
©Copyright 2025

Atul Ahire

MASS JAVA LIBRARY TOWARDS ITS USE FOR A GRAPH
DATABASE SYSTEM

Atul Ahire

A whitepaper submitted in partial fulfillment of the requirements of the degree of

Master of Science in Computer Science and Software Engineering

University of Washington

2025

Project Committee:

Professor Munehiro Fukuda, Committee Chair

Professor Robert Dimpsey, Committee Member

Professor Brent Lagesse, Committee Member

Program Authorized to Offer Degree:
University of Washington

University of Washington

Abstract

MASS JAVA LIBRARY TOWARDS ITS USE FOR A GRAPH DATABASE SYSTEM

Atul Ahire

Chair of the Supervisory Committee:

Dr. Professor Munehiro Fukuda

Computer Science and Software Engineering

Distributed graph databases are foundational to modern applications such as social net-

works, recommendation systems, and transportation platforms. The MASS (Multi-Agent

Spatial Simulation) framework—an agent-based parallel computing library for distributed

systems—designed to simulate spatial computations by deploying mobile agents over dis-

tributed data structures such as graphs. MASS’s agent-based graph computing model en-

ables intuitive programming and parallel traversal, making it well-suited for scalable graph

database applications. This research intends to address two core limitations in its graph

database model: inefficient vertex placement and high communication overhead during

agent migration. To improve data locality and reduce inter-node communication during

graph traversal, we explored and integrated graph partitioning strategies such as METIS,

which minimizes edge cuts and better aligns with graph topology. This approach signifi-

cantly reduced inter node communication for graph benchmarks like Triangle Counting and

Articulation Points by localizing vertex adjacency across fewer computing nodes.

The second challenge targeted the messaging inefficiencies caused by TCP-based agent

migration. We redesigned the MASS communication infrastructure using Aeron, a high-

performance UDP messaging library, to support low-latency, high-throughput data ex-

change. This refactoring introduced a dual communication pattern: a structured master-

worker protocol for control synchronization and a peer-to-peer mesh for direct agent ex-

changes. By combining optimized graph partitioning with Aeron-based messaging, the

enhanced MASS system reduced the communication latency and increased agent migration

efficiency across large, distributed graphs.

TABLE OF CONTENTS

Page

List of Figures . iii

List of Tables . iv

Chapter 1: Introduction . 1

Chapter 2: Background and Challenges . 3

2.1 Multi-Agent Spatial Simulation Architecture 3

2.2 Agent-based Graphs in MASS . 4

2.3 Technical Challenges . 6

Chapter 3: Related Work . 7

3.1 Graph Distribution Strategies . 7

3.2 Communication Systems in Distributed Graph Databases 8

Chapter 4: Enhanced Vertex Distribution Strategy 10

4.1 Hazelcast Inspired Partitioning Strategy . 10

4.2 METIS Multilevel Graph Partitioning Strategy 14

Chapter 5: Aeron-based UDP Communication System 20

5.1 Design . 20

5.2 Implementation . 24

Chapter 6: Evaluation . 26

6.1 Performance Benchmarking Methodology . 26

6.2 Environment Setup . 27

6.3 Performance Comparison: Round Robin vs Hazelcast Inspired Partitioning . 28

6.4 Performance Comparison: Round Robin vs METIS partitioning 29

6.5 Performance Comparison: TCP vs Aeron’s UDP communication 31

i

Chapter 7: Conclusion . 33

7.1 Summary of Contributions . 33

7.2 Limitations & Future Work . 33

Appendix A: Graph Partitioning Code . 38

Appendix B: Aeron Communication Implementation 40

Appendix C: How to Run Programs . 46

C.1 Hazelcast-inspired Partitioning (Git Branch - aahire/dsg-improvements) . . . 46

C.2 METIS Graph Partitioning and Aeron Implementation (Git Branch: aahire-
metis-implementation) . 49

ii

LIST OF FIGURES

Figure Number Page

2.1 MASS library architecture [8] . 4

2.2 Current vertex place distribution [5] . 5

4.1 Hazelcast inspired graph partitioning . 11

4.2 Multilevel graph partitioning phases in METIS [12] 15

4.3 Workflow: vertex distribution with METIS graph partitioning 17

5.1 Four-phase Aeron initialization and communication patterns in MASS. 21

5.2 Custom fragmentation and reassembly mechanism for agent migration 23

6.1 Triangle counting with agent-based migration [5] 27

6.2 Triangle counting execution performance with hazelcast inspired partitioning 28

6.3 Triangle counting execution performance with METIS partition strategy . . . 29

6.4 Local vs remote agents processing in triangle counting 30

6.5 Triangle Counting Time for Graph Size 3K 31

6.6 Triangle Counting Time for Graph Size 5K 32

6.7 Triangle Counting Time for Graph Size 10K 32

C.1 Workflow: Hazelcast inspired graph partitioning output 48

C.2 Workflow: METIS partitioning with Aeron communication’s output 52

iii

LIST OF TABLES

Table Number Page

6.1 HERMES Cluster environment. 27

6.2 Graph data used for Triangle Counting application. 28

iv

LISTINGS

4.1 Partition Initialization . 12

4.2 Vertex Assignment Implementation . 12

5.1 Peer-to-Peer Aeron Initialization for Node Messaging 24

A.1 METIS Graph partitioning code . 38

B.1 Aeron Communication Logic . 40

v

1

Chapter 1

INTRODUCTION

As data continues to grow not only in volume but also in structural complexity, mod-

ern analytics systems face increasing pressure to support computation over richly connected,

non-linear data structures. While traditional big data streaming frameworks such as Apache

Spark [1], Hadoop MapReduce [2], and Apache Storm [3] have proven effective for processing

large-scale textual or tabular datasets, they are inherently limited when it comes to ana-

lyzing complex and mutable data structures like trees, graphs, or spatial networks. These

systems are designed to split data into independent chunks for parallel computation, which

disrupts the continuity of relationships that are essential in structured datasets. Conse-

quently, such platforms are not well-suited for applications where locality, connectivity, and

dynamic structure are critical—for example, in social networks, transportation systems, or

biological interaction graphs.

To address these limitations, agent-based computing has emerged as a powerful paradigm.

Unlike traditional data-parallel models, agents can be embedded directly into a distributed

data structure and move, communicate, and evolve in response to local conditions. This

makes agents particularly well-suited for graph-based applications, where computational

logic often depends on the topology of the network and localized interactions between neigh-

boring vertices. In the context of distributed graph databases, agents offer a flexible and

programmable means of traversing, modifying, and querying graphs while preserving struc-

tural integrity and supporting asynchronous execution.

To explore and harness these advantages, the Multi-Agent Spatial Simulation (MASS)

Java framework has been adopted as the foundation for building an Agent-Based Graph

Database system [4]. MASS is designed to support the creation and execution of lightweight

agents over a spatially distributed memory model. In this system, agents can operate

on graph vertices, execute OpenCypher queries [5], and facilitate concurrent multi-user

2

access to shared graph data through the newly introduced Distributed Shared Graph (DSG)

abstraction. This architecture has shown promising results in improving graph creation and

query performance compared to conventional distributed key-value stores like Hazelcast [6].

However, despite its conceptual strengths, the current implementation reveals several

performance challenges. First, graph traversal is slowed down by a round-robin vertex

distribution strategy that leads to poor data locality, increasing inter-node communica-

tion overhead [7]. Second, MASS uses a traditional TCP-based communication system

that introduces critical performance bottlenecks, such as the overhead of establishing and

maintaining connections between all participating nodes and thread management overhead

during an agent’s migration to remote nodes.

This capstone project aims to address these limitations by optimizing vertex placement

across nodes and improving execution performance in the MASS-based distributed graph

system. Project goals include:

• Conducting a literature survey on efficient graph partitioning techniques.

• Implementing graph partitioning algorithms to distribute vertex places across the

cluster system.

• Replacing the traditional TCP communication model with a high-performance UDP-

based protocol.

• Evaluating performance benchmarks post-implementation to assess improvements in

execution efficiency.

3

Chapter 2

BACKGROUND AND CHALLENGES

This chapter provides an overview of the underlying MASS architecture, its application

to agent-based graph processing, and the associated performance limitations. Finally, the

key challenges associated with current design—particularly in terms of vertex placement

and communication inefficiencies—are discussed. These challenges serve as the motivation

for the optimization efforts undertaken in this project.

