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Background 

Multi-Agent Spatial Simulation (MASS) is an Agent-Based Modeling (ABM) framework that 
stores data in a distributed array (called places) and distributes processes (agents) to interact 
with the data. ABM libraries are efficient for simulating biological scenarios and some data 
science applications where not all data is needed for each cycle of operations. In these 
situations, it can be much more efficient to move computation to the distributed data instead 
of the data to the computation, as classically done.  

There are two primary considerations for the MASS framework – performance and 
programmability. While we endeavor to process large amounts of data accurately and quickly, 
it is a primary aim to furnish this framework for non-computing researchers. To accomplish this, 
MASS provides an application programming interface (API) for researchers to fit their models 
and leverage the computing power the framework provides.  

Further, NVIDIA’s Compute Unified Device Architecture (CUDA) provides a unified memory 
address (UMA) space that combines host and device addresses into a single virtual address 
space accessible by both. CUDA UMA also enables device-to-device links across PCIe and 
directly via NVLINK on some devices. Direct link via NVLINK can decrease memory transfer time 
by as much as four-times versus PCIe [1].  

MASS CUDA adheres to the Model-View-Presenter design pattern. The presenter manages the 
data and handles all data access and processing. This is accomplished using two data models – 
one for the GPU device(s) and one for the host. Both models maintain data in structure of 
arrays to facilitate the CUDA compute model of Single Instruction Multiple Data (SIMD). Place 
and Agent objects are instantiated and maintained in both host and device memory and only 
state is transferred from device to host when output is requested. An application developer 
accesses the framework through the view by overloading Place and Agent classes and providing 
a main class to simulate how this interact in the researcher’s environment. 

The objective of this research is to extend the implementation of MASS CUDA to use multiple 
GPU’s to process simulations faster than either a pure C++ implementation or the current single 
device CUDA implementation. To accomplish this objective, we have set out goals. Refactoring 
current MASS CUDA to use multiple GPU’s, managed memory, and a beginning dynamic agents’ 
implementation were the goals for this quarter. The compute resources for this research are 
two NVIDIA RTX 2080 Super connected via NVLINK on a desktop computer running Ubuntu 
18.04. 

Progress 

The first goal of this research was to refactor MASS to use managed memory. With managed 
memory, the CUDA runtime manages memory transfers between the host computer and the 
GPU device(s). Unfortunately, after refactoring MASS CUDA to use managed memory it was 
realized that this cannot be accomplished. As previously outlined, it is a primary goal of MASS 
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to enable non-computing researchers ease of use and to accomplish this the framework 
leverages inheritance and polymorphism. CUDA managed memory works with C++ classes, but 
it does not work with virtual classes or functions. In managed memory all memory is first 
allocated on the host and then transferred to the device (and , back, etc.), but it does not 
reproduce the virtual function table on the device(s) rendering any pure virtual classes and 
virtual methods un-initialized.  

The failure with managed memory ended up being a failure on two fronts. First, the apparent 
failure of managed memory and the time spent refactoring to realize this. Second, a lot of the 
multiple-GPU code refactoring was done at the same time and unwinding and refactoring back 
to classic CUDA memory management took far longer than it should have. It appeared that 
MASS CUDA was initializing and allocating memory using managed memory, but when we tried 
to access data in the derived classes it became apparent nothing was fully instantiating. The 
lesson here is one can never read enough and it is imperative to quickly employ a development 
loop – write tests or interfaces, deploy small improvements, test, and, when they pass tests, 
refactor to remove redundancies – especially when the environment is complex. The goal with 
managed memory was to get to a simple starting point for MASS CUDA multiple GPU and 
progressively add features to improve performance. We expected to move back to traditional 
CUDA memory management to gain finer grained processing improvements at some point in 
this research. 

This quarter I completed changes to how the MASS framework manages Place and Agent 
objects on devices and the host. First, we changed how we are tracking objects on the devices 
so that pointers are stored separately for each device in vectors. Then, all instantiation and 
kernel calling methods were updated to process on multiple devices. At the time of this writing 
MASS CUDA multiple GPU initializes Places and Agents and all Place functionality processes 
correctly, but the Agent functionality is not fully implemented, and no data is yet exchanged 
between devices during either places->exchangeAll( ) or agents->manageAll( ). Finally, while not 
all the kernel functions or kernel calling functions are finished towards an initial 
implementation of MASS CUDA on multiple devices, algorithms have been developed and are 
being implemented. These algorithms are outlined in the next section and code is available at - 
https://bitbucket.org/mass_library_developers/mass_cuda_core/src/ben.pittman/ 

