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I.​ Introduction 

The Multi-Agent Spatial Simulation (MASS) Java library is a distributed simulation framework 

that supports agent-based modeling over spatial structures such as arrays and graphs. The 

framework separates two core components: Places, which represent distributed data structures, 

and Agents, which are mobile entities that operate across Places. This architecture allows the 

system to simulate complex, parallel activities across distributed environments. 

Recent studies [1][2] have shown that MASS Java has potential as an agent-based graph 

database system, although its performance remains limited in certain scenarios. These 

limitations are mainly due to the lack of optimization for graphs on Agent execution 

performance. Besides, though previous work has explored the multi-nodes optimizations of 

MASS Java, the multithreading part has remained unoptimized. 

To address these limitations, the independent study introduces enhancements on 

multithreading logic of GraphPlaces and Agents. Specifically, the study is aimed to implement a 

better allocation algorithm of Agents, which groups near Agents on the same thread to maintain 

good CPU affinity and efficient cache usage. 

II.​ Motivation 

The original version of the MASS Java library introduced agent-based modeling over distributed 

environments, enabling Agents to dynamically navigate graphs across multiple processes [3]. 

Later, support for automated Agent migration over distributed data structures was added, 

allowing Agents to move between nodes without manual coordination [4]. More recently, 

Place-level execution has been improved through METIS-based graph partitioning and 

Aeron-based messaging [5]. 

Building on these developments, Yuan Ma [1] evaluated MASS Java as a graph database and 

benchmarked its performance against major graph database systems, while Sumit Hotchandani 

[2] explored agent-based link prediction using the platform. However, most of the previous 

work has focused on optimizations across multiple nodes, while MASS Java still lacks proper 

optimization for multi-threading, especially in Agents and GraphPlaces. This Independent Study 

is mainly motivated by the goal of improving overall performance of MASS Java through 

multi-threading enhancements, and ultimately increasing its usability as a graph database. 

These improvements are evaluated using the benchmark program TriangleCounting on datasets 

ranging from 300 to 3,000 nodes to assess scalability and runtime efficiency. 

III.​ Implementation 

A.​ Places Multithreading Improvements  

Previously, when initializing MASS Java with multiple threads and using GraphPlaces, the 

process would enter a deadlock. The cause of this issue was that the required variables used by 
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worker threads were not set correctly. In addition, there were also some logical errors that 

prevented the execution of the process. Here is an improved version of GraphPlaces with 

corrected multithreading configuration and logic. 

1.​ Variable Initialization in GraphPlaces.java 

This method is called by the main thread, so it is important to set variables like PlacesBase, 

FunctionId, which are required by the MThread class. And after setting these variables, the 

process will allocate GraphPlaces to threads and execute methods on them. 

   @Override 
   public void callAll(int functionId, Object argument) { 
       //Send messages to all secondary processes 
       MASS.getRemoteNodes().forEach(node -> node.sendMessage(new Message( 
           Message.ACTION_TYPE.GRAPH_PLACES_CALL_ALL_VOID_OBJECT, 
           this.getHandle(), 
           functionId, 
           argument 
       ))); 
 
       //Setup messages for multithreading 
       MASSBase.setCurrentPlacesBase(this); 
       MASSBase.setCurrentFunctionId(functionId); 
       MASSBase.setCurrentArgument(argument); 
       MASSBase.setCurrentMsgType(Message.ACTION_TYPE.GRAPH_PLACES_CALL_ALL_VOID_OBJECT); 
       MThread.resumeThreads(MThread.STATUS_TYPE.STATUS_CALLALL); 
 
       //Execute the actual call on main thread 
       this.callAll(functionId, argument, 0); 
       MThread.barrierThreads( 0 ); 
 
       // Synchronize with all secondary processes 
       MASSBase.getLogger().debug("Attempting to barrierAllSlaves..."); 
       MASS.barrierAllSlaves(); 
       MASSBase.getLogger().debug("barrierAllSlaves completed!"); 
   } 

2.​ Place Allocation and Execution in GraphPlaces.java 

In this method, each thread is assigned a specific range of place indexes, and subsequently 

invokes the method only on the corresponding places. The allocation method “getLocalRange” 

is defined by PlaceBase class, which is used in the original 2D version Place. 