2.1 Multi-Agent Spatial Simulation Architecture

Multi-Agent Spatial Simulation (MASS) is a parallel computing library designed for

distributed memory systems, enabling scalable agent-based computations across a cluster

of nodes. It consists of two primary abstractions: Places and Agents. Places form a multi-

dimensional distributed array where each element, or "place", resides on a specific node

and is globally indexed. These places serve as the data environment that can store state and

interact with other places. Agents represent the active computational entities that reside

within places, performing analysis and migrating across the distributed array to simulate

dynamic behavior and process graph-based data.

MASS achieves parallelism through multithreaded processes running on each cluster

node, with the number of threads typically aligned to the available CPU cores. MASS de-

ploys processes over cluster system using Java Secure Channel (JSch), their communication

is handled over a network with Transmission Control Protocol (TCP) sockets. As illus-

trated in Figure 2.1, the MASS architecture distributes both computation and data across

the cluster, allowing agents to operate concurrently over large-scale spatial and graph-based

datasets.

4

Figure 2.1: MASS library architecture [8]

2.2 Agent-based Graphs in MASS

MASS has already supported a graph data structure called GraphPlaces that extends

from the Places class. GraphPlaces store graphs in adjacency list format, which means for

each vertex we store its corresponding attributes and its neighbors as a list. When a graph

is inserted into a GraphPlaces it will be distributed in the cluster by storing information

of vertices in different computing nodes. The vertices in GraphPlaces are represented by

VertexPlace objects, and VertexPlace extends from the MASS Place class. As mentioned

previously, it stores the list of outgoing edges and the information about itself.

To accommodate real-world graph database requirements—such as labeled vertices with

arbitrary types—the system decouples the logical vertex ID (e.g., names like "Ann" or "Jim")

from its underlying numeric representation required for agent migration and distributed

5

indexing. This is achieved through a distributed HashMap, which maps object-based iden-

tifiers (e.g., strings) to sequential integer IDs. This map is accessible from all nodes and

ensures global consistency in vertex referencing.

Once an integer ID is assigned, the system uses a modulo-based hash function to deter-

mine which node will store the vertex:

Computing Node ID = Vertex Integer ID mod Number of Computing Nodes (Eq. 2.1)

Within each node, the vertex is stored in a Vector<VertexPlace>, and its position is

computed using:

Index in Vector =
Vertex Integer ID

Number of Computing Nodes
(Eq. 2.2)

Figure 2.2: Current vertex place distribution [5]

6

2.3 Technical Challenges

As illustrated in Figure 2.2, vertices of the graph are distributed across computing

nodes using a round-robin strategy using simple hash function given in Eq. 2.1, which

disregards the underlying graph topology. As a result, adjacent or highly connected vertices

are often placed on different nodes, leading to poor data locality. This fragmentation forces

agents performing traversal or query operations to frequently communicate across nodes,

significantly increasing network overhead and degrading performance.

The TCP-based communication architecture in MASS creates a significant performance

bottleneck due to its reliance on a full mesh topology where every node maintains persistent

socket connections to all other nodes, coupled with synchronous, blocking I/O operations.

This approach forces computation to halt during network transfers, with threads remaining

idle while waiting for message transmission and acknowledgment. The problem compounds

during agent migration events, where the Java’s inefficient serialization process executes

synchronously on the main thread, and the system’s thread-per-destination model spawns

pair of threads (one dedicated reader, one dedicated writer) per connection by separating

read and write operations, ensuring nodes could always receive incoming data even while

transmitting, thus preventing the deadlock. TCP’s inherent head-of-line blocking prevents

independent agent migrations from proceeding if earlier packets are delayed, while its con-

gestion control mechanisms can throttle throughput during the bursty communication pat-

terns typical in multi-agent simulations. The sequential processing of migration requests

prevents effective parallelization, resulting in severely degraded performance as the number

of computing nodes and migrating agents increases.

These performance limitations motivate the work undertaken in this project. The system

is enhanced by implementing graph-aware vertex placement strategies and replacing TCP

communication with a high-performance UDP-based messaging protocol. The effectiveness

of these changes is evaluated using benchmark comparisons with the previous TCP-based,

round-robin architecture.

7

Chapter 3

RELATED WORK

3.1 Graph Distribution Strategies

Graph partitioning is a fundamental technique in distributed graph processing, aiming

to divide a graph into smaller subgraphs to optimize computational efficiency and minimize

inter-node communication. The strategy for distributing graph data across computing nodes

significantly impacts performance and scalability in distributed systems. Several algorithms

and approaches have been developed to address this challenge [9].

The Kernighan–Lin algorithm [10] is a heuristic method that seeks to minimize the edge

cut between partitions by iteratively swapping vertex pairs to improve partition quality.

Although it can produce high-quality partitions, its computational complexity makes it less

suitable for very large graphs.

Community detection-based partitioning, such as the Louvain method, optimizes mod-

ularity to uncover densely connected subgraphs, effectively identifying communities within

the graph. This approach is particularly beneficial for social networks and other graphs

where community structures are prominent.

Facebook’s Balanced Label Propagation (BLP) algorithm introduces a scalable solution

for partitioning massive graphs. BLP combines the simplicity of label propagation with

constraints to ensure balanced partition sizes. In practice, BLP has demonstrated significant

improvements in reducing inter-node communication and balancing computational loads

across partitions [11].

Hash-based partitioning assigns vertices to partitions based on a hash function applied

to their identifiers, ensuring an even distribution. However, it doesn’t consider the graph’s

topology, potentially leading to increased inter-node communication. Hazelcast employs

a hash-based partitioning strategy to distribute data across its cluster nodes [6]. When

a data entry is added, Hazelcast serializes the key into a byte array, applies a hashing

8

algorithm, and then calculates the partition ID by taking the modulo of the hash result

with the total number of partitions. By default, Hazelcast uses 271 partitions, ensuring

a fine-grained distribution of data. This approach allows for even data distribution and

facilitates scalability, as adding new nodes results in minimal data movement due to the

consistent hashing mechanism.

Multilevel graph partitioning algorithms represent a sophisticated approach to graph

partitioning that operates in three distinct phases: coarsening, initial partitioning, and

uncoarsening with refinement. This multilevel approach significantly reduces computational

complexity while maintaining high-quality partitioning results [12].

Based on the advantages of multilevel partitioning, METIS was selected as the graph

partitioning library for this implementation due to its proven multilevel k-way partitioning

algorithms and scalability for large-scale graphs [13]. METIS provides the necessary bal-

ance between partition quality and computational efficiency required for distributed graph

processing in MASS Java.

3.2 Communication Systems in Distributed Graph Databases

Distributed graph processing frameworks implement various communication architec-

tures to support efficient graph traversal and agent movement across cluster nodes. Apache

Giraph, built on Hadoop’s infrastructure, employs a Bulk Synchronous Parallel (BSP) com-

putation model where vertex-centric processing occurs in synchronized Super-steps [14].

Its master-worker architecture coordinates global barriers and message passing between it-

erations. However, as Ching et al. demonstrate, Giraph’s reliance on Hadoop’s underlying

MapReduce communication patterns introduces substantial synchronization overhead dur-

ing each super step, especially when compared to MASS’s more flexible agent migration

capabilities that can occur asynchronously [15].

Neo4j’s clustering architecture implements a causal consistency model with a leader-

follower replication scheme for distributed deployments [16]. Communication between clus-

ter members occurs through a dedicated Raft protocol implementation for cluster coor-

dination and topology management. Raft is designed to provide atomic communication

guarantees, ensuring that operations are applied in a consistent and fault-tolerant manner

9

across the cluster. However, these strong consistency and ordering guarantees come at the

cost of increased communication latency and limited throughput. Despite being one of the

most mature graph database systems, Neo4j’s communication layer is primarily optimized

for transactional workloads rather than continuous agent-based simulation scenarios. Ac-

cording to Webber, Neo4j’s communication patterns emphasize safety guarantees over raw

performance, making it less suitable for high-throughput, low-latency requirements similar

to those in MASS where agents frequently migrate between computational nodes [17].

JanusGraph (formerly Titan) addresses distributed graph processing through a modular

storage and indexing backend approach, supporting various underlying datastores like Cas-

sandra and HBase [18]. Its communication architecture delegates much of the inter-node

coordination to these backend systems, with additional messaging for transaction coordi-

nation across the cluster. While this approach offers flexibility, Vaquero et al. note that it

introduces additional network hops and serialization costs during distributed traversals [19].

These overheads become particularly pronounced in workloads resembling MASS’s agent

movement patterns, where entities frequently traverse partition boundaries.

We adopted Aeron’s UDP-based communication architecture for MASS to address crit-

ical performance limitations identified in the original TCP implementation, as detailed

in our technical challenges analysis. MASS’s agent-centric computational model requires

high-frequency, low-latency communication to support continuous agent migration across

distributed computational nodes. Our initial design explored a broadcast messaging ap-

proach to coordinate agent migrations cluster-wide, but our analysis revealed exponential

growth in serialization and deserialization overhead as graph size increased, with communi-

cation overhead due to large message payloads containing extensive agent state information.

