
MASS JAVA LIBRARY TOWARDS IT’S USE FOR A
GRAPH DATABASE SYSTEM

ATUL AHIRE

Term Report - Winter Quarter

Master of Science in Computer Science & Software Engineering

University of Washington

March 26, 2025

Project Committee

Professor Munehiro Fukuda, Committee Chair

Professor Robert Dimpsey, Committee Member

Professor Brent Lagesse, Committee Member

I. Introduction

In this quarter’s work, I explored optimizations for the MASS Java framework to enhance its
capabilities as a graph database system. The Multi-Agent Spatial Simulation (MASS) library
provides a powerful foundation for distributed computing, but faces significant challenges
when scaling graph operations across computing clusters. Initially, my research focused on
addressing the inefficient vertex distribution mechanisms in MASS. The standard round-robin
approach distributes vertices across nodes without considering graph topology, leading to
excessive remote communication during traversals. To solve this, I implemented two advanced
partitioning strategies: a Hazelcast-inspired partitioning logic that creates evenly distributed
fixed-size partitions, and a METIS-based approach that minimizes edge cuts between partitions.
Benchmarking these partitioning strategies revealed an interesting phenomenon. While the
METIS-based partitioning successfully reduced remote agent migration requests by a significant
margin as shown in Figure 1, this reduction did not translate to proportional performance
improvements in applications like Triangle Counting. This unexpected outcome triggered a
deeper analysis of the system’s performance characteristics.

The investigation revealed that the bottleneck wasn’t just in where vertices were placed, but
in how agents migrated between nodes. The current MASS implementation faces two critical
limitations: (1) it creates and destroys threads for each migration cycle, adding substantial
overhead, and (2) it relies on synchronous TCP communication that becomes inefficient with
increasing cluster size and graph complexity. To address these foundational issues, I developed
a new communication infrastructure for MASS based on Aeron, a high-performance UDP
messaging framework. This approach introduces a dual communication pattern: a master-worker
structure for control operations and global synchronization, and a peer-to-peer mesh network
optimized for high-throughput agent migrations. The solution implements custom reliability
mechanisms on top of UDP through acknowledgment protocols and retry logic, while leveraging
Aeron’s efficient zero-copy operations and message fragmentation capabilities.

Figure 1: Agent migrations metrics with different partitioning techniques.

2

II. Challenges

While Aeron-based UDP communication offers significant performance benefits for MASS, it
also introduces several challenges.

Key Challenges in using Aeron in MASS

1. Message Reliability

Unlike TCP, UDP provides no built-in guarantee of message delivery. When a message is
sent via UDP, there is no automatic confirmation that it has reached its destination. This
unreliability is particularly problematic for MASS, where missed messages could result
in lost agent migrations, incomplete graph traversals, or corrupted distributed state. The
system must function correctly even when packets are dropped due to network congestion
or temporarily unavailable nodes, making reliability a fundamental challenge that needed
addressing at the application level. We implemented a comprehensive acknowledgment
framework using CountDownLatch mechanisms and timeout-based retries. Each message
generates a unique ID tracked in a ConcurrentHashMap, with acknowledgments from
receivers triggering latch countdowns. Messages without acknowledgments within config-
urable timeframes trigger automatic retransmission, with exponential backoff to prevent
network congestion during periods of instability.

2. Message Ordering

UDP does not preserve message order, which introduces significant complexity for oper-
ations that depend on sequential processing. Messages sent in a specific sequence may
arrive at their destination in a completely different order. This issue becomes particularly
acute in graph operations where the order of updates matters, such as multi-step migrations
or modifications to connected vertices. Without ordering guarantees, the system could
enter inconsistent states where, for example, a vertex is modified after it’s been deleted, or
an agent moves to a location that no longer exists in the expected form. Our solution in-
volved implementing logical timestamps and message sequencing at the application layer.
For critical operations like agent migration, we developed a transaction-based approach
where migrations occur in atomic operations with rollback capabilities should any part of
the sequence fail. Additionally, we implemented message buffering at the receiver side to
reorder messages before processing when sequence integrity is essential.