   @Override 
   public void callAll( int functionId, Object argument, int tid ) { 
       //check and set local placesSize 
       if (this.placesSize == 0) 
           this.placesSize = places.size(); 
 
       if ( MASSBase.getLogger().isDebugEnabled() )    
           MASS.getLogger().debug("Local PlacesSize = " + this.placesSize); 
 
       // TODO: Allocate places in the same partitions divided by METIS to the same thread    
       //Use the function from PlaceBase to arrange places to threads 
       int[] range = new int[2]; 
       getLocalRange(range, tid); 
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       MASS.getLogger().debug("local tid = " + tid + " range from " + range[0] + " to " + 
range[1]); 
 
       // debugging 
       if ( MASSBase.getLogger().isDebugEnabled() ) 
           MASSBase.getLogger().debug( "thread[" + tid + "] callAll functionId = " + 
                   functionId + ", range[0] = " + range[0] + 
                   " range[1] = " + range[1] ); 
 
       //use the same logic as PlaceBase            
       if ( range[0] >= 0 && range[1] >= 0 ) { 
           
           for ( int i = range[0]; i <= range[1]; i++ ) { 
               if (places.get(i) == null) { continue; } 
               places.get(i).callMethod( functionId, argument ); 
           } 
       
       } 
   } 

The modifications to Places-related classes also include the callAll method with return values in 

GraphPlaces, as well as changes to PropertyGraphPlaces (a variant of GraphPlaces). However, 

since the underlying principles are similar, they are not elaborated here, and the source code 

can be found in the Appendix. 

B.​ Agent Multithreading Improvements 

In the previous implementation of callAll and manageAll for Agents, all threads shared a single 

global Agent bag containing all Agents. Each thread retrieved Agents sequentially from this 

global bag, which introduced substantial synchronization overhead. Moreover, since Agents 

were randomly assigned, a single thread could end up processing Agents distributed across 

many different Places, resulting in poor data locality. A more efficient strategy is to allocate 

Agents residing in nearby Places to the same thread. Furthermore, to eliminate unnecessary 

synchronization, each thread should maintain its own local Agent bag.  

1.​ Maintenance of Local Agent Bag in MThread.java 

Each thread is required to maintain its own local Agent bag. This involves the initialization of the 

bag, clearing its contents when necessary, retrieving Agents from it, and supporting additional 

utility methods that facilitate efficient thread-level management. 

private static ThreadLocal<Queue<Agent>> agentQueue = 
ThreadLocal.withInitial(LinkedList::new); 
   public static void initializeAgentQueue(PlacesBase placesBase, int tid) { 
       clearAgentQueue(); 
       Queue<Agent> localAgentQueue = agentQueue.get(); 
       boolean isGraphPlaces = GraphPlaces.class.isAssignableFrom(placesBase.getClass()); 
       GraphPlaces graphPlaces = null; 
       if(isGraphPlaces) { 
           graphPlaces = (GraphPlaces) placesBase; 
           if(placesBase.placesSize == 0) 
               placesBase.placesSize = graphPlaces.places.size(); 
       } 
       MASSBase.getLogger().debug( "Current placesSize is " + placesBase.placesSize); 

3 
 



 

 
       int[] range = new int[2]; 
       placesBase.getLocalRange(range, tid); 
 
       if ( range[0] >= 0 && range[1] >= 0 ) { 
           for ( int i = range[0]; i <= range[1]; i++ ) { 
               if(isGraphPlaces) { 
                   if (graphPlaces.places.get(i) == null) { continue; } 
                   for(Agent agent : graphPlaces.places.get(i).getAgents()) { 
                       localAgentQueue.add(agent); 
                   } 
               } else { 
                   if(placesBase.places[i] == null) { continue; } 
                   for(Agent agent : placesBase.places[i].getAgents()) { 
                       localAgentQueue.add(agent); 
                   } 
               } 
           } 
       } 
       barrierThreads(tid); 
   } 
 
   /* 
    * clear agent queue 
    */ 
   public static void clearAgentQueue( ) { 
       agentQueue.get().clear(); 
   } 
 
   /* 
    * get the full agent queue, should be only used for debugging 
    */ 
   public static Queue<Agent> getAgentQueue( ) { 
       return agentQueue.get(); 
   } 
 
   /* 
    * get the agent queue's size 
    */ 
   public static int getAgentQueueSize( ){ 
       return agentQueue.get().size(); 
   } 
 
   /* 
    * poll a agent from the queue, get null if queue is empty 
    * used for callAll, manageAll etc. 
    */ 
   public static Agent pollNextAgent( ) { 
       return agentQueue.get().poll(); 
   } 

2.​ Agent Index Mapping in AgentList.java 

Since Agents are no longer retrieved directly from the global AgentList, their indexes must be 

mapped to attributes within the Agent objects to enable correct removal from the AgentList. 