To address these scalability concerns, we transitioned to a direct node-to-node messaging

paradigm using Aeron’s UDP transport, which eliminates broadcast overhead by enabling

each computational node to synchronously transmit only the specific agents destined for

target machines. Aeron’s lockless ring buffers and memory-mapped communication archi-

tecture provide sub-millisecond latency through optimized memory access patterns while

bypassing kernel overhead, perfectly aligning with MASS’s requirements for near real-time

agent coordination across distributed graph storage systems.

10

Chapter 4

ENHANCED VERTEX DISTRIBUTION STRATEGY

This chapter presents two enhanced vertex distribution implementations designed to im-

prove graph partitioning performance in distributed systems. First, we explore a Hazelcast-

inspired partitioning technique that employs fixed-partition hash-based distribution to achieve

balanced workload allocation and simplified cluster management. Subsequently, we describe

an advanced implementation using the METIS graph partitioning library [13], which aims

to minimize edge cuts while maintaining balanced vertex distribution across the cluster

through sophisticated multilevel graph partitioning algorithms.

4.1 Hazelcast Inspired Partitioning Strategy

The Hazelcast-inspired partitioning strategy implements a hash-based vertex distribu-

tion approach that prioritizes simplicity and balanced workload distribution over graph

structure awareness. Unlike complex multilevel partitioning algorithms like METIS, this

strategy employs a fixed-partition model with deterministic hash functions to ensure uni-

form vertex distribution across cluster nodes. The approach guarantees consistent and pre-

dictable partitioning behavior while maintaining scalability and load balance in distributed

graph processing environments.

4.1.1 Design

The Hazelcast-inspired partitioning design introduces a fundamentally different approach

to graph distribution that emphasizes predictability and balanced resource utilization over

structural optimization. The core design philosophy centers on creating a fixed number

of logical partitions that remain constant regardless of graph size or cluster configuration

changes.

The partitioning strategy operates through a two-level hierarchical mapping system.

11

Figure 4.1: Hazelcast inspired graph partitioning

At the first level, vertices are assigned to logical partitions using a simple modular hash

function:

Partition ID = Vertex ID mod TOTAL PARTITIONS (271) (4.1)

This deterministic assignment ensures uniform distribution across all partitions while

maintaining computational simplicity. The fixed partition count of 271 was chosen to pro-

vide sufficient granularity for load balancing while avoiding excessive overhead in partition

management operations.

At the second level, these logical partitions are dynamically mapped to physical cluster

nodes using:

Node ID = Partition ID mod Number of Nodes (4.2)

This dual-level approach provides several architectural advantages. First, it decouples

the partitioning logic from the cluster topology, enabling seamless scaling operations where

nodes can be added or removed without requiring complete repartitioning. Second, it guar-

antees deterministic behavior across all cluster nodes for vertex distribution.

The design addresses the fundamental challenge of inter-partition communication by

accepting that hash-based distribution will inevitably create cross-partition edges. Rather

than attempting to minimize these connections, the system is designed to handle them

12

efficiently through optimized remote reference resolution mechanisms and comprehensive

partition-to-node mapping tables maintained on each node.

The workflow architecture ensures that each computing node can independently deter-

mine vertex ownership and partition assignments without requiring centralized coordination.

4.1.2 Implementation

The implementation of the Hazelcast-inspired partitioning strategy integrates seamlessly

with the existing MASS GraphPlaces infrastructure through a streamlined vertex distribu-

tion pipeline. The core implementation focuses on three fundamental operations: partition

initialization, vertex assignment, and distributed graph construction.

The partition initialization process begins with the initializePartitions() method,

which establishes the foundational mapping structures:

1 private void initializePartitions () {

2 int clusterSize = MASS.getSystemSize ();

3 for (int i = 0; i < TOTAL_PARTITIONS; i++) {

4 partitions.put(i, new ArrayList <>());

5 partitionToNodeMap.put(i, i % clusterSize);

6 }

7 }

Listing 4.1: Partition Initialization

Lines 2 retrieve the current cluster size from the MASS framework. Lines 3-6 iterate

through all TOTAL PARTITIONS (271 partitions), where line 4 initializes each partition

as an empty ArrayList container, and line 5 establishes the deterministic partition-to-node

mapping using modular arithmetic. This method creates 271 empty partition containers

and establishes the partition-to-node mapping using modular arithmetic.

The vertex assignment implementation leverages the hash-based distribution through

the addVertexOnNode() method:

1 public boolean addVertexOnNode(int nodeID , int partition , int vertexID ,

Object vertexInitParams) {

2 // Calculate partition ownership

13

3 int targetPartition = vertexID % TOTAL_PARTITIONS;

4 int targetNode = targetPartition % MASS.getSystemSize ();

5

6 // Validate node assignment

7 if (nodeID != targetNode) {

8 return addRemoteVertexUpdated(targetNode , targetPartition , vertexID ,

vertexInitParams);

9 }

10

11 // Local vertex creation

12 partitions.computeIfAbsent(targetPartition , k -> new ArrayList <>());

13 VertexPlace vertexPlace = objectFactory.getInstance(getClassName (),

vertexInitParams);

14 vertexPlace.setIndex(new int[]{ vertexID });

15 partitions.get(targetPartition).add(vertexPlace);

16

17 return true;

18 }

Listing 4.2: Vertex Assignment Implementation

Lines 3-4 perform the core hash-based partition assignment calculations, where line 3

determines the target partition using vertex ID modulo total partitions, and line 4 calcu-

lates the responsible node using partition ID modulo cluster size. Lines 7-9 handle remote

delegation scenarios by validating node ownership and forwarding vertex creation requests

to the appropriate remote node when the current node is not responsible for the calculated

partition. Lines 12-15 manage local vertex creation by ensuring the target partition exists,

instantiating a new VertexPlace object with the provided parameters, setting the vertex

index, and adding it to the appropriate partition container. The implementation performs

real-time hash calculations to determine correct vertex placement and automatically dele-

gates to remote nodes when necessary. This approach ensures that vertices are consistently

placed according to the hash-based distribution regardless of which node initiates the vertex

creation operation.

The Hazelcast-inspired partitioning strategy provides a robust and scalable alternative

14

to complex graph-aware partitioning approaches. While it may not achieve the optimal

edge cut minimization of sophisticated algorithms like METIS, it offers significant advan-

tages in terms of implementation simplicity, deterministic behavior, and balanced workload

distribution. The fixed-partition hash-based approach ensures consistent performance char-

acteristics and simplified cluster management operations, making it particularly suitable

for dynamic distributed environments where predictability and operational simplicity are

prioritized over structural optimization.

4.2 METIS Multilevel Graph Partitioning Strategy

Given an undirected graphG = (V,E), where V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em},

the goal is to partition V into k disjoint subsets V1, V2, . . . , Vk such that:

k⋃
i=1

Vi = V and Vi ∩ Vj = ∅ for i ̸= j.

The objective is to minimize the edge cut:

Γ(V1, V2, . . . , Vk) =
k∑

i=1

k∑
j=i+1

|{(u, v) ∈ E : u ∈ Vi, v ∈ Vj}| , (4.3)

subject to the balance constraint:

|Vi| ≤ (1 + ϵ)

⌈
|V |
k

⌉
for some imbalance factor ϵ. (4.4)

To solve this problem efficiently, METIS employs a multilevel graph partitioning strategy

that consists of three main phases: coarsening, initial partitioning, and uncoarsening with

refinement. This process is illustrated in Figure 4.2.

Coarsening Phase

The algorithm begins by creating a hierarchy of progressively coarser graphsG0, G1, . . . , Gm,

where G0 is the original input graph. This is done by merging vertex pairs using heavy-edge

or random matching. Heavy-edge matching prioritizes vertices connected by higher-weight

edges, which helps preserve the graph’s structure. The coarsening continues until the num-

ber of vertices falls below a predefined threshold, resulting in a small graph Gm that is

suitable for efficient direct partitioning.

15

Figure 4.2: Multilevel graph partitioning phases in METIS [12]

Initial Partitioning Phase

At the coarsest level Gm, METIS computes a high-quality k-way partition using either

recursive bisection or a direct method based on heuristics like the Kernighan–Lin algo-

rithm. Because Gm is significantly smaller, these methods are computationally feasible and

effective.