3. Buffer Management

Aeron’s high-performance approach relies on off-heap memory management using direct
byte buffers that operate outside Java’s garbage collection. While this approach offers
significant performance benefits by avoiding GC pauses and memory copies, it introduces
complex memory management requirements. Large agent migrations can require buffers
exceeding default allocation sizes, potentially leading to out-of-memory conditions or
excessive fragmentation. Since these buffers are not automatically managed by the JVM,

3

improper handling can result in memory leaks that gradually degrade system performance
and stability. We encountered significant challenges when handling large agent migrations,
where buffers exceeded default sizes. Our implementation dynamically resizes buffers
based on message payload requirements while implementing safeguards against excessive
memory consumption.

4. Architectural Refactoring

The existing MASS framework was built around a synchronous communication model
where operations typically block until completion. Aeron, by contrast, uses a fundamen-
tally asynchronous approach based on non-blocking I/O and event notifications. This
paradigm shift affects core assumptions throughout the codebase. Operations that pre-
viously completed in a predictable sequence now occur asynchronously, potentially in
parallel, creating race conditions and state management challenges. Thread synchroniza-
tion points, error handling strategies, and state maintenance all require reconsideration
when moving from synchronous to asynchronous processing. We needed to redesign
core components to operate in an event-driven manner, implementing callback chains
and completion handlers throughout the codebase. This refactoring extended beyond just
communication layers, affecting thread management, agent lifecycle handling, and Place
operations.

III. Proposed Solution

The proposed solution transforms MASS’s communication infrastructure from TCP to a high-
performance Aeron-based UDP implementation using a dual communication pattern approach
as shown in Figure 2. The solution implements a hybrid communication approach to address the
inefficiencies in MASS agent migration for large graph applications:

1. Master-Worker Pattern Master-Worker Pattern forms the backbone for control opera-
tions. Phase 1 establishes the Master Node (PID=0) through MASS.init(), which becomes
the foundation for the Master-Worker Pattern. In phase 2, the Master Node uses SSH to
launch MProcess instances on remote nodes, establishing the "worker" components of
the Master-Worker Pattern. These remote processes will be directed by the Master Node,
creating the hierarchical structure necessary for maintaining system-wide consistency.
Dedicated Aeron streams in Phase 3 connect the master to each worker node, creating
direct channels for operations that require coordination, such as Graph initialization ,
synchronization points, and global state updates. This hierarchical structure provides the
necessary oversight for maintaining consistency across the distributed system.

2. Peer-to-Peer Pattern Peer-to-Peer Pattern addresses the high-volume data transfer needs
of the system. Implemented in the ExchangeHelper class, this pattern creates a mesh
network allowing any node to communicate directly with any other node without routing
through the master as shown in Phase 4. This direct communication approach significantly

4

Figure 2: Aeron Integration in MASS.

reduces latency and eliminates potential bottlenecks at the master node during intensive
operations like agent migrations. Each node maintains direct Aeron publications to every
other node in the cluster, creating a fully connected communication mesh.

The solution leverages Aeron’s high-performance capabilities including zero-copy operations,
efficient message fragmentation, and back-pressure handling. It implements custom reliability
mechanisms on top of UDP through acknowledgment protocols and retry logic. For agent
migrations specifically, the system dynamically sizes buffers to handle large transfers (up to
16MB per message) and employs concurrent processing with dedicated receiver threads.

This dual-pattern approach combines structured control flow with high-performance data
transfer, making it particularly well-suited for large-scale graph applications where efficient
agent migration is critical to overall performance.

IV. Source Code

1. Master-Worker Communication pattern

The master-worker communication model in the MASS framework represents a significant
architectural enhancement, establishing dedicated channels between the master node (rank 0)

5

and worker nodes (ranks > 0) using Aeron’s high-performance messaging capabilities. Let’s
examine the key components of this implementation.

Stream Channel Initialization

Listing 1 establishes dedicated stream IDs for the Master-Worker communication pattern. Line
2 defines the MASTER_TO_WORKER_STREAM_ID (9001) for messages flowing from the master to
worker nodes, while line 3 defines the WORKER_TO_MASTER_STREAM_ID (9002) for messages
traveling in the opposite direction. These separate channels create a clean separation between
the two communication flows.

