
Development of Application Programs

Oriented to Agent-Based Data Analysis

Chang Liu

A whitepaper

submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Computer Science & Software Engineering

University of Washington

2020

Project Committee:

Munehiro Fukuda, Committee Chair

Robert Dimpsey, Committee Member

Michael Stiber, Committee Member

Program Authorized to Offer Degree:

Computer Science & Software Engineering

©Copyright 2020

Chang Liu

 i

Contents

1. Introduction .. 1

1.1 Background ... 1

1.2 Motivation ... 1

1.3 Project Goals ... 2

2. Related Work ... 3

2.1 Data-streaming Tools in Data Analysis .. 3

2.1.1 Hadoop ... 3

2.1.2 Spark .. 5

2.1.3 Limitations ... 6

2.2 Agent-based Modelling in Data Analysis: MASS .. 7

2.2.1 MASS Library .. 7

2.2.2 Previous Work on MASS... 9

2.3 Summary ... 10

3. Selection of Applications ... 10

3.1 Data-streaming-based Applications .. 11

3.1.1 Top K ... 11

3.1.2 Markov-Chain .. 12

3.1.3 Summary .. 13

3.2 Analysis of Structured Data .. 13

3.2.1 Connected Components ... 13

3.2.2 Matrix Multiplication ... 14

3.2.3 Summary .. 15

4. Application Development with MapReduce, Spark, and MASS 16

4.1 Top K: Implementation and Issues ... 16

4.1.1 Top K Hadoop Implementation ... 16

4.1.2 Top K Spark Implementation... 17

4.1.3 Top K MASS Implementation ... 18

4.2 Markov: Implementation and Issues ... 20

4.2.1 Markov Chain Hadoop Implementation .. 20

4.2.2 Markov Chain Spark Implementation .. 22

4.2.3 Markov Chain MASS Implementation .. 23

4.3 Connected Components Implementation and Issues .. 24

4.3.1 Connected Components Hadoop Implementation ... 24

4.3.2 Connected Components Spark Implementation... 25

4.3.3 Connected Components MASS Implementation ... 26

4.4 Matrix Multiplication: Implementation and Issues ... 27

4.4.1 Matrix Multiplication Hadoop Implementation ... 27

4.4.2 Matrix Multiplication Spark Implementation .. 28

4.4.3 Matrix Multiplication MASS Implementation... 29

 ii

5. Comparison of MapReduce, Spark, and MASS ... 31

5.1 Comparison of Programmability... 31

5.1.1 Intuitive Programming ... 31

5.1.2 Boilerplate Code Ratio ... 36

5.2 Performance .. 37

5.2.1 Top K Application and Performance ... 38

5.2.2 Markov Chain Application and Performance .. 39

5.2.3 Connected Components & Matrix Multiplication Application and Performance 41

5.3 Summary ... 44

6. Conclusion .. 46

 iii

University of Washington

Abstract

Development of Application Programs Oriented to Agent-Based Data Analysis

Chang Liu

Chair of the Supervisory Committee:

Professor Munehiro Fukuda

Computing and Software Systems

Different software has been developed in the last two decades to accelerate big data

parallelism processes, such as MapReduce, Spark, and Storm. Besides these data-streaming tools,

agent-based modelling (ABM) provides an alternative approach for data discovery and gain

recognition on its programmability and intuition of coding. As a tool of ABM, the Multi-Agent

Spatial Simulation library (MASS) is developed by Distributed Systems Laboratory (DSL) at the

University of Washington, Bothell and strives to parallelize agent-based models over a cluster

system. This project is to extend the initial achievement in agent-based data analysis by exploring

more data science applications and identifying more data science applications that would be the

better fit to agent-based parallelization.

This project presents the algorithm designs and implementation process for four applications

of Top K, Markov Chain, Connected Components, and Matrix Multiplication on MapReduce,

Spark, and MASS. In addition, this project compares the programmability and execution

performance of four applications on three frameworks. This study further discussed the previous

research on the MASS and the strengths and weaknesses of MASS when it is used to implement

data applications.