Uncoarsening and Refinement Phase

The computed partition on Gm is then projected back through each level of the hierarchy

to G0. At each stage, the partition is refined using local optimization techniques such as the

Kernighan–Lin algorithm. This refinement ensures that the final partition minimizes edge

cuts and satisfies balance constraints. By combining global structure from the coarsening

phase with local optimization during refinement, METIS achieves both high-quality and

scalable partitioning.

16

4.2.1 Design

The integration of METIS partitioning into the MASS GraphPlaces infrastructure re-

quired a fundamental redesign of how graph data is distributed and managed across the

cluster. Our approach leverages METIS’s sophisticated partitioning capabilities while main-

taining compatibility with MASS’s existing distributed computing framework and message-

passing infrastructure.

The computational workflow initiates with the master node performing comprehensive

graph data ingestion from standardized formats including UW-Bothell proprietary DSL and

Property Graph specifications. Subsequently, the master node executes graph preprocessing

operations that transform the input adjacency representation into Compressed Sparse Row

(CSR) format [20], which serves as the required input specification for METIS partitioning

algorithms. The core partitioning phase involves invoking METIS through Java Native

Interface (JNI) [21] mechanisms to execute multilevel k-way graph partitioning algorithms.

The fundamental challenge in this distributed implementation concerns the non-deterministic

nature of METIS optimization heuristics, which can produce varying partition assignments

due to internal randomization and local optimization strategies. To solve this issue, we

implemented a seeding mechanism where a fixed seed value is passed during each METIS

execution. This guarantees deterministic vertex-to-partition mappings across all computa-

tional nodes.

The second challenge involved developing an efficient mechanism for each node to iden-

tify, read, and store only the graph partitions relevant to that node. Rather than loading

the complete partitioned graph and discarding unused portions, each node selectively loads

and retains only the vertices assigned to its partition. This approach minimizes memory

usage while maintaining the ability to resolve inter-partition edge references.

Each node maintains a partition-to-vertex mapping table that enables quick determi-

nation of vertex ownership without requiring inter-node communication during the loading

process. The workflow concludes with the master node transmitting LoadGraph() messages

to all worker nodes, triggering parallel initialization of graph processing pipelines.

For simplicity, Figure C.2 shows each worker node’s "Load Graph" operation as an

17

abstraction of the full processing pipeline. In practice, each node performs equivalent op-

erations locally, including file parsing, CSR conversion, METIS execution, mapping gener-

ation, and data indexing. This architecture promotes horizontal scalability while ensuring

deterministic and consistent behavior across distributed resources.

Figure 4.3: Workflow: vertex distribution with METIS graph partitioning

4.2.2 Implementation

This implementation provides graph partitioning capabilities using the METIS graph

partitioning library through Java Native Interface (JNI). The code converts graph data

from UW-Bothell proprietary DSL format to METIS-compatible Compressed Sparse Row

(CSR) format and performs k-way partitioning.

Algorithm 1 is used for partitioning the graph using METIS. The function begins by

initializing the current computing node’s rank which is an auto-incremented integer process

id assigned to each computing node during MASS initialization (master computing node

always initialized with process id = 0), a vertex counter, and a local index counter (lines

1–2). It reads the graph data from a DSL-formatted input file, parsing each line to construct

a full adjacency list where each vertex is mapped to a list of its weighted neighbors. This

18

representation is essential for later transformation into a format compatible with METIS

(line 2).

Algorithm 1: Load Local Graph Data with METIS Partitioning

Input: DSL graph file path

Output: Number of loaded vertices

1 Initialize rank = auto-incremented integer process id, vertex count, and local index

counter;

2 Read graph from DSL file and build adjacency list;

3 Convert adjacency list to METIS CSR format;

4 if number of computing nodes == 1 then

5 Assign all vertices to partition 0;

6 else

7 Use METIS JNI to partition graph;

8 Map vertex → partition;

9 Assign local index to vertices for current computing node;

10 foreach local vertex do

11 Add vertex to current computing node;

12 Add corresponding edges to current computing node;

13 Increment vertex count;

14 return vertex count;

Following the data ingestion, the method converts the graph into METIS’s expected

Compressed Sparse Row (CSR) format. This involves creating the xadj array that marks

the starting index of neighbors for each vertex, and the adjncy array that stores adjacency

relationships in a flattened structure (line 3). These arrays together provide the structural

blueprint for METIS’s graph partitioning logic.

Depending on the number of partitions that is equal to the total computing nodes,

the algorithm assigns all vertices to a single partition (in the single node mode) or in-

vokes the JNI-bound METIS partitioning engine for k-way partitioning (lines 4–8). In the

METIS path, the graph is partitioned using multilevel heuristics, and the resulting vertex-

to-partition assignments are recorded in a lookup map for efficient access.

19

Once partitioning is complete, the current computing node identifies which vertices

belong to its partition and assigns them local indices to support subsequent distributed

graph operations (line 9). Finally, the method iterates through each locally owned vertex

to insert it into the MASS node and attach the corresponding weighted edges based on the

earlier adjacency list (lines 10–13). The function concludes by returning the total number

of vertices successfully loaded by the node. The same algorithm runs on each computing

node in the MASS and creates a graph in parallel across the cluster system.

The complete distributed graph partitioning mechanism, message passing infrastructure,

vertex management, and error handling code is provided in the Appendix A for comprehen-

sive reference, including the coordination of partitioning results across multiple compute

nodes and the integration with the broader MASS simulation framework.

20

Chapter 5

AERON-BASED UDP COMMUNICATION SYSTEM

This chapter introduces the Aeron-based [22] communication model adopted in the

MASS framework, designed to replace traditional TCP sockets with a high-performance,

lock-free UDP messaging system. Aeron provides reliable message delivery through UDP

by utilizing embedded media drivers, zero-copy semantics, and stream ordering guarantees,

which make it an ideal candidate for latency-sensitive distributed simulations.

5.1 Design

Aeron is a high-performance, ultra-low latency messaging library providing efficient

publish-subscribe messaging over UDP with lock-free data structures, zero-copy operations,

and CPU cache-aware memory layouts. It has an embedded media driver architecture that

eliminates inter-process communication overhead, automatic message fragmentation and

reassembly, built-in flow control with back-pressure handling, and support for both multi-

cast and unicast communication patterns with guaranteed message ordering within streams.

MASS adopts Aeron to replace TCP-based communication due to its superior performance

characteristics for distributed simulation workloads, particularly the ability to handle high-

frequency agent migrations and place data exchanges without the latency penalties and

connection overhead associated with traditional socket-based messaging systems.

The architecture employs a four-phase initialization sequence that establishes both com-

munication patterns simultaneously. As illustrated in Figure 5.1, Phase 1 begins with

MASS.init() creating the Master Node (PID=0) as the central coordination point for clus-

ter management and global state synchronization. Phase 2 extends the system through

SSH-based remote process launching, where the master node establishes MProcess instances

on each compute node, creating the distributed worker infrastructure necessary for parallel

simulation execution.

21

Figure 5.1: Four-phase Aeron initialization and communication patterns in MASS.

Phase 3 implements the Master-Worker communication pattern through dedicated Aeron

streams connecting the master node to each worker. This hierarchical structure provides

centralized control for operations requiring global coordination including graph initialization

commands, barrier synchronization points and other messages. The master node maintains

direct publication channels to each worker while workers establish subscription channels

for receiving commands and publication channels for sending acknowledgments and status

updates back to the master.

22

Phase 4 establishes the Peer-to-Peer communication pattern through the ExchangeHelper

class, creating a fully connected mesh network where any node can communicate directly

with any other node without routing through the master. This eliminates the master node

as a potential bottleneck during high-volume operations such as agent migrations. Each

node maintains dedicated Aeron publications to every other node in the cluster, enabling

concurrent multi-directional data flows that scale independently of cluster size.

The dual-pattern approach leverages Aeron’s embedded media driver architecture, where

each compute node runs its own media driver instance within the process boundary. This

design eliminates inter-process communication overhead while providing isolation between

application logic and network operations. The embedded drivers handle message fragmen-

tation, flow control, and network interface management transparently, allowing the MASS

framework to focus on simulation logic rather than low-level networking concerns.

Communication channels utilize UDP multicast for cluster-wide broadcasts and UDP

unicast for direct node-to-node messaging. Multicast channels handle global coordination

messages including barrier synchronization, graph loading, and cluster shutdown commands.

Unicast channels manage specific inter-node communications such as agent migration data.

This channel separation optimizes network utilization by avoiding unnecessary message

delivery while maintaining message ordering guarantees within each communication stream.