1 // Stream IDs for dedicated master -worker communication
2 private static final int MASTER_TO_WORKER_STREAM_ID = 9001;
3 private static final int WORKER_TO_MASTER_STREAM_ID = 9002;

Listing 1: Streams For Master-Worker Communication

Listing 2 establishes the master-worker communication channels based on the node’s role
in the system. For the master node (lines 2-11), it adds a publication for sending messages
to workers (line 4) and a subscription for receiving messages from workers (line 5). It then
initializes a subscriber thread (lines 8-10) to handle incoming messages from workers. For
worker nodes (lines 12-21), the configuration is reversed - they add a publication for sending
messages to the master (line 14) and a subscription for receiving messages from the master (line
15), with a corresponding subscriber thread (lines 18-20).

1 // Initialize master -worker communication channels
2 if (MASS.getMyPid () == 0) {
3 // Master node setup
4 masterToWorkerPub = aeron.addPublication(url +

AERON_FLOW_CONTROL_STRATEGY , MASTER_TO_WORKER_STREAM_ID);
5 workerToMasterSub = aeron.addSubscription(url ,

WORKER_TO_MASTER_STREAM_ID);
6

7 // Start subscriber for master node
8 masterWorkerSubscriber = new Subscriber("MASTER_WORKER",
9 receiveMasterWorkerMessage(true), FRAGMENT_COUNT_LIMIT ,

running , idle ,
10 workerToMasterSub);
11 masterWorkerSubscriber.start();
12 } else {
13 // Worker node setup
14 workerToMasterPub = aeron.addPublication(url +

AERON_FLOW_CONTROL_STRATEGY , WORKER_TO_MASTER_STREAM_ID);
15 masterToWorkerSub = aeron.addSubscription(url ,

MASTER_TO_WORKER_STREAM_ID);
16

17 // Start subscriber for worker node
18 masterWorkerSubscriber = new Subscriber("MASTER_WORKER",
19 receiveMasterWorkerMessage(false), FRAGMENT_COUNT_LIMIT ,

running , idle ,

6

20 masterToWorkerSub);
21 masterWorkerSubscriber.start();
22 }

Listing 2: Initialize master-worker communication channels

Message Sending

Listing 3 implements the message sending functionality from master to worker nodes. Lines 2-4
ensure this method is only called by the master node. The method takes a destination worker
address and wraps the message content in a MasterWorkerMessage container (line 13), which
is then serialized (line 14). Lines 16-26 handle the actual transmission of the message using
Aeron’s publication API, with a retry mechanism that uses the idle strategy if the initial send
attempt fails. This ensures reliable delivery of control messages from the master to workers.

1 public <T> void masterSendToWorkerNode(MASSMessage <Serializable >
message) {

2 if (MASS.getMyPid () != 0) {
3 throw new IllegalStateException("Only the master node can call

masterSendToWorkerNode");
4 }
5

6 int workerRank = message.getDestinationAddress ();
7 Serializable msgContent = message.getMessage ();
8

9 if (!(msgContent instanceof Message)) {
10 throw new IllegalArgumentException("Message content must be of

type Message");
11 }
12

13 MasterWorkerMessage wrapper = new MasterWorkerMessage (0, (Message)
msgContent , workerRank);

14 byte[] data = SerializationUtils.serialize(wrapper);
15

16 // Use the master -to-worker publication
17 UnsafeBuffer buffer = new UnsafeBuffer(BufferUtil.

allocateDirectAligned(data.length , 64));
18 buffer.putBytes(0, data);
19

20 long result;
21 do {
22 result = masterToWorkerPub.offer(buffer , 0, data.length);
23 if (result < 0) {
24 idle.idle();
25 }
26 } while (result < 0);
27 }

Listing 3: Send Message

7

Similarly, for worker-to-master communication, the workerSendToMasterNode method
ensures messages are sent on the appropriate channel.