 1

1. Introduction

1.1 Background

Traditional software applications normally could store and process data with the help of a

centralized server. However, when it comes to the large dataset, the data analysis is not just about

scale and volume, but also involves velocity, variety, and complexity. Different software has been

developed in the last two decades to accelerate big data computing, such as MapReduce, Spark,

and Storm. These software tools provide their standard program paradigm to facilitate

parallelization on cluster computing. The concept behind these tools is data streaming through

batch processing. Batch processing is an automated job that “can run without end-user interaction,

or can be scheduled to run as resources permit” [1]. These tools perform data transformation and

computation on batches of data in parallel to maximize performance (Spark by mini-batches, and

Storm process event by event). However, these applications are not the only solutions for large

dataset. There are still alternative approaches being developed such as agent-based data discovery.

Researchers and engineers have been developing and testing these frameworks for data processes.

This project tends to join previous effort by exploring tools and algorithms for agent-based data

discovery.

1.2 Motivation

MapReduce and Spark are two major software tools to facilitate big data analysis with a cluster

system or even in the cloud. Nevertheless, not all data science applications fit into their

computation models. For instance, consider one of the graph problems: identifying triangles in a

 2

social network, which shows the friendship degree of the network. The corresponding MapReduce

and Spark programs need to separately enumerate all combinations of two connected edges; to

narrow them down to those that have another edge to bridge the first and the last vertices, (which

makes a triangle); and to remove duplicated triangles. Contrary to their exhaustive and repetitive

data transformations, the same program can be much more intuitively and smoothly described by

walking an execution entity called “agent” along with a series of three graph edges from each

vertex and checking the third edge’s reachability back to the original edge.

 Using lightweight reactive agents, this approach allows frequent agent migration and fine-

grained data analysis in data discovery. This approach focuses on discovering the attribute of

dataset by observing emergent group behavior of many agents, such as walking, dissemination,

swarming, and overriding. Based on this approach, Distributed Systems Laboratory (DSL) at the

University of Washington, Bothell, developed the Multi-Agent Spatial Simulation library (MASS).

The MASS library has been used for simulating transportation, social-network and biology

problems. It has also been used for analyzing large datasets [2], and paralleling data-science

applications to extend the use case of MASS in the data analysis area.

1.3 Project Goals

In previous research, DSL lab has already parallelized six data-science applications with MASS

and compared their programmability and execution performance with MapReduce and Spark.

This project aims to extend these initial achievements in agent-based data analysis by

exploring more data science applications and identifying which data science applications would

 3

be the best fit to agent-based parallelization. Additionally, this project tends to discover the

strengths and weaknesses of MASS when it is used to implement data applications. Specifically,

this project tested four applications of Top K, Markov Chain, Connected Components, and Matrix

Multiplication in MASS, MapReduce, and Spark and the key criteria are programmability and

execution performance.

2. Related Work

This section reviewed two conventional data-streaming approaches of Hadoop and Spark, and

further summarized and discussed the previous endeavor with the MASS library.

2.1 Data-streaming Tools in Data Analysis

Hadoop and Spark are two of the most popular software for big data analysis. This section provides

the background information on these two software tools, and further interprets why these data-

streaming models are so popular, and what problems exist.

2.1.1 Hadoop

Hadoop is a platform for distributed storing and analyzing very large data sets. It provides both

infrastructure and programming models: Hadoop distributed file system (HDFS) and MapReduce.

The way these modules are woven together is what makes Hadoop so successful.

Figure 1. Data Splitting on Hadoop Distributed File System [3]

 4

HDFS has superior fault tolerance and no limit on how big the files can be [4]. As shown in

Figure 1, HDFS splits the file into blocks, and then it automatically replicates and distributes these

blocks on the Hadoop cluster. Splitting files into blocks makes it easy to analyze the data in a

distributed fashion.

MapReduce is a framework for distributed data analysis. There are two important tasks in the

MapReduce: Map and Reduce. The Map task takes a set of data and converts it into another set of

data, where each element is broken down into tuples (key/value pairs). The Reduce task takes the

output of the Map as input and combines these data tuples (key/value pairs) into a smaller set of

tuples. The reduce task is always executed after the map job [5].

Figure 2. Execution Overview of MapReduce [6]

Figure 2 shows the flows of a MapReduce operation and its several phases. In conjunction with

HDFS, MapReduce is able to analyze the blocks of a file in parallel.