Despite these advantages, we encountered a challenge in the agent migration workflow

when sending messages larger than 16 megabytes. Aeron’s UDP transport faces inherent

limitations where individual messages cannot exceed the configured term buffer size (typ-

ically 16MB) due to memory allocation constraints and network MTU restrictions, while

Java object serialization of large agent collections can easily produce payloads exceeding

hundreds of megabytes.

We implemented a custom fragmentation logic as shown in Figure 5.2. When a serial-

ized message exceeds the MAX MESSAGE SIZE BYTES threshold, the system fragments it into

smaller chunks with a configurable size (leaving overhead space for headers) and assigns a

unique fragmentation ID for message reconstruction. The fragmentation process begins by

sending metadata containing the total fragment count, original message size, and fragmen-

tation identifier, followed by sequential transmission of numbered fragments containing the

23

actual data payload.

Figure 5.2: Custom fragmentation and reassembly mechanism for agent migration

At the receiving end, the system maintains concurrent hash maps to store fragmented

metadata and accumulate incoming fragments, automatically reconstructing the original

message once all fragments are received and placing the complete message in the appropriate

rank-specific message queue.

24

5.2 Implementation

The following listing demonstrates how peer-to-peer communication is initialized using

Aeron’s embedded media driver and unicast subscriptions.

1 // Create embedded media driver with minimal footprint

2 mediaDriver = MediaDriver.launch(new MediaDriver.Context ()

3 .dirDeleteOnStart(true)

4 .dirDeleteOnShutdown(true)

5 .termBufferSparseFile(true)

6 .threadingMode(io.aeron.driver.ThreadingMode.DEDICATED)

7 .aeronDirectoryName(CommonContext.getAeronDirectoryName () +

AERON_DIRECTORY_SUFFIX));

8

9 // Create Aeron instance

10 aeron = Aeron.connect(new Aeron.Context ()

11 .aeronDirectoryName(mediaDriver.aeronDirectoryName ()));

12

13 // Initialize message queues for each rank

14 for (int i = 0; i < size; i++) {

15 if (i != rank) { // No need for queue to self

16 messageQueues.put(i, new LinkedBlockingQueue <>());

17 }

18 }

19

20 // Set up subscription to receive messages first

21 nodePubs = new Publication[size];

22 String localEndpoint = hosts.get(rank) + ":" + port;

23 String subChannel = AERON_URL_PREFIX + localEndpoint + AERON_URL_SUFFIX;

24 exchangeSubscription = aeron.addSubscription(subChannel ,

EXCHANGE_STREAM_ID);

Listing 5.1: Peer-to-Peer Aeron Initialization for Node Messaging

Listing 5.1 initializes the core components for Aeron-based peer-to-peer communication

within a distributed MASS system. Lines 1-7 launch an embedded Aeron media driver

with a minimal memory and file system footprint, ensuring dedicated threading and auto-

25

matic cleanup of temporary directories for each MASS run. Lines 9-11 establish an Aeron

instance connected to the directory created by the media driver, forming the foundation

for message exchange. In lines 13-18, the system sets up dedicated message queues using

LinkedBlockingQueue for all other nodes in the cluster (excluding self), allowing each node

to store and process incoming messages independently based on the sender’s rank. This de-

sign ensures thread-safe, rank-specific message handling across the peer network. Line 21

initializes a Publication[] array, enabling each node to maintain a separate outgoing pub-

lication channel to every other peer. Finally, lines 22–24 define and register a unique Aeron

subscription for the local node, allowing it to receive peer-to-peer messages via a specific

UDP unicast channel constructed using the host’s IP address and port. Our initial ar-

chitectural approach employed a broadcast messaging system utilizing multicast channels,

with each computing node subscribing to the multicast channel rather than implementing

peer-to-peer messaging over unicast channels. However, empirical evaluation revealed that

this broadcast design exhibited exponential growth in serialization and deserialization over-

head, compounded by increasingly large message payloads as graph size scaled. To mitigate

these performance bottlenecks, we transitioned to a direct node-to-node messaging paradigm

leveraging Aeron’s UDP transport protocol, which facilitates synchronous transmission of

targeted agents to their designated destination nodes while eliminating broadcast-related

overhead. This architectural foundation establishes a scalable, bidirectional communication

infrastructure across the entire cluster topology..

The complete implementation, including peer-to-peer exchange helpers, fragmentation

utilities, and error handling routines, is provided in the Appendix B.

26

Chapter 6

EVALUATION

This chapter presents the experimental evaluation of our enhanced MASS-based dis-

tributed graph processing system. We assess the effectiveness of our two core contributions:

(1) Hazelcast inspired and METIS-based vertex distribution strategy, and (2) an Aeron-

based high-performance communication infrastructure. We evaluated the system perfor-

mance in comparison to the traditional Round Robin vertex distribution and TCP-based

message passing. Our evaluation includes agent migration workflows and graph traversal

operations through a benchmark Triangle Counting application.

6.1 Performance Benchmarking Methodology

To evaluate the improvements introduced in this work, we use the Triangle Counting

application previously used by Chris Ma from DSLab. This benchmark allows us to mea-

sure both computational efficiency and inter-node communication overhead, as it inherently

involves significant agent migration and graph traversal.

6.1.1 Triangle Counting Application

The Triangle Counting application (see Figure 6.1) uses MASS agents that traverse a

graph in a manner that ensures each triangle is counted exactly once. Initially, agents

are spawned at every VertexPlace. They traverse along edges to neighboring vertices,

restricted to only follow edges directed to a lower vertex ID to avoid duplicate counting.

After two such migrations, an agent checks whether it can return to its original vertex via an

edge. If successful, a triangle is identified, and the counter is incremented. This application

highlights the role of localized agent migration and its dependency on communication and

partitioning efficiency.

27

Figure 6.1: Triangle counting with agent-based migration [5]

6.2 Environment Setup

The experiments were conducted on the HERMES cluster at the University of Wash-

ington Bothell, comprising 24 computing nodes. We identified optimal performance at 8

nodes. Table 6.1 details the hardware used.

Table 6.1: HERMES Cluster environment.

Computing Nodes # Logical CPU Cores CPU Model Memory

3 4 Intel Xeon 5150 @ 2.66 GHz 16GB

4 8 Intel Xeon E5410 @ 2.33 GHz 16GB

1 4 Intel Xeon 5220R @ 2.20 GHz 16GB

6.2.1 Benchmark Settings

Table 6.2 shows the graph datasets used for the triangle counting application. Exper-

iments were run using 1 to 8 computing nodes. All values represent averages over three

runs.

28

Table 6.2: Graph data used for Triangle Counting application.

Number of Vertices Number of Edges Number of Triangles

3000 293804 192146

5000 467400 197440

10000 989990 200053

6.3 Performance Comparison: Round Robin vs Hazelcast Inspired Partition-
ing

We evaluated the performance of the Triangle counting application on multiple com-

puting nodes with different graph sizes ranging from 1K to 20K vertices. As illustrated in

Figure 6.2, the performance benchmark comparing Hazelcast-inspired partitioning against

Round Robin strategy for triangle counting across 8 computing nodes reveals that Hazelcast

consistently underperforms, with execution times being 3-5% higher across all graph sizes.

Figure 6.2: Triangle counting execution performance with hazelcast inspired partitioning

This pattern persists across larger graphs, with the 20K vertex case showing Round

29

Robin at 141,393 ms compared to Hazelcast’s 147,290 ms (4.2% overhead). This per-

formance degradation occurs because, despite its sophisticated fixed-partition architecture

with 271 logical partitions, Hazelcast-inspired partitioning remains fundamentally structure-

agnostic like Round Robin, distributing vertices based on hash functions rather than graph

connectivity patterns. The additional overhead is coming from partition management, hash

calculations, and partition-to-node mapping operations, while providing no benefits for tri-

angle counting operations that require extensive neighbor-to-neighbor traversal patterns.

6.4 Performance Comparison: Round Robin vs METIS partitioning

To evaluate our graph partitioning enhancement, we compared the Round Robin distri-

bution strategy with METIS-based partitioning in triangle counting application. Figure 6.3

illustrates the execution time for the Triangle Counting application across varying graph

sizes (1K, 3K, 5K, 10K, and 20K vertices) using 8 computing nodes.

Figure 6.3: Triangle counting execution performance with METIS partition strategy

30

Although METIS consistently outperforms the Round Robin approach across all graph

sizes by reducing execution times—primarily due to improved data locality—its performance

gains were not as significant as initially anticipated. Ideally, METIS’s capability to co-locate

highly connected vertices on the same machine should have resulted in substantially reduced

inter-node communication and improved runtime.