Message Reception

Listing 4 handles message reception for both master and worker nodes. When the master receives
a message (lines 8-21), it stores the message in a map and signals any waiting threads using
a CountDownLatch. When a worker receives a message (lines 22-39), it first checks if the
message is intended for this specific worker or is a broadcast message (line 28), then processes
it similarly by storing the message and signaling any waiting threads.

1 private FragmentHandler receiveMasterWorkerMessage(boolean isMaster) {
2 return (buffer , offset , length , header) -> {
3 try {
4 byte[] data = new byte[length];
5 buffer.getBytes(offset , data);
6 MasterWorkerMessage message = SerializationUtils.

deserialize(data);
7

8 if (isMaster) {
9 // Master receiving from a worker node

10 int senderRank = message.getSenderRank ();
11

12 if (message.getMessage () instanceof Message) {
13 // Store message
14 masterWorkerMessages.put(senderRank , (Message)

message.getMessage ());
15

16 // Signal waiting thread if any
17 CountDownLatch latch = masterWorkerLatches.get(

senderRank);
18 if (latch != null) {
19 latch.countDown ();
20 }
21 }
22 } else {
23 // Worker node receiving from master
24 int destRank = message.getDestinationRank ();
25 int myRank = MASS.getMyPid ();
26

27 // Only process messages targeted at this node or
broadcasts

28 if (destRank == -1 || destRank == myRank) {
29 if (message.getMessage () instanceof Message) {
30 // Store message
31 masterWorkerMessages.put(0, (Message) message.

getMessage ());
32

33 // Signal waiting thread if any

8

34 CountDownLatch latch = masterWorkerLatches.get
(0);

35 if (latch != null) {
36 latch.countDown ();
37 }
38 }
39 }
40 }
41 } catch (Exception e) {
42 MASSBase.getLogger ().error("Error processing master -worker

message: " + e);
43 }
44 };
45 }

Listing 4: Recieve Message

Synchronous Operation Support

A key feature of this implementation is its ability to support synchronous operations through a
CountDownLatch mechanism. Methods like waitForWorkerNodeMessage allow the caller to
block until receiving a message from a specific node:

1 public Message waitForWorkerNodeMessage(int workerRank , long timeoutMs)
{

2 if (MASS.getMyPid () != 0) {
3 throw new IllegalStateException("Only the master node can call

waitForWorkerNodeMessage");
4 }
5

6 // Check if we already have a message from this node
7 if (masterWorkerMessages.containsKey(workerRank)) {
8 return masterWorkerMessages.remove(workerRank);
9 }

10

11 // Set up a latch for this node
12 CountDownLatch latch = new CountDownLatch (1);
13 masterWorkerLatches.put(workerRank , latch);
14

15 try {
16 boolean received = latch.await(timeoutMs , TimeUnit.MILLISECONDS

);
17

18 // Clean up
19 masterWorkerLatches.remove(workerRank);
20

21 if (received) {
22 return masterWorkerMessages.remove(workerRank);
23 } else {

9

24 MASSBase.getLogger ().error("Timeout waiting for message
from worker " + workerRank);

25 return null;
26 }
27 } catch (InterruptedException e) {
28 Thread.currentThread ().interrupt ();
29 return null;
30 }
31 }

Listing 5: Synchronous Message Support

This architecture provides a dedicated channel for control operations separate from the data
plane, allowing for more structured communication patterns between the master and worker
nodes while keeping this traffic isolated from the framework’s other messaging activities.

2. Peer-to-Peer Communication

This communication is primarily facilitated through the ExchangeHelper class, which provides
a reliable mechanism for nodes to send and receive messages directly with each other.

