 1-24 Computing Nodes 
computing Clustering Coefficient 
on 20k vertices 

 

Graph 4: 1-24 Computing Nodes 
computing Clustering Coefficient 
on 40k vertices 

Graph 3: 1-24 Computing Nodes 
computing Clustering Coefficient 
on 20k vertices 
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programs simpler and easier to use than MASS, which requires more setup since MASS is 
still in development. 

In the clustering coefficient program for MASS, we require multiple files to create our 
program.  One file is ClusteringVertex.java, which is the distributed data structure that 
represents the vertices of a graph; this extends the existing VertexPlace to create custom 
logic. We also have a file that extends the agent class to implement custom logic for the 
individual agents executing clustering coefficient calculations. We made a custom class to 
be able to pass arguments to agents. We finally have the ClusteringCoefficient.java master 
program, which orchestrates the execution. This file collection complicates MASS program 
creation compared to GraphX’s simple one-file benchmark. The total number of files and 
other programmability data is in Table 1. 

Table 1: MASS & GraphX Clustering Coefficient Programmability Data 

Measurement 
(MASS) 

Count 

Number of files 4 
Number of methods 14 
Number of 
variables declared 

51 

Total lines of code 528 
Lines of logic 224 

 

5. Conclusion 

Programming with GraphX has allowed me to gain great insight into the world of distributed 
computing programming and has helped me understand how to approach new computing 
systems. So far, two benchmarks have been written, and one MASS benchmark needs to be 
modified to compare with GraphX appropriately, which is where my new knowledge of 
distributed systems programming will be handy. Graph loading with DSL files in GraphX has 
been implemented, allowing for fair benchmarks between the two systems using the same 
graph files. 

The following term's steps are to tweak the MASS weakly connected components 
benchmark for an accurate comparison to GraphX. We also want to compare MASS’s 
articulation points and strongly connected components to GraphX implementation. 

 

Measurement 
(GraphX) 

Count 

Number of files 1 
Number of methods 3 
Number of 
variables declared 

28 

Total lines of code 96 
Lines of logic 20 
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Appendix A: DSL File GraphX Parsing 
Figure 7: Parse Edges 

 

Figure 8: Parse Vertices 

 

Appendix B: Cluster Coefficient & Graph Load Results 
Table 2: MASS Performance  

num-
members 

num-
vertices 

LoadTime agentsUsed avgCC RunTime 
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1 1000 162 187960 0.108192 2320 
1 3000 302 590608 0.03807 5686 
1 5000 456 990780 0.023167 8173 
1 10000 571 1989980 0.011619 14452 
1 20000 1104 3992760 0.005841 28810 
1 4941 85 31317 0.080104 652 
2 1000 159 187960 0.108192 2861 
2 3000 292 590608 0.03807 7403 
2 5000 400 990780 0.023167 10781 
2 10000 544 1989980 0.011619 19788 
2 20000 710 3992760 0.005841 37185 
2 4941 112 31317 0.080104 788 
4 1000 238 187960 0.108192 2125 
4 3000 412 590608 0.03807 4860 
4 5000 438 990780 0.023167 7701 
4 10000 572 1989980 0.011619 12193 
4 20000 657 3992760 0.005841 20696 
4 40000 861 8028848 0.002922 38079 
4 4941 164 31317 0.080104 744 
8 1000 253 187960 0.108192 1921 
8 3000 438 590608 0.03807 3505 
8 5000 495 990780 0.023167 5190 
8 10000 648 1989980 0.011619 9172 
8 20000 825 3992760 0.005841 16136 
8 40000 941 8028848 0.002922 25680 
8 4941 235 31317 0.080104 1039 
12 1000 355 187960 0.108192 1988 
12 3000 526 590608 0.03807 3051 
12 5000 674 990780 0.023167 4512 
12 10000 721 1989980 0.011619 7584 
12 20000 822 3992760 0.005841 12959 
12 40000 1009 8028848 0.002922 21087 
12 4941 337 31317 0.080104 1076 
16 1000 579 187960 0.108192 2100 
16 3000 829 590608 0.03807 5269 
16 5000 822 990780 0.023167 4541 
16 10000 957 1989980 0.011619 6480 
16 20000 1175 3992760 0.005841 12264 
16 40000 1213 8028848 0.002922 18201 
16 4941 485 31317 0.080104 1227 
20 1000 735 187960 0.108192 1944 
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20 3000 1122 590608 0.03807 3056 
20 5000 1136 990780 0.023167 3958 
20 10000 1314 1989980 0.011619 6114 
20 20000 1342 3992760 0.005841 10580 
20 40000 1597 8028848 0.002922 17545 
20 4941 782 31317 0.080104 1312 
24 1000 875 187960 0.108192 2290 
24 3000 1262 590608 0.03807 3133 
24 5000 1173 990780 0.023167 4166 
24 10000 1399 1989980 0.011619 6050 
24 20000 1684 3992760 0.005841 11361 
24 40000 1910 8028848 0.002922 17106 
24 4941 902 31317 0.080104 1413 