Method 
Refactoring MASS CUDA for multiple devices introduces the challenge of communicating across 
devices. In CUDA there are a few options for how to do this. First, and where our 
implementations begin, is to introduce the ghost Places and process more data than if 
everything was on one GPU and then update each device with the ghost Place data of the 
neighbor device(s). Other options to be explored include setting ghost Place data via kernel 
function calls by passing in pointers for each device’s ghost Places.  
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Places 

This research begins the multiple GPU framework by splitting Place objects amongst devices. 
MASS CUDA stores all data in one-dimensional arrays that are then processed and returned as 
output as though they are two-dimensional. To facilitate asynchronous processing on each 
device ghost Place objects are allocated on each device. The number of ghost Places kept on 
each device is equal to the furthest an Agent object may travel in one simulation step (at 
minimum one row) and contains the same values as the related object(s) on the neighbor 
device. One set of ghost Places is maintained on the first and last ranked device and two sets on 
each middle ranked device. This relationship is illustrated in Figure 1.  

 
Figure 1. MASS Places 

 

The Places neighbor exchange – not fully implemented – performs a collection of the data from 
each application developer defined neighboring Place – or none if the neighbor is outside the 
entire two-dimensional represented Place space. This algorithm is shown in pseudocode in 
Listing 1. The first step of the algorithm is to check that the passed in destinations vector 
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matches our neighbors, and if not we update the neighbor’s vector and place in shared 
memory. Next, devices are looped over (lines 6-9) and the exchangeAllPlacesKernel function is 
called on each device – sequentially for now as we have yet to implement streams for each 
device. The kernel function is called on all valid Place indices (line 15), then iterates through the 
neighbors for each Place (lines 16-23) where if the neighbor Place is within the devices space it 
is added to the neighbor array of the state of the Place. Finally, the un-implemented portion of 
this function is to exchange data across devices. This can be accomplished with either a device-
to-device memory copy (lines 10-11) or by calling a kernel function on each device with 
pointers from neighboring device(s) and copying the Place state (not shown). 

As the aim of this research is to expand to multiple devices the only change to the MASS Place 
method callAll( ) is to put the kernel function in a loop that iterates over the devices similarly to 
exchangeAllPlaces( ) in Listing 1. 

 

Listing 1. Places exchange with neighbor’s algorithm 
1. __constant__ int offsets_device[MAX_NEIGHBORS] 
2.   
3. void Dispatcher::exchangeAllPlaces( vector<int*> *destinations) 
4.   if (destinations != neighbors) update neighbors to be destinations 

on each device 
5.   retrieve device data parameters 
6.   for (n : devices) 
7.     cudaSetDevice(devices.at(n)) 
8.     exchangeAllPlacesKernel<<<>>> (params) 
9.     cudaDeviceSynchronize() 
10.     if (n != 0) cudaMemcpy(higher ranked device data to lower ranked 

device) 
11.     if (n != devices.size() - 1) cudaMemcpy(lower ranked device data 

to higher ranked device) 
12.   
13.   
14. __global__ exchangeAllPlacesKernel(Place** ptrs, int nptrs, int 

nNeighbors) 
15.   int idx = getGlobalidx_1D_1D() 
16.   if (idx < nptrs) 
17.     PlaceState *state = ptrs[idx]->getState() 
18.     for ( n : nNeighbors ) 
19.       int j = idx + offsets_device[n] 
20.       if (j >= 0 && j < nptrs) 
21.         state->neighbors[n] = ptrs[j] 
22.       else 
23.         state->neighbors[n] = NULL 
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Agents 

The Agents implementation – not completed  – maintains a set of Agents on each device. At 
instantiation, the application developer may decide how to allocate Agents across Places, but if 
not this implementation first randomly generates indices over the entire Place space, then sorts 
them, assigns them to the corresponding device, and allocates them on each device. Agents 
interact with Places through a callAll() method by changing its data. These are performed 
concurrently on all Agents across all devices. As with the Place->callAll( ) function(s), the Agent-
>callAll( ) was refactored to have the kernel function called on each device with the appropriate 
data. After each callAll( ) a follow-up method, manageAll( ), is called to first terminate any 
agents marked as not alive, then migrate alive agents to different Place objects, and finally to 
spawn Agents at the Agents new Place, if applicable.  