Connection Establishment

The communication begins with establishing connections between all nodes in the cluster. Here’s
how the connection is established:

This method creates an array of Publications (nodePubs) for sending messages to each node
(lines 27 in Listing 6). Then Sets up a Subscription for receiving messages (lines 17 in Listing 6).
Finally, starts a receiver thread to process incoming messages (lines 48 in Listing 6)

1

2 public void establishConnection(int size , int rank , Vector <String >
hosts , int port) {

3 MASS.getLogger ().debug("Initializing Aeron connections to {} nodes"
, size);

4

5 nodePubs = new Publication[size];
6

7 // Get the Aeron instance from MASS messaging provider
8 aeron = MASS.getMessagingProvider ().getAeronInstance ();
9 if (aeron == null) {

10 MASS.getLogger ().error("Aeron instance not available - MASS
messaging not properly initialized");

11 System.exit(-1);
12 }
13

14 // Set up subscription to receive messages first
15 String localEndpoint = hosts.get(rank) + ":" + port;
16 String subChannel = "aeron:udp?endpoint=" + localEndpoint;
17 exchangeSubscription = aeron.addSubscription(subChannel ,

EXCHANGE_STREAM_ID);

10

18

19 // Create publications to all other nodes
20 for (int i = 0; i < size; i++) {
21 if (i == rank)
22 continue; // Skip self
23

24 String endpoint = hosts.get(i) + ":" + port;
25 String channel = "aeron:udp?endpoint=" + endpoint;
26

27 nodePubs[i] = aeron.addPublication(channel , EXCHANGE_STREAM_ID)
;

28

29 // Implement retry logic for connection
30 int maxRetries = 5;
31 boolean connected = false;
32

33 for (int retry = 0; retry < maxRetries; retry ++) {
34 // Check for connection with a shorter timeout per attempt
35 long deadline = clock.time() + 5000; // 5 seconds per

attempt
36 while (! nodePubs[i]. isConnected () && clock.time() <

deadline) {
37 idleStrategy.idle();
38 }
39

40 if (nodePubs[i]. isConnected ()) {
41 connected = true;
42 break;
43 }
44 }
45 }
46

47 // Start receiver thread
48 receiverThread = new Thread (() -> this.receiveMessages ());
49 receiverThread.setDaemon(true);
50 receiverThread.start();
51 }

Listing 6: Establish Connection

Sending Messages

The sendMessage method handles sending a message to a specific node:

1

2 public void sendMessage(int rank , Message message) {
3 MASS.getLogger ().debug("Sending message to rank: {}", rank);
4

5 // Add sender rank to message
6 message.setSenderRank(MASSBase.getMyPid ());
7

11

8 // Serialize the message
9 byte[] serializedMsg = SerializationUtils.serialize(message);

10

11 // Ensure we have a valid publication for this rank
12 if (nodePubs[rank] == null || !nodePubs[rank]. isConnected ()) {
13 MASS.getLogger ().error("No valid connection to node " + rank);
14 return;
15 }
16

17 // Copy serialized message to the send buffer
18 sendBuffer.putBytes(0, serializedMsg);
19

20 // Send the message
21 long result;
22 do {
23 result = nodePubs[rank].offer(sendBuffer , 0, serializedMsg.

length);
24 if (result < 0) {
25 idleStrategy.idle();
26 }
27 } while (result < 0);
28

29 MASS.getLogger ().debug("Message sent to rank: {}", rank);
30 }

Listing 7: Send Message to Node

V. Performance Benchmark

After integrating the Aeron UDP communication into MASS, I performed performance bench-
marking using a triangle counting application on graphs with 5 and 1000 vertices.

In Figure 3, the performance data for triangle counting shows that Aeron-based UDP com-
munication significantly underperforms compared to traditional TCP, counter to expectations for
a high-performance messaging system. While Aeron should theoretically offer better throughput
and lower latency than TCP, I feel that the implementation in ExchangeHelper appears to intro-
duce bottlenecks that negate these advantages. The primary culprits are likely the synchronous
messaging pattern with acknowledgment waits, which create overhead that compounds across
distributed nodes. This explains why execution times with Aeron (802ms and 1123ms for 4
and 8 nodes) are much higher than with TCP (474ms and 412ms), despite Aeron’s architectural
advantages.

Also, Triangle counting with 1k nodes is failing with the exception IllegalArgumentException:
message exceeds maxMessageLength of 16777216, length=32395426 indicates that dur-
ing agent migration (specifically at iteration 1 when the agent count jumps dramatically from
46,740 to 878,407), the system attempts to send a message approximately 32MB in size, which
exceeds Aeron’s configured maximum message length of 16MB. This likely happens when

12

Figure 3: Performance benchmark for triangle counting on a graph with 5 vertices.

numerous agents need to migrate between nodes simultaneously, forcing the system to serialize
a large collection of agent objects into a single message.