To investigate this discrepancy, we examined the most computationally intensive opera-

tion in MASS: agent migration. As shown in Figure 6.4, we compare the number of agents

processed locally versus remotely under both METIS and Round Robin partitioning strate-

gies. In the Triangle Counting application, agents migrate along edges and are expected to

operate locally when neighboring vertices are assigned to the same node. However, if the

destination vertex resides on a different node, agents need to be migrated remote machine

to perform further triangle counting computation.

Figure 6.4: Local vs remote agents processing in triangle counting

The right subplot quantifies the percentage of agents processed locally, where METIS

consistently achieves a higher locality percentage (21%) compared to Round Robin (12%).

This confirms that METIS improves vertex placement and agent locality, but also high-

lights the potential for further enhancement in partitioning strategies or agent migration

mechanisms to maximize intra-node computation and minimize communication overhead.

31

6.5 Performance Comparison: TCP vs Aeron’s UDP communication

To evaluate the impact of Aeron-based communication compared to traditional TCP

sockets, we conducted same triangle counting experiments using three different graph sizes

(3K, 5K, and 10K vertices) across varying numbers of computing nodes (2, 4, and 8). The

results, shown in Figures 6.5, 6.6, and 6.7, consistently indicate that the METIS with Aeron

configuration outperforms the Round Robin with TCP baseline with 2 and 4 computing

nodes.

However, as the number of nodes increases to 8, the performance gap narrows, with ex-

ecution times converging to TCP execution time. This trend suggests diminishing returns

from Aeron at higher node counts. Aeron’s performance begins to degrade as the number of

computing nodes increases, primarily due to the O(n2) explosion of unidirectional publica-

tions it requires for peer-to-peer communication. For instance, at 8 nodes, Aeron maintains

56 unidirectional publications compared to TCP’s 28 bidirectional socket connections.

Figure 6.5: Triangle Counting Time for Graph Size 3K

32

Figure 6.6: Triangle Counting Time for Graph Size 5K

Figure 6.7: Triangle Counting Time for Graph Size 10K

33

Chapter 7

CONCLUSION

This chapter concludes the paper by summarizing the key contributions and outlining

potential directions for future work.

7.1 Summary of Contributions

In this project, we improved the performance of the MASS (Multi-Agent Spatial Sim-

ulation) system by adding two major components: METIS for better graph partitioning

and Aeron for faster communication between nodes. METIS helps divide the graph more

intelligently by grouping connected vertices together, which reduces the need for agents

to move across different nodes. At the same time, we replaced the traditional TCP-based

communication system with Aeron, which uses UDP and provides faster message delivery

with lower latency.

We compared our new METIS partitioning and Aeron-based system against the older

Round Robin and TCP setup. Our experiments showed that the new setup performs better

when communication involves less computing nodes. However, we also observed some lim-

itations at larger cluster sizes due to increased communication overhead, which opens up

opportunities for future improvements.

7.2 Limitations & Future Work

The primary limitation of the current implementation lies in the O(n2) communication

scaling bottleneck, which arises from the agent migration patterns that require every node

to potentially communicate with every other node. This is compounded by the creation of

n×(n−1) unidirectional publication channels in Aeron’s peer-to-peer communication model,

which can overwhelm system resources. For example, with 8 computing nodes, the system

must manage over 56 active publication channels, leading to excessive memory consumption,

34

frequent garbage collection triggered by message serialization, and increased CPU overhead.

Moreover, the synchronous nature of MASS’s agent migration barriers forces all nodes to

wait for the slowest migration event to complete, which reduces the effectiveness of Aeron’s

low-latency transport and negates its performance advantages as the cluster size increases

beyond 8 to 16 nodes.

Based on these observed limitations, we propose several directions for future improve-

ment. First, the peer-to-peer publication model of Aeron can be optimized from O(n2) to

O(log n) by implementing shared communication channels and tree- or ring-based routing

strategies. This would reduce the number of direct connections while maintaining efficient

and scalable connectivity across the distributed cluster. Second, the agent migration and

lifecycle management in MASS can be further optimized to reduce unnecessary communi-

cation and master-worker synchronization overhead.

35

BIBLIOGRAPHY

[1] Apache Spark. Apache Spark. https://spark.apache.org. Accessed on May 28,

2025.

[2] Apache Hadoop. Apache Hadoop. Accessed: 2025-05-28. url: https : / / hadoop .

apache.org/.

[3] Apache Storm. Apache Storm. Accessed: 2025-05-28. url: https://storm.apache.

org/.

[4] Harshit Rajvaidya. “An Agent-Based Graph Database”. Unpublished manuscript,

DSLab, University of Washington Bothell, 2024.

[5] Yuan Ma. “An Implementation of Multi-User Distributed Shared Graph”. Unpub-

lished manuscript, DSLab, University of Washington Bothell, 2025.

[6] Hazelcast, Inc. Data Partitioning and Replication — Hazelcast Documentation. Ac-

cessed: 2025-05-28. url: https://docs.hazelcast.com/hazelcast/5.4/architecture/

data-partitioning.

[7] Michelle Dea. “Development of an Agent-Based Database Benchmarking Dataset”.

Unpublished manuscript, DSLab, University of Washington Bothell, 2025.

[8] J. Timothy Chuang and Munehiro Fukuda. “A Parallel Multi-Agent Spatial Simu-

lation Environment for Cluster Systems”. In: Proceedings of the 16th IEEE Interna-

tional Conference on Computational Science and Engineering (CSE 2013). Sydney,

Australia: IEEE, Dec. 2013, pp. 143–150.

[9] Hlib Mykhailenko, Fabrice Huet, and Giovanni Neglia. “Comparison of Edge Partition-

ers for Graph Processing”. In: Proceedings of the International Conference on Compu-

tational Science and Computational Intelligence (CSCI). Las Vegas, USA, 2016. url:

https://hal.science/hal-01401338.

https://spark.apache.org
https://hadoop.apache.org/
https://hadoop.apache.org/
https://storm.apache.org/
https://storm.apache.org/
https://docs.hazelcast.com/hazelcast/5.4/architecture/data-partitioning
https://docs.hazelcast.com/hazelcast/5.4/architecture/data-partitioning
https://hal.science/hal-01401338

36

[10] Brian W. Kernighan and Shen Lin. Kernighan–Lin Algorithm. Accessed: 2025-05-28.

url: https://en.wikipedia.org/wiki/Kernighan%E2%80%93Lin_algorithm.

[11] Jure Ugander and Lars Backstrom. “Balanced Label Propagation for Partitioning

Massive Graphs”. In: Proceedings of the 6th ACM International Conference on Web

Search and Data Mining (WSDM ’13). 2013, pp. 507–516. doi: 10.1145/2433396.

2433461. url: https://doi.org/10.1145/2433396.2433461.

[12] T. A. Ayall et al. “Graph Computing Systems and Partitioning Techniques: A Survey”.

In: IEEE Access 10 (2022), pp. 118523–118550. doi: 10.1109/ACCESS.2022.3219422.

[13] George Karypis and Vipin Kumar. METIS. Accessed: 2025-05-28. url: https://en.

wikipedia.org/wiki/METIS.

[14] Grzegorz Malewicz et al. “Pregel: A System for Large-Scale Graph Processing”. In:

Proceedings of the ACM SIGMOD International Conference on Management of Data.

2010, pp. 135–146.

[15] Avery Ching et al. “One Trillion Edges: Graph Processing at Facebook-Scale”. In:

Proceedings of the VLDB Endowment 8.12 (2015), pp. 1804–1815.

[16] Ian Robinson, Jim Webber, and Emil Eifrem. Graph Databases: New Opportunities

for Connected Data. 2nd. O’Reilly Media, 2015.

[17] Jim Webber. “A Programmatic Introduction to Neo4j”. In: Proceedings of the 3rd

Annual Conference on Systems, Programming, and Applications: Software for Hu-

manity (SPLASH ’12). 2012, pp. 217–218. doi: 10.1145/2384716.2384777. url:

https://doi.org/10.1145/2384716.2384777.

[18] JanusGraph Project. JanusGraph Documentation. Accessed: 2025-05-28. url: https:

//docs.janusgraph.org/.

[19] Luis M. Vaquero et al. Adaptive Partitioning for Large-Scale Dynamic Graphs. Ac-

cessed: 2025-05-28. url: https://dl.acm.org/doi/10.5555/2672596.2672664.