The MapReduce framework provides several benefits: Programming model together with

infrastructure; The ability to write programs that run on lots of machines; automatic parallelization

and distribution; fault tolerance; and program/job scheduling, status checking, and monitoring [7].

 5

2.1.2 Spark

Spark started in 2009 at the University of California, Berkeley and is considered to be the successor

to MapReduce for data processing. Spark introduces an abstraction named Resilient Distributed

dataset (RDD). An RDD is a read-only collection of objects partitioned across a set of machines

that can be rebuilt if a partition is lost [8]. Spark and its RDDs were developed in response to

limitations in the MapReduce cluster computing paradigm [9]. Because MapReduce was not

efficient enough for iterative and interactive jobs, Spark strives to be fast for interactive queries

and iterative algorithms and further support in-memory storage and efficient fault recovery [10].

Figure 3. Execution Overview of Spark [11]

As shown in Figure 3, the execution of Spark involves runtime concepts such as driver,

executor, task, job, and stage [12]. At runtime, Spark application is mapped to a single driver

program execution process and a set of distributed processes on the hosts in the cluster. The driver

process manages the job stream and schedules the task and is available for the entire time the

application is running.

The executors are responsible for performing work in the form of tasks and storing any cached

data. The execution life of the program depends on whether dynamic allocation is enabled. The

https://en.wikipedia.org/wiki/MapReduce

 6

executor has a number of slots for running tasks and will run many slots simultaneously during its

lifetime. Invoking an action in a Spark application triggers a startup job to implement it. Spark

checks the data set that the operation depends on and develops an execution plan. The execution

plan assembles the data set into phases. A stage is a collection of tasks that run the same code,

each code on a different subset of data [13].

Spark mainly executes in-memory computations in a distributed environment. It offers

incredible processing speed, making it desirable for everyone interested in big data analytics [14].

2.1.3 Limitations

There are several reasons made conventional approaches to data streaming approaches very

popular. Firstly, they are endorsed and maintained by Apache—an influential open-source

community. The community improves the core software and contributes practical add-on packages

[15]. Because of all those side projects, Hadoop and Spark have turned more into an ecosystem for

storing and processing big data.

In addition, these tools are particularly suitable for flat texts [16], e.g. statistical analysis of data

streamed from social, business, and IoT environments. Services of partitioning, flattening and

streaming multidimensional data extend the practicability of analyzing structured datasets. In

general, these approaches provide straightforward programming frameworks for parallel

computing and interpretive execution environments.

However, these frameworks still have problems with programmability and execution

performance of data discovery, especially for structured datasets [17]. For instance, Hadoop and

Spark usually decompose the entire data operation into multiple small tasks. Each task must deal

 7

with the entire file or stream, complete the previous task and then start the next task. Usually, these

data stream models do not maintain the entire data structure in distributed memory on the cluster.

However, MASS can maintain the data structure in-memory over the distributed system, which

we will discuss later. Therefore, if there is a large data set that repetitive MapReduce invocations

and Spark transformations need to process, the processes of transferring back and forth or

swapping in and out data between disk and memory could slow down the execution speed.

Moreover, these data stream models each provide their unique program paradigm (e.g.

map/reduce functions in MapReduce, lambda expressions in Spark). Following these program

paradigms will increase a certain amount of boilerplate code. Meanwhile, from the perspective of

programmability, developers need to disassemble the original algorithm and transform it into these

models. There is a certain learning curve to overcome. ABM expresses the algorithm more

intuitively and its programming is closer to basic java programming and requires less conversion

for the users.

2.2 Agent-based Modelling in Data Analysis: MASS

2.2.1 MASS Library

As mentioned in Section 1.2, MASS is a parallel-computing library to develop and execute multi-

agent simulations with multiple computer [18]. It provides the efficiency of agent-based

parallelization while abstracting parallel environments for ABM. It provides an intermediate layer

that only requires the user to provide code related to their project without having to manage the

details of the parallelization [19].

 8

Two key concepts within MASS library are: places and agents. Each Place element is

automatically mapped to one of the compute nodes, has a logical array index, and is capable of

calling a given function in parallel and exchanging data with other elements. On the other hand,

agents are a set of execution instances that can reside somewhere, migrate to any other place using

a matrix index (thus copying itself), and interact with other agents through their local location [20].