1 Import complete
2 Import time: 2.176 s
3 Number of Vertices is : 1000
4 Go! Graph
5 *** iteration = 0************
6 *** Total Agents = 46740************
7 *** iteration = 1************
8 Exception in thread "Thread -20" java.lang.IllegalArgumentException:

message exceeds maxMessageLength of 16777216 , length =32395426
9 at io.aeron.Publication.checkMaxMessageLength(Publication.java

:666)
10 at io.aeron.ConcurrentPublication.offer(ConcurrentPublication.

java :125)
11 at io.aeron.Publication.offer(Publication.java :426)
12 at edu.uw.bothell.css.dsl.MASS.ExchangeHelper.sendMessageToRank

(ExchangeHelper.java :503)
13 at edu.uw.bothell.css.dsl.MASS.ExchangeHelper.sendMessage(

ExchangeHelper.java :427)
14 at edu.uw.bothell.css.dsl.MASS.

AgentsBase$ProcessAgentMigrationRequest.run(AgentsBase.java
:3478)

15 *** Total Agents = 878407************
16 }

Listing 8: Triangle counting- 1K

To address both the performance issues and the message size limitations in ExchangeHelper,
I will have to replace the synchronous approach with a non-blocking asynchronous design and
handle large messages streaming using chunks rather than sending whole message.

13

VI. Project Plan

Quarter Week Plan Deliverables
Spring 2025 1-2 Handle agent migration for

large graphs and fine tune per-
formance of aeron based com-
munication.

3-4 Benchmark graph applications
and database queries perfor-
mance.

5-6 Work on the draft of the white
paper and Create final defense
slides.

Final defense slides created.

7-8 Edit the white paper based on
the committee recommendation.

White paper revised based on
committee feedback.

9-10 Finalize program deliverables. Program deliverables finalized.
11 Finalize the white paper. Up-

date the system documentation
and user guides to reflect the
changes and provide instruc-
tions on utilizing the extended
features.

White paper finalized. System
documentation and user guides
updated.

VII. Conclusion

This Quarter, I explored the implementation and optimization of Aeron based UDP commu-
nication in the MASS (Multi-Agent Spatial Simulation) framework, with a specific focus on
enhancing the agent migration performance. While Aeron offers theoretical advantages over
traditional TCP communication with its high-performance design and efficient memory manage-
ment, our performance analysis revealed significant challenges in practical implementation. The
triangle counting algorithm benchmark demonstrated that the current Aeron implementation
actually underperforms compared to the original TCP version, primarily due to synchronous
messaging patterns, inefficient serialization, and acknowledgment overhead that negate Aeron’s
inherent advantages.

The most critical limitation encountered was the message size constraint, as evidenced
by the failure when processing a 1,000-vertex graph where message sizes exceeded Aeron’s
configured maximum. This highlighted the need for more sophisticated approaches to agent
migration and data transmission in distributed simulations. The proposed optimizations include
implementing message fragmentation, asynchronous processing, efficient serialization, proper
Aeron configuration, and adaptive flow control mechanisms. By adopting these strategies,

14

the MASS framework can better leverage Aeron’s performance capabilities while handling
large-scale simulations that generate substantial inter-node communication.

In the next quarter, my focus will be on completing the integration of Aeron into MASS’s
graph database engine, fine-tuning its performance under real-world scenarios, and preparing
for final submission and defense of this project.

VIII. Appendix

Complete Source Code

Complete source code of this implementation can be found in my branch:
Branch:
mass_library_developers / mass_java_core
Pull Request:
#51: aahire-metis-implementation — Bitbucket

15

https://bitbucket.org/mass_library_developers/mass_java_core/pull-requests/51

	Introduction
	Challenges
	Proposed Solution
	Source Code
	Performance Benchmark
	Project Plan
	Conclusion
	Appendix