[20] METIS/manual/manual.pdf at master · KarypisLab/METIS · GitHub. url: https:

//github.com/KarypisLab/METIS/blob/master/manual/manual.pdf (visited on

05/28/2025).

https://en.wikipedia.org/wiki/Kernighan%E2%80%93Lin_algorithm
https://doi.org/10.1145/2433396.2433461
https://doi.org/10.1145/2433396.2433461
https://doi.org/10.1145/2433396.2433461
https://doi.org/10.1109/ACCESS.2022.3219422
https://en.wikipedia.org/wiki/METIS
https://en.wikipedia.org/wiki/METIS
https://doi.org/10.1145/2384716.2384777
https://doi.org/10.1145/2384716.2384777
https://docs.janusgraph.org/
https://docs.janusgraph.org/
https://dl.acm.org/doi/10.5555/2672596.2672664
https://github.com/KarypisLab/METIS/blob/master/manual/manual.pdf
https://github.com/KarypisLab/METIS/blob/master/manual/manual.pdf

37

[21] Oracle Corporation. Java Native Interface Specification: Introduction. Accessed: 2025-

05-28. url: https://docs.oracle.com/javase/7/docs/technotes/guides/jni/

spec/intro.html.

[22] Martin Thompson and Todd Montgomery. Aeron: High-Throughput Low-Latency Mes-

saging. Accessed: 2025-05-28. url: https://github.com/real-logic/aeron.

https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/intro.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/intro.html
https://github.com/real-logic/aeron

38

Appendix A

GRAPH PARTITIONING CODE

1 // loadDSLFileUsingMETIS loads graph data using METIS for partitioning.

2 public void loadDSLFileUsingMETIS(String filePath) throws IOException ,

FileNotFoundException {

3 MASS.getLogger ().debug (" Loading DSL File and partitioning with METIS

");

4 // Send partitions to each node

5 MASS.getRemoteNodes ().forEach(node -> node.sendMessage(new Message(

6 Message.ACTION_TYPE.MAINTENANCE_LOAD_DSL_FILE_USING_METIS ,

7 getHandle (),

8 // Send all nodes the current vertex offset and path of file

to load.

9 new Object [] { filePath })));

10

11 // Handle local vertices on this node

12 int vertexCount = loadLocalGraphData(filePath);

13

14 // Wait for all other nodes to complete and aggregate vertex counts

15 for (MNode node : MASS.getRemoteNodes ()) {

16 Message msg = node.receiveMessage ();

17 if (msg.getAction () != Message.ACTION_TYPE.ACK) {

18 MASS.getLogger ().debug (" Failed to load DSL file on node " +

node.getPid ());

19 }

20 vertexCount += msg.getAgentPopulation ();

21 }

22

23 // Update index counter based on total vertices processed

24 nextVertexID += vertexCount;

25

26 // Broadcast update to ensure global consistency

39

27 if (sharedPlaceName != null) {

28 Message m = new Message(Message.ACTION_TYPE.

DSG_NEXT_VERTEXID_UPDATE , MASSBase.getUserName (),

nextVertexID ,

29 sharedPlaceName);

30 localMessaging.sendMessage(m);

31 }

32

33 }

Listing A.1: METIS Graph partitioning code

40

Appendix B

AERON COMMUNICATION IMPLEMENTATION

The following listing provides the complete implementation of Aeron-based commu-

nication in MASS, including ExchangeHelper mesh setup, message queue handling, and

fragmentation utilities.

1 /**

2 * ExchangeHelper contains methods for communicating with peers using Aeron

UDP

3 * transport

4 */

5 public class ExchangeHelper {

6

7 // Stream IDs for different message types

8 private static final int EXCHANGE_STREAM_ID = 2001;

9 private static final int ACK_STREAM_ID = 2002;

10

11 // Maximum message size (16MB)

12 private static final int MAX_MESSAGE_SIZE_BYTES = 16777216;

13

14 // Operation timeout

15 private static final long OPERATION_TIMEOUT_MS = 300000;

16

17 // Idle strategy for spin waiting

18 private final IdleStrategy idleStrategy = new SleepingIdleStrategy ();

19

20 // Clock for timeouts

21 private final EpochClock clock = new SystemEpochClock ();

22

23 // Buffer for outgoing messages

24 private final UnsafeBuffer sendBuffer = new UnsafeBuffer(

25 BufferUtil.allocateDirectAligned(MAX_MESSAGE_SIZE_BYTES , 64));

41

26

27 // Aeron publications for each remote node

28 private Publication [] nodePubs;

29

30 // Subscription for receiving messages

31 private Subscription exchangeSubscription;

32

33 // Message queues for each rank

34 private ConcurrentHashMap <Integer , LinkedBlockingQueue <Message >>

messageQueues = new ConcurrentHashMap <>();

35

36 // Subscriber running flag

37 private AtomicBoolean running = new AtomicBoolean(true);

38

39 // Reference to Aeron

40 private Aeron aeron;

41

42 // Reference to MediaDriver

43 private MediaDriver mediaDriver;

44

45 // Thread for message reception

46 private Thread receiverThread;

47

48 private static final String AERON_URL_PREFIX = "aeron:udp?endpoint=";

49 private static final String AERON_URL_SUFFIX = "|term -length =128m|mtu

=65504| socket -sndbuf =16m|socket -rcvbuf =16m";

50 private static final String AERON_FLOW_CONTROL_STRATEGY = "|fc=min";

51 private static final String AERON_DIRECTORY_SUFFIX = "

_mass_agent_migration";

52

53 // Fragmentation related fields

54 private final AtomicInteger messageIdCounter = new AtomicInteger (0);

55 private static final int MAX_FRAGMENT_SIZE = 60000; // this is max

fragment size we can send using mtu =65504 which is max default mtu

56 private final Map <Integer , byte [][]> fragmentsReceived = new

ConcurrentHashMap <>();

42

57 private final Map <Integer , MessageFragmentMetadata > fragmentMetadata =

new ConcurrentHashMap <>();

58

59 /**

60 * Establish connections to peers for agent migration

61 *

62 * @param size The number of nodes in the cluster

63 * @param rank The rank ID of this node

64 * @param hosts The peer hosts with which to establish connections

65 * @param port The port number used for communication

66 */

67 public void establishConnection(int size , int rank , Vector <String > hosts

, int port) {

68 MASS.getLogger ().debug("Initializing optimized Aeron connections for

agent migration");

69

70 // Create embedded media driver with minimal footprint

71 mediaDriver = MediaDriver.launch(new MediaDriver.Context ()

72 .dirDeleteOnStart(true)

73 .dirDeleteOnShutdown(true)

74 .termBufferSparseFile(true)

75 .threadingMode(io.aeron.driver.ThreadingMode.DEDICATED)

76 .aeronDirectoryName(CommonContext.getAeronDirectoryName () +

AERON_DIRECTORY_SUFFIX));

77

78 // Create Aeron instance

79 aeron = Aeron.connect(new Aeron.Context ()

80 .aeronDirectoryName(mediaDriver.aeronDirectoryName ()));

81

82 if (aeron == null) {

83 MASS.getLogger ().error("Aeron instance not available - MASS

messaging not properly initialized");

84 System.exit(-1);

85 }

86

87 // Initialize message queues for each rank

43

88 for (int i = 0; i < size; i++) {

89 if (i != rank) { // No need for queue to self

90 messageQueues.put(i, new LinkedBlockingQueue <>());

91 }

92 }

93

94 // Set up subscription to receive messages first

95 nodePubs = new Publication[size];

96 String localEndpoint = hosts.get(rank) + ":" + port;

97 String subChannel = AERON_URL_PREFIX + localEndpoint +

AERON_URL_SUFFIX;

98 exchangeSubscription = aeron.addSubscription(subChannel ,

EXCHANGE_STREAM_ID);

99

100 // Give subscription time to initialize before creating publications

101 try {

102 Thread.sleep (1000);

103 } catch (InterruptedException e) {

104 Thread.currentThread ().interrupt ();

105 }

106

107 // Create publications to all other nodes

108 for (int i = 0; i < size; i++) {

109 if (i == rank)

110 continue; // Skip self

111

112 String endpoint = hosts.get(i) + ":" + port;

113 String channel = AERON_URL_PREFIX + endpoint + AERON_URL_SUFFIX;

114

115 nodePubs[i] = aeron.addPublication(channel , EXCHANGE_STREAM_ID);

116

117 // Implement retry logic for connection

118 int maxRetries = 5;

119 boolean connected = false;

120

121 for (int retry = 0; retry < maxRetries; retry ++) {

44

122 MASS.getLogger ().debug("Attempt " + retry + 1 + " to connect

to node " + i + "...");

123

124 // Check for connection with a shorter timeout per attempt

125 long deadline = clock.time() + 5000; // 5 seconds per

attempt

126 while (! nodePubs[i]. isConnected () && clock.time() < deadline

) {

127 idleStrategy.idle();

128 }

129

130 if (nodePubs[i]. isConnected ()) {

131 connected = true;