Moreover, although each thread now operates with a local Agent bag, the global AgentList 

remains necessary in certain scenarios and therefore its logic is preserved. 

   public void add(Agent item, int index) { 
     int xindex = index / CAPACITY_X; 
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     int yindex = index % CAPACITY_X; 
     if(array[xindex] == null) { 
       array[xindex] = new Agent[CAPACITY_Y];      
     } 
     item.setAgentListIndex(xindex * capacityY + yindex); 
     array[xindex][yindex] = item; 
   } 
   private void reduceHelper( ) { 
       
       if ( reduceDone ) 
           return; 
       
       int max = size_unreduced( ); 
       int currentNull = 0; 
       int cur_full = max - 1; 
       int xNull, yNull, x_full, y_full; 
 
       while (true ) { 
           
           for ( ; currentNull < max && get( currentNull ) != null; currentNull++ ); 
           for ( ; cur_full >= 0 && get( cur_full ) == null; cur_full-- ); 
           if ( currentNull >= cur_full ) 
               break; 
 
           // swapping 
           xNull = currentNull / capacityY; 
           yNull = currentNull % capacityY; 
           x_full = cur_full / capacityY; 
           y_full = cur_full % capacityY; 
           array[xNull][yNull] = array[x_full][y_full]; 
           array[xNull][yNull].setAgentListIndex(xNull * capacityY + yNull); 
           array[x_full][y_full] = null; 
 
       } 
 
       xNull = currentNull / capacityY; 
       yNull = currentNull % capacityY;    
       
       for ( int i = xNull + 1; i < array.length && array[i] != null; i++ ) 
           array[i] = null; 
       
       currentX = xNull; 
       nextY = yNull; 
       reduceDone = true; 
   
   } 

3.​ Agent Retrieval Logic in AgentBase.java 

When invoking an Agent in practice, the retrieval process must operate on the local Agent bag 

rather than the global bag. This ensures thread-level independence, reduces synchronization 

overhead, and improves data locality during execution. 

           Agent tmpAgent = MThread.pollNextAgent(); 
           if (tmpAgent != null) { 
               myIndex = tmpAgent.getAgentListIndex(); 
 
               MASS.getLogger().debug( "Thread [" + tid + "]: agent(" + tmpAgent + ")[" + 
myIndex + "] was called, agent index is " + tmpAgent.getAgentListIndex() + " place is " + 
tmpAgent.getPlace()); 
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               MASS.getLogger().debug( "fId = " + functionId + " argument " + argument ); 
 
               //Use the Agents' callMethod to have it begin running 
               MASS.getLogger().debug( "in the other arg: " + argument); 
               tmpAgent.callMethod( functionId, argument ); 
               
           } 
 
           //Otherwise, we are out of agents and should stop 
           //trying to assign any more 
           else { 
               break; 
           } 

4.​ Agent Removal Logic in AgentBase.java 

When an Agent is no longer needed, it must be removed from the Place’s AgentList to ensure 

correctness. This step guarantees that obsolete Agents are not included during the initialization 

of local Agent bags in subsequent iterations. 

           } else if (GraphPlaces.class.isAssignableFrom(evaluatedPlaces.getClass())) { 
               GraphPlaces graphPlaces = (GraphPlaces) evaluatedPlaces; 
 
               int globalLinearIndex = evaluationAgent.getIndex()[0]; 
               int nodeId = graphPlaces.getOwnerID(globalLinearIndex); 
 
               //Bo Fu: Agents should be removed from oldPlaces 
               //whether it is local migration or remote migration 
               Place oldPlace = evaluationAgent.getPlace(); 
 
               if (oldPlace.getAgents().remove(evaluationAgent) == false) { 
                   // should not happen 
                   String errorMessage = "evaluationAgent {}" + 
                           evaluationAgent.getAgentId() 
                   + " couldn't been found in " + 
                   "the old place!"; 
 
                   MASS.getLogger().error(errorMessage); 
 
                   // throw it back to our new fatal exception handler 
                   throw new RuntimeException(errorMessage); 
               } 

Other related implementations include the method for setting indexes in Agent.java, as well as 

the logical adjustments in different versions of callAll and manageAll within AgentBase.java. 

Since the underlying principles are similar, they are not elaborated here, and the source code 

can be found in the Appendix.  
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IV.​ Results 

A.​ Multithreading Improvements on Single Node 

 

Figure 1. Multithreading Execution Performance on 1 Node With a Randomly Generated 500-node Graph 

In Figure 1, “Original” refers to the MASS Java library where only the multithreading logic in 

GraphPlaces is implemented, while “Current” refers to the version with the new Agent 

allocation algorithm. The results show that adding multithreading to GraphPlaces alone 

improves performance by about 10%. After modifying the Agent logic, the system achieves 

around 25% faster execution in single-thread mode and about 43% faster execution in 

multithread mode compared to the original single-thread baseline. 