Figure 4. Execution Model of MASS Library [21]

As illustrated in Figure 4, Places maps to threads, and agents map to processes. Unless the

programmer indicates the places-partitioning algorithm, the MASS library divides the place into

smaller strips in the vertical or X coordinate direction, and then assigns each stripe to and executes

by a different thread. In contrast to the place, the agents are grouped into bundles, each of which

is assigned to a different process, in which multiple threads continue to check in and check out the

agents one by one from the bag while they are ready to execute the new agent [22].

As a tool of agent-based data analysis, MASS has some features and advantages that are

exclusive to conventional data-streaming tools. The main difference is the computing units. MASS

 9

dispatches agent(s) as computing units to the dataset. There is a parallel loading of a structured

dataset and the structure is held in memory. It further facilitates repetitive but various analysis [23].

In addition, the programming in MASS is also intuitive that algorithm developers can code

behaviors of agents as if they drive agents out to a dataset [24]. Moreover, as agent-based modelling

becomes more popular, it has been applied to computational optimization with many biological-

inspired algorithms such as ant colonial optimization. This study will use these features to explore

the potential of MASS for some specific big data analysis issues.

2.2.2 Previous Work on MASS

There has been increasing research on the MASS and exploration of its function, and its

programmability and performance using different algorithms. As the founder of MASS library,

Fukuda and his DSL lab team [25] discusses the advantages and challenges of agent-based data

discovery, introduced several agent-based analyzing algorithms, and further strategized the

implementation. In the continuing studies [26][27], Fukuda, Gordon and other team members

explored algorithms including K Means Clustering, K Nearest Neighbor Classification, Triangle

Counting in Graphs, and the Traveling Salesman Problem. It is found that MASS, as a tool of

ABM, is quite intuitive with respect to coding programs for distributed data analysis while being

efficient. Woodring et. al [28] examined the practicability of MASS via climate change research

with web-interfaced climate analysis. In this research, MASS demonstrated practical advantages

and performance improvements. Sell [29] explored the enhancement of programmability by

designing, implementing, and evaluating these two agents descriptively enhancements of event-

driven agent behavioral execution and direct inter-agent broadcast. With previous studies on

 10

MASS, DSL lab still need to extend more benchmarks to identify the application domains that

agents can take advantage of. Therefore, this study borrowed the idea of Gordon’s research and

extended his research with more algorithms, which might contribute to the future work to create

some data science library and graph library. Moreover, Gordon’s project only compared the

performance of multiple node on the Spark and MASS. Because of no sufficient memory to the

research account used in his project, Gordon only study the performance results for a single node

on MapReduce. This project tried to fill the gap by implementing four applications on all three

frameworks and comparing the performance of both single and multiple nodes.

2.3 Summary

Extending Gordon’s research, this study selected more data analysis algorithms to further verify

his conclusions. When selecting data analysis algorithms, the rationales are that Top K and Markov

Chain are data-streaming tools and Connected Components and Matrix multiplication are more

conducive to ABM. The following sections will explain these algorithms in detail, the

implementation on the three frameworks, and results and observations from the perspective of

performance and programmability.

Based on previous research and conclusions, this project also intends to examine the strengths

and weaknesses of MASS when it is used to implement data analysis applications. This study will

also discuss and suggest possible improvements of the MASS library.

3. Selection of Applications

Since Hadoop, Spark, and MASS, as clustering programming, often solve the problems with large

 11

dataset, we selected four algorithms that tend to solve the common problem of big data. The four

algorithms are: Top K, Markov Chain, Connected Components and Matrix Multiplication. This

project implemented these algorithms in Hadoop, Spark, and MASS, benchmarked their

performances, and made some further discussions.

In addition, based on previous research, Hadoop and Spark usually are suitable for solving the

data-streaming-based problems. Therefore, two algorithms are selected, Top K and Markov Chain,

that usually involve more data-streaming operations when processing these problems. On the other

hand, another set of two algorithms were chosen: Connected Components and Matrix

Multiplication, that are suitable for problem solving via modeling into ABM.

This chapter will explain each algorithm and the type of problems it usually solves. The next

chapter introduces the implementation details of each algorithm on the three frameworks of

Hadoop, Spark, and MASS.