 

Table 3: GraphX Performance 

num-
members 

num-
vertices 

LoadTime avgCC RunTime 

1 1000 590 0.002234 2533 
1 3000 477 0.000786 4366 
1 5000 495 0.000478 5363 
1 10000 574 0.00024 8432 
1 20000 467 0.000121 18589 
1 40000 539 0.00006 108709 
2 1000 561 0.002234 2485 
2 3000 546 0.000786 4447 
2 5000 554 0.000478 5185 
2 10000 503 0.00024 9133 
2 20000 505 0.000121 18998 
2 40000 511 0.00006 113540 
4 1000 588 0.002234 3036 
4 3000 495 0.000786 4203 
4 5000 576 0.000478 5995 
4 10000 485 0.00024 8858 
4 20000 596 0.000121 19461 
4 40000 467 0.00006 142373 
8 1000 823 0.002234 2764 
8 3000 617 0.000786 3901 
8 5000 691 0.000478 5490 
8 10000 783 0.00024 8561 
8 20000 633 0.000121 19928 
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8 40000 856 0.00006 108826 
12 1000 914 0.002234 2310 
12 3000 662 0.000786 4052 
12 5000 818 0.000478 4770 
12 10000 780 0.00024 8992 
12 20000 655 0.000121 18201 
12 40000 724 0.00006 144105 
16 1000 812 0.002234 2323 
16 3000 792 0.000786 4299 
16 5000 809 0.000478 5178 
16 10000 884 0.00024 10196 
16 20000 672 0.000121 20271 
16 40000 742 0.00006 119723 
20 1000 768 0.002234 2700 
20 3000 705 0.000786 4539 
20 5000 778 0.000478 5590 
20 10000 797 0.00024 8563 
20 20000 792 0.000121 17635 
20 40000 808 0.00006 114159 
24 1000 1171 0.002234 2337 
24 3000 635 0.000786 4178 
24 5000 611 0.000478 5354 
24 10000 768 0.00024 8648 
24 20000 866 0.000121 18000 
24 40000 961 0.00006 135436 

 

Appendix C: How to Run the Benchmark Programs 

MASS 
1. Install the latest version of MASS core 

A. git clone -b develop 
https://bitbucket.org/mass_library_developers/mass_java_core.git 

B. cd mass_java_core 
C. mvn clean package install 
D. Return to the previous directory 

2. Clone repo: (currently under jaday2/graphbenchmarks) 
git clone -b jaday2/graph-benchmarks --single-branch  
https://bitbucket.org/mass_application_developers/mass_java_appl.git 
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3. Navigate to the project directory 
cd mass_java_appl/Graphs/ClusteringCoefficient 

4. maven package 
Use included make file: make 

5. Update node file 

Change nodes.xml‘s mass home tag to point to the jar file, and use the correct 
nodes you’d like to be in the compute cluster. Add the username tag with your username as 
well. 

6. Running the benchmark 
java -jar ClusteringCoefficient-1.0.0-RELEASE.jar <Path to input file> <print 
boolean> 
 

GraphX 
1. Clon repo: (currently under arian23/GraphXBenchmarks) or switch branch if already 

cloned MASS application repo. 
Git clone -b arian23/GraphXBenchmarks –-single-branch 
Or 
Git checkout arian23/GraphXBenchmarks 

2. Navigate to the project directory 

Cd GraphXBenchmarks/GraphXBenchmarks 

3. Install dependencies 

Mvn clean install 

4. Run benchmark 
spark-submit --master spark://<Spark-Master> --total-executor-cores <#> --
executor-cores <#> --class edu.uw.bothell.css.dsl.mass.ClusterCoefficient -
-jars ClusteringCoefficients/target/ClusteringCoefficients-1.0-SNAPSHOT-
jar-with-dependencies.jar target/classes <DSL Graph File Name> 