It is worth noting that even without multithreading, the new Agent allocation strategy brings 

significant improvements. This is likely because Agents in the same Place are executed 

sequentially rather than interleaved across different Places, which makes better use of CPU and 

cache. In addition, although the cssmpi machines have only four cores, further speedup is still 

observed beyond four threads. This may be explained by finer-grained load balancing from 

splitting Agents into smaller portions, as well as operating system scheduling. 

B.​ Multithreading Performance on Graphs with Different Structures 
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Figure 2. Multithreading Execution Performance on 1 Node With a 300-node Complete Graph 

However, the new Agent allocation algorithm is not always more efficient. When running 

TriangleCounting on a complete graph, the original allocation strategy performs faster. This is 

because, in TriangleCounting on a complete graph, Agents tend to cluster in Places with smaller 

indexes. Allocating Agents based on Places in this case leads to workload imbalance across 

threads, thereby diminishing the performance gains from multithreading. 

 

Figure 3. Multithreading Execution Performance on 1 Node With a Partitioned 1000-node Graph 

Figure 3 also shows that the new Agent allocation algorithm is highly influenced by the graph 

structure. Here, a partitioned complete graph is used to ensure balanced workloads across 

threads, and under this condition, the new scheduling algorithm achieves substantial 

improvements in multithreaded performance. 
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C.​ Multithreading Improvements on Multiple Nodes 

Table 1. Best Single-Thread and Multi-Thread Performance under Multi-Node With a 3000-node Graph 

Nodes Current 1 thread Current multithread Original 1 thread Original multithread 

1 46039 42011 95601 89973 

2 35896 32946 57517 56701 

4 21218 21087 30176 28817 

8 14866 15285 19208 18955 

Table 2. Best Single-Thread and Multi-Thread Performance under Multi-Node With a 5000-node Graph 

Nodes Current 1 thread Current multithread Original 1 thread Original multithread 

4 33641 31588 53306 51840 

8 22503 22042 29339 28960 

As shown in Tables 1 and 2, the benefit of multithreading becomes smaller and can even cause 

performance to drop as the number of nodes increases. This is probably because each node has 

fewer Agents to handle, while most of the overhead comes from communication or other costs, 

so multithreading brings little improvement. 

D.​ Reduced memory usage 

 

Figure 4. Memory Usage Before MASS.Finish() 
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Figure 4 shows the memory usage at the end of the MASS program execution, just before 

termination. The new AgentBase implementation reduces memory usage by 23% compared to 

the original design. This improvement is due to the removal of references to Agents within the 

Place objects that were not properly cleared in the previous implementation. 

V.​ Conclusions and Discussions 

A.​ Conclusions 

With the implementation of multithreading logic in GraphPlaces, MASS Java can execute with 

multiple threads reliably, achieving approximately a 10% improvement in performance. 

This independent study also introduced a new Agent allocation strategy, which demonstrated 

further performance gains in both single-threaded and multithreaded executions. In the 

TriangleCounting application, the revised approach improved single-thread performance by 

about 25% and multithread performance by about 43%. 

Further exploration on different graph structures shows that the efficiency of the new allocation 

algorithm is strongly influenced by the graph structure. It performs well on partitioned graphs 

with balanced workloads but shows reduced effectiveness on complete graphs. Moreover, in 

multi-node environments, the improvement was much less than in single-node execution, and 

when the number of nodes reached 8, multithreading even led to performance degradation. 

Finally, the revised allocation method helped reduce potential memory leaks, suggesting better 

scalability in terms of memory usage. 

B.​ Limitations and Future Work 

This study still has several limitations. As mentioned earlier, the performance of the new Agent 

allocation algorithm is affected by the structure of the graph, and the multithreading 

performance shows weaker results in multi-node environments and on small-scale graphs. In 

addition, the current multithreaded allocation algorithm for GraphPlaces remains relatively 

simple. 

Future improvements could involve integrating Atul’s previous METIS-based graph partitioning 

method to achieve more effective multithreaded allocation of Agents and GraphPlaces, with the 

goal of balancing workloads across threads. Another possible direction is to further reduce the 

synchronization overhead in multithreaded execution. 
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Appendix 

Complete source code of this implementation can be found in the branch: 

Branch: 

mass_library_developers/mass_java_core/fuchacha/agent-multithread 

Pull Request: 

#57 BoFu-Agent-Multithreading 

https://bitbucket.org/mass_library_developers/mass_java_core/pull-requests/57 
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