132 MASS.getLogger ().debug("Connected to node " + i + " on

attempt " + retry + 1);

133 break;

134 }

135

136 if (retry < maxRetries - 1) {

137 MASS.getLogger ()

138 .debug("Connection attempt " + retry + 1 + " to

node " + i + " failed , retrying ...");

139 try {

140 // Implement exponential backoff

141 Thread.sleep (1000 * (retry + 1));

142 } catch (InterruptedException e) {

143 Thread.currentThread ().interrupt ();

144 }

145 }

146 }

147

148 if (! connected) {

149 MASS.getLogger ().debug("Could not connect to node " + i + "

at " + endpoint + "after " + maxRetries

150 + "attempts. Continuing anyway.");

151 // Not exiting the application , just continuing with other

45

nodes

152 }

153 }

154

155 // Start receiver thread

156 receiverThread = new Thread(this:: receiveMessages);

157 receiverThread.setDaemon(true);

158 receiverThread.start ();

159

160 printAeronConfiguration ();

161 MASS.getLogger ().debug("Aeron connections established for

ExchangeHelper");

162 }

163 }

Listing B.1: Aeron Communication Logic

46

Appendix C

HOW TO RUN PROGRAMS

This appendix provides step-by-step instructions for running MASS Java applications

using two different graph partitioning approaches along with Aeron’s UDP communication

implementation.

C.1 Hazelcast-inspired Partitioning (Git Branch - aahire/dsg-improvements)

This branch implements distributed graph processing with Hazelcast-inspired partition-

ing for improved performance.

Prerequisites

• Java 8 or higher

• Maven 3.6+

• Git

C.1.1 Setup and Execution

Step 1: Build MASS Java Core

1 # Clone and checkout the DSG improvements branch

2 git clone https :// bitbucket.org/mass_library_developers/mass_java_core.git

3 cd mass_java_core

4 git checkout aahire/dsg -improvements

5

6 # Build the core library

7 mvn -DskipTests clean package install

47

Step 2: Build Triangle Counting Application

1 # Navigate to MASS Java Applications repository

2 cd ../ mass_java_appl/Graphs/TriangleCounting

3 git checkout develop

4

5 # Build the application

6 mvn clean package

7

8 # Copy application JAR to root folder

9 cp target/TriangleCounting -1.0.0 - RELEASE.jar .

Step 3: Prepare Configuration Create a nodes.xml file in your execution directory:

1 <nodes>

2 <node>

3 <master >true</master >

4 <hostname >hermes1.uwb.edu</hostname >

5 <masshome ><your application checkedout dir>/mass_java_appl/

Graphs/TriangleCounting </masshome >

6 <username ><your username ></username >

7 <privatekey >/home/NETID/<your username >/.ssh/id_rsa </

privatekey >

8 <port><port number ></port>

9 </node>

10 <node>

11 <hostname >hermes2.uwb.edu</hostname >

12 <username ><your username ></username >

13 <masshome ><your application checkedout dir>/mass_java_appl/

Graphs/TriangleCounting </masshome >

14 <port><port number ></port>

15 <privatekey >/home/NETID/<your username >/.ssh/id_rsa </

privatekey >

16 </node>

17 <! -- Add additional remote nodes as needed -- >

18 </nodes>

48

Step 4: Run Triangle Counting Application

1 java -jar TriangleCounting -1.0.0 - RELEASE.jar \

2 <Path to sample DSL graph files >/ graph_w.csv

C.1.2 Expected Output

The application will output triangle count statistics and performance metrics using the

Hazelcast-style distributed partitioning approach.

Figure C.1: Workflow: Hazelcast inspired graph partitioning output

49

C.2 METIS Graph Partitioning and Aeron Implementation (Git Branch:
aahire-metis-implementation)

This branch uses METIS library for sophisticated graph partitioning to optimize load

distribution across compute nodes and aeron communication implementation details.

Setup and Execution

Step 1: Install GKLib Library

1 # Clone and build GKLib

2 git clone https :// github.com/KarypisLab/GKlib.git

3 cd GKlib

4

5 # Configure with proper C source definition to avoid type errors

6 make config cc=gcc prefix =~/ local/gklib CFLAGS="-D_POSIX_C_SOURCE =199309L"

7 make

8 make install

Update GKLib with proper linking:

1 # Clean any previous builds

2 rm -rf /home/NETID/<your username >/GKlib/build/Linux -x86_64

3 mkdir -p /home/NETID/<your username >/ GKlib/build/Linux -x86_64

4 cd /home/NETID/<your username >/GKlib/build/Linux -x86_64

5

6 # Configure with CMake

7 cmake -D BUILD_SHARED_LIBS=ON \

8 -DCMAKE_C_FLAGS="-D_POSIX_C_SOURCE =199309L" \

9 -DCMAKE_INSTALL_PREFIX =/home/NETID/<your username >/local/gklib \

10 /home/NETID/<your username >/ GKlib

11

12 make

13 make install

50

Step 2: Install METIS Library

1 # Clone METIS repository

2 git clone https :// github.com/KarypisLab/METIS.git

3 cd /home/NETID/<your username >/METIS

4

5 # Modify CMakeLists.txt to link with GKlib

6 sed -i '/add_library(metis ${METIS_LIBRARY_TYPE} ${metis_sources })/ s/$/\

ntarget_link_libraries(metis GKlib)/' libmetis/CMakeLists.txt

7

8 # Configure rpath for proper library linking

9 sed -i '/^ CONFIG_FLAGS \?= / s,$, -DCMAKE_INSTALL_RPATH =/home/NETID/aahire/

local/gklib/lib -DCMAKE_INSTALL_RPATH_USE_LINK_PATH=ON ,' Makefile

10

11 # Build and install METIS

12 make config shared =1 gklib_path =/home/NETID/<your username >/local/gklib

prefix =/home/NETID/<your username >/local/metis

13 make

14 make install

Step 3: Build MASS Java Core

1 # Navigate to MASS core directory and checkout METIS branch

2 cd <your checkout folder >/ mass_java_core

3 git checkout aahire -metis -implementation

4

5 # Build the core library with METIS support

6 mvn clean package install

Step 4: Build Triangle Counting Application

1 # Build the application for METIS implementation

2 cd ../ mass_java_appl/Graphs/TriangleCounting

3 git checkout aahire -metis -implementation

4 mvn clean package

51

Step 5: Create Execution Script Create a shell script

run triangle counting metis.sh:

1 #!/bin/bash

2

3 # Set the paths for dynamic libraries

4 export LD_LIBRARY_PATH =/home/NETID/<your username >/local/metis/lib:/home/

NETID/<your username >/ METIS/build/libmetis

5

6 # Run the Java application with METIS partitioning

7 java -cp "/home/NETID/<your username >/MASS:/home/NETID/<your username >/local

/libs/*" \

8 -Djava.library.path=/home/NETID/<your username >/MASS/mass_java_core/

target/native \

9 -jar TriangleCounting -1.0.0 - ASE.jar \

10 /home/NETID/<your username >/MASS/mass_java_appl/Graphs/TriangleCounting/

graph_w.csv

Step 6: Execute the Application

1 # Make the script executable

2 chmod +x run_triangle_counting_metis.sh

3

4 # Run the application

5 ./ run_triangle_counting_metis.sh

Expected Output

The application will output triangle count results with performance metrics showcasing

the benefits of METIS-based graph partitioning and Aeron’s communication implementa-

tion.

52

Figure C.2: Workflow: METIS partitioning with Aeron communication’s output

	List of Figures
	List of Tables
	Introduction
	Background and Challenges
	Multi-Agent Spatial Simulation Architecture
	Agent-based Graphs in MASS
	Technical Challenges

	Related Work
	Graph Distribution Strategies
	Communication Systems in Distributed Graph Databases

	Enhanced Vertex Distribution Strategy
	Hazelcast Inspired Partitioning Strategy
	METIS Multilevel Graph Partitioning Strategy

	Aeron-based UDP Communication System
	Design
	Implementation

	Evaluation
	Performance Benchmarking Methodology
	Environment Setup
	Performance Comparison: Round Robin vs Hazelcast Inspired Partitioning
	Performance Comparison: Round Robin vs METIS partitioning
	Performance Comparison: TCP vs Aeron's UDP communication

	Conclusion
	Summary of Contributions
	Limitations & Future Work

	Graph Partitioning Code
	Aeron Communication Implementation
	How to Run Programs
	Hazelcast-inspired Partitioning (Git Branch - aahire/dsg-improvements)
	METIS Graph Partitioning and Aeron Implementation (Git Branch: aahire-metis-implementation)