3.1 Data-streaming-based Applications

3.1.1 Top K

The notion of a “Top K” is ubiquitous in the field of information retrieval. A top 10 list is usually

associated with the “first-page” of results from a search engine” [30].

A common way to implement the Top K algorithm in Java is to use a priority queue or treemap.

The top of the priority queue or the first entry of the treemap is the smallest element among k

elements. Moreover, we maintain the largest k elements within the priority queue or treemap. We

keep comparing each element to the priority queue or treemap. If the element is larger than the top,

 12

pop the current top and add a new element to the priority queue or treemap, otherwise, ignore this

element.

3.1.2 Markov-Chain

Markov chain is a machine learning algorithm whose model is described by an undirected graph.

A Markov Chain model makes the prediction based on the probability from one state to another

state. Let S = {S1, S2, S3, ...} be a set of finite states. We want to collect the following probabilities:

P (Sn|Sn–1,Sn–2, ..., S1).

Table 1. City Weather Pattern (Markov Probability Transition Table) [31]

 Tomorrow’s Weather

Today’s weather sunny rainy cloudy foggy

sunny 0.6 0.1 0.2 0.1

rainy 0.5 0.2 0.2 0.1

cloudy 0.1 0.7 0.1 0.1

foggy 0.0 0.3 0.4 0.3

The Markov’s first-order assumption is the following: P (Sn|Sn–1,Sn–2, ..., S1) ≈ P (Sn|Sn–

1). This approximation states the Markov property: the state of the system at time t + 1 depends

only on the state of the system at time t. The Markov second-order assumption is the following: P

(Sn|Sn–1,Sn–2, ..., S1) ≈ P (Sn|Sn–1,Sn–2). With Markov assumption, we can predict the

possibility from one state to another by expressing the joint probability. After we calculate the

possibilities from one state to another based on a large amount of data, we can build a Markov

probability transition table, which is the machine learning model we use to perform prediction.

Table 1 is shown as an example using the city Weather Pattern [32], the sum of each row is 1.00.

Typically, a machine learning–based solution consists of two distinct phases: (1) Phase 1: build a

 13

model by using historical training data; (2) Phase 2: make a prediction for the next new data using

the model built in Phase 1.

This project mainly focuses on Phase 1. This phase involves processing a large amount of data

to get the statistics from one state to another and builds a Markov probability transition table. Once

we have created this table, getting the possibilities from one state to another is a simple

computation, so it is not the scope of this project.

3.1.3 Summary

The first two applications in this study, Top K and Markov Chain, mainly processed plain data.

During the processing, the data is distributed to different execution units, and operations on each

execution unit are relatively independent. In other words, the data processing on each unit involves

little information exchange with each other. This is what this research meant by data-streaming

applications and also why we implemented them first in this research. In Section 5, the research

will further discuss the execution performance of these two applications on MapReduce, Spark,

and MASS.

3.2 Analysis of Structured Data

3.2.1 Connected Components

The third application of this study parallelized is connected components (CC) in an undirected

graph. A Connected Components represents “a maximal set of vertices such that there is a

connection between every pair of vertices. The components are separate ‘pieces’ of the graph such

that there is no connection between the pieces.” [33]. As shown in Figure 5, Connected Components

 14

means partitioning a graph into chunks in such a way that there are paths to connect all pairs of

vertices within the chunk.

Figure 5. The Connected Components of a Graph [34]

We could use different graph search algorithms, such as breadth-first search and depth-first

search, to solve the Connected Components problem. Taking breadth-first search as an example,

we could start from the very first vertex, and then everything we find during this search must be

part of the same connected component. We further repeat the search to identify the next component

from any undiscovered vertex (if one exists), and so on until all vertices are found [35].

3.2.2 Matrix Multiplication

Figure 6. Matrix Multiplication [36]

Matrix Multiplication, in mathematics, is a binary operation that produces a matrix from two

matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the

https://en.wikipedia.org/wiki/Binary_operation
https://en.wikipedia.org/wiki/Matrix_(mathematics)

 15

number of rows in the second matrix (See Figure 6).

A simple algorithm can be constructed which loops over the indices i from 1 through n and j

from 1 through p, computing the above using a nested loop: [37]

Input: matrices A and B

Let C be a new matrix of the appropriate size

for i from 1 to n:

 for j from 1 to p:

 Let sum = 0

 for k from 1 to m:

 set sum ← sum + Aik × Bkj

 set Cij ← sum

return C

3.2.3 Summary

The two algorithms, Connected Components and Matrix Multiplication are selected in this

research as two typical algorithms of processing structured dataset. As mentioned in Section 3.1,

the first two algorithms (Top K and Markov Chain) processed plain data, and the computation of

each unit is relatively independent. When designing and implementing the MASS-paralleled

version of Top K and Markov chain, we found there is no need to use agents since using Places

alone could achieve MASS-version parallelization. Therefore, it is not necessary to use agents to

carry parts of the information and then walk, disseminate, or swarm on data structure to observe

emergent group behavior.

In order to be able to benefit from “data discovery”, Section 3.2 further chose two algorithms

that involve structured data (graph for Connected Components and 2D-array for Matrix

Multiplication). In this way, when using MASS to parallelize these two algorithms, the projects

 16

need to maintain structured dataset in memory, and then use the agents to achieve “data discovery”.

In Section 5, we will further discuss their performance and the observation.

4. Application Development with MapReduce, Spark, and MASS

This section covers the implementations of Tok K, Markov Chain, Connected Component in

Graphs, and Matrix Multiplication using MapReduce, Spark, and MASS. Section 5 will discuss

the quantitative and qualitative analysis of four algorithms. This section built on Parsian’s work

on data algorithms including Top K and Markov Chain for Spark and MapReduce. In addition,

this project developed on and modified Nihar Suryawanshi’s MapReduce implementation of

Connected Components project [38] and Archana Masilamani’s MapReduce implementations of

Matrix Multiplication [39].

4.1 Top K: Implementation and Issues

4.1.1 Top K Hadoop Implementation

Figure 7. Top K Hadoop Implementation [40]

 17

The MapReduce solution for Top K algorithm is presented in Figure 7. The HDFS partitioned the

input into smaller chunks, and each chunk is sent to a mapper, which creates a local top k and then

emits the local top k to the reducer. In emitting the mappers' output, we use a single reducer key

so that all the mappers' output will be consumed by a single reducer. Finally, the single reducer

will find the final top k from all the local top k passed from the mappers.

In general, in most of the MapReduce algorithms, using a single reducer is problematic and

will cause a performance bottleneck (because one reducer in one server receives all the data, and

all the other cluster nodes do nothing, so all of the pressure and load is on that single node).

However, a single reducer in this project works appropriately, because the size of each Top k

passed from the mapper is k. Assuming we have 1,000 mappers, the reducer will get 1,000 * k

records. It is not enough data to cause a performance bottleneck [41].

4.1.2 Top K Spark Implementation

Figure 8. Top K Spark Implementation

 18

The parallel implementation of Top K Spark follows the same logic that of MapReduce - finding

the local top k in each partition and then get the final top k from all the local top k. The main

difference is that Spark provides a rich set of functional programming APIs. There are four main

steps (shown in Figure 8) of Top k Spark implementations:

Step 1: Read the input file from the local filesystem and create an RDD (JavaRDD<String>).

Step 2: Use mapToPair() to create a new RDD (JavaPairRDD<String, Long>) from an

existing RDD (JavaRDD<String>). The output of this step is Tuple2<K, V>, in which Key

corresponds to ID and Value corresponds to frequency.

 Step 3: Create a local top k for each input partition. Use mapPartitions() to create a new RDD

(JavaRDD<SortedMap<Integer, String>>) from an existing RDD (JavaPairRDD<String,

Integer>). Create and initialize a TreeMap<Integer, String>, and maintain a local top k using

this treeMap from each partition. Finally, return the result of a local top 10 list.

Step 4: Create the final top k using collect(). Use the collect() method to get all local top k.

Iterates over all local top k created per partition and creates a single final top k.

4.1.3 Top K MASS Implementation

The solution of MASS is inspired by that of MapReduce as well. This project implemented a TopK

class that extends Place class. The MASS program will create number of clusters * number of

cores places. In an ideal situation, each place runs on a core with no places waiting, and we could

use the computation resources on the cluster most efficiently. Each place handles two functions:

fileread(), and getTopK().

 19

Figure 9. Top K MASS Implementation

⚫ As shown in Figure 9, fileread() (line 5) uses MASS parallel IO to read equal portions of

data into memory.

⚫ Then getTopK() (line 6) reads its portion of data, maintains a local treeMap of size k to

find a local sub-top k, Then, returns the local top k to the main class.

⚫ Finally, the main method collects local top k (line 7) from all places and gets the final top

k.

1 main(){

2 int numberOfPlace = MASSBase.getSystemSize() * NUMBER_OF_CORE;

3 Places places = new Places(1, TopK.class.getName(),

4 (Object) topKValue, numberOfPlace);

5 places.callAll(TopK.fileread_, (Object) filenames);

6 Object[] subTopKs = places.callAll(TopK.topK_, null);

7 Integer[][] finalTopK = finalTopK(subTopKs, kValue);

8 }

The MASS implementation does not require discovering specific data attributes when finding

the top k. Therefore, it does not use agent, but only the Place to parallelly data processing.

 20

4.2 Markov: Implementation and Issues

4.2.1 Markov Chain Hadoop Implementation

The Markov Chain algorithm involve many steps of data transformation. As shown in Figure 10,

The MapReduce solution for Markov chain involves two MapReduce jobs.

Figure 10. Markov Chain MapReduce and Spark Implementation

For Job 1, the goal is to generate Time-Ordered Markov state for each customer.

● Mapper: Accept the customer transaction data and map each input record to <customerID,

(Date1, Amount1)> pairs (line 3 - 6).

1 public void map(LongWritable key, Text value, Context context){

2 String[] tokens = StringUtils.split(value.toString(), ",");

3 reducerKey.set(tokens[0]); //customer-id

4 //(purchase-date, amount)

5 reducerValue.set(tokens[2], tokens[3]);

6 context.write(reducerKey, reducerValue);

7 }

● Reducer: Reduce all transactions (Date, Amount) from the same customerID to a list and

 21

sort the transactions by purchase date in ascending order (lines 2 - 5); Then, convert

transactions into a two-letter symbol that stands for a Markov chain state (lines 7 - 16,

Table 3). The final output generated from this reducer is as follows: (<customerID>,

<State_1>, <State_2>, ..., <State_n>)

1 public void reduce(Text key, Iterable<PairOfLongInt> values, Context context){

2 List<PairOfLongInt> list = new ArrayList<PairOfLongInt>();

3 for (PairOfLongInt pair : values) { list.add(pair.clone());}

4 // sort by purchase-date: (Date1, Amount), (Date2, Amount)...

5 Collections.sort(list, (o1, o2) -> { o1.compareTo(o2);});

6

7 for (int i = 1; i < list.size(); i++) {

8 long daysDiff = curDate - prevDate;

9 String dateState = (daysDiff < 30) ? "S" :

10 (daysDiff < 60)? "M" : "L";

11 String amountState = (prevAmount < 0.9 * curAmount)? "L" :

12 (prevAmount < 1.1 * curAmount)? "E": "G";

13 output.append("," + dateState + amountState);

14 }

15 // output: <State1><,><State2><,>...<,><StateN>

16 context.write(null, new Text(output.toString()));

17 }

For job 2, the goal is to combine all customer’s Markov state to get state sequence and count

occurrence of each state sequence to build a Markov State Transition Model. (line 3 - 6)

1 protected void reduce(PairOfStrings key, Iterable<IntWritable>

2 values, Context context) {

3 int finalCount = 0;

4 for (IntWritable value : values) { finalCount += value.get();}

5 context.write(new Text(fromState + "," + toState),

6 new IntWritable(finalCount));

7 }

 22

4.2.2 Markov Chain Spark Implementation

Follows the same logic of the MapReduce implementations, the Spark solution is implemented in

seven basic steps as shown in Figure 10:

Step1: Convert the input into a JavaRDD<String>, in which each line is an input record (as

defined in the preceding section) and is formatted as:

<customerID transactionD purchaseDate amount>

Step 2: Convert JavaRDD<String> into JavaPairRDD<K,V> and the return format is

as <customerID, (purchaseDate, Amount) >.

Step 3: Group transactions by customerID