We define dynamic Agents in this research as meaning the framework will increase or decrease 
the underlying memory of the number of Agents spread across the Place objects throughout a 
simulation. Previous research instantiated arrays with twice the number of Agents declared at 
MASS initialization to allow for Agent spawning [2]. Further, no agent spawning or agent 
termination algorithms were developed for the MASS CUDA framework. This research extends 
Agent management by introducing algorithms for a starting point for garbage collection, agent 
spawning, and migrating agents across devices.  

This research’s garbage collection (agent termination) algorithm first adds a vector of Agent 
arrays to represent collected agents on each device that replaces the slacked array of the prior 
implementation. However, if the number of alive Agents drops below the number at 
instantiation the array of Agents size will not change in the same manner to avoid excessive 
memory allocations. This fits the implementation as the only objects that may need to be 
garbage collected or instantiated after initialization are Agent objects.   

The terminateAgents() method shown in pseudocode in Listing 2 first calculates the number of 
Agents to collect by putting an integer on each device to track the count (lines 3-6). Next, the 
devices are iterated over, and each call a kernel function to atomically increment the count of 
Agents on each device that are set to not alive (lines 14-17). This count is then used to 
instantiate an array and a second kernel function is called to add each not alive Agent to the 
array using atomicity on each device to avoid race conditions (lines 19-28). Finally, each set of 
Agent pointers are pushed onto a vector representing the collected agents (line 11). 

Following the terminateAgents( ) function as part of the Agents->manageAll ( ) function is a call 
to migrate agents to a different Place object. Agents at initialization are mapped onto Places 
located on each device, but not on any ghost Places. The migrate Agents algorithm runs 
through potential migration locations and always chooses the lowest possible index value to 
migrate. When a Place is chosen, Agents may migrate to either a Place or ghost Place and are 
then copied to the next ranked device if necessary. This MGPU implementation synchronizes 
Agent migration such that the lowest device first sets its Agents migration locations, transfers 
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any ghost Place located Agents to the neighboring device, waits on any Agents migrating back 
to it, and then removes any references to Agents in its ghost Places. This pattern repeats until 
all Agents across all devices have found a migration Place. Figure 2 shows an example of Agent 
migration on and across devices where potential Agent travel is the Von Neumann 
neighborhood of the Place it resides. 

 
Listing 2. Agent termination algorithm 

1. Void Dispatcher::terminateAgents() 
2.   get devices and device parameters 
3.   for (n: devices) 
4.     cudaMalloc(devAgtTrmCount [n], sizeof(int)) 
5.     cudaMemcpy(devAgtTrmCount[n], hostAgtTrmCount[n], sizeof(int) * 

size, H2D ) 
6.     terminationCountKernel<<<>>> (params)  
7.     cudaMemcpy(hostAgtTrmCount[n], devAgtTrmCount[n], sizeof(int) * 

size, D2H) 
8.     Agent** a_ptr = NULL 
9.     cudaMalloc(a_ptr, sizeof(Agent*) * hostAgtTrmCount[n]) 
10.    collectAgentPointersKernel<<<>>> (params) 
11.    devCollectedPtrs[n].push_back(a_ptr) 
12.     // update device array size tracking variables 
13.   
14. __global__ terminationCountKernel(Agent** ptrs, int nptrs, int* 

devAgtTrmCount) 
15.   int idx = getGlobalidx_1D_1D() 
16.   if (idx < nptrs && !(ptrs[idx]->isAlive())) 
17.     atomicAdd(devAgtTrmCount, 1) 
18.   
19. __global__ collectAgentPointersKernel(Agent** ptrs, Agent** c_ptrs, 

int nptrs, int count, int trmC) 
20.   int idx = getGlobalidx_1D_1D() 
21.   if (idx < nptrs) 
22.     if (!( ptrs[ idx ] ->isAlive()) 
23.       int idxStart = atomicAdd(nextIdx, count) 
24.       if (idxStart < trmC) 
25.         c_ptrs[idxStart] = ptrs[idx]  
26.         // clear Agent params 
27.     else 
28.       // condense live agents in ptrs array 

 

Spawn agents is run concurrently on each device once migration finishes on that device. For 
environments of more than two GPU devices these can commence once migration from the 
higher ranked neighbor device is finished. The implementation first checks if its Agent array has 
enough space, takes the collected array of Agents if needed and available, allocates new 
memory if needed, and, finally, combines the arrays. 
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Figure 2. Agent Migration 

 

Brain Grid 

No research towards a Brain Grid implementation was completed this quarter. 

Results 
As the initial implementation for MASS CUDA multiple GPU was not finished this quarter I do 
not have results to compare against MASS CUDA single GPU. 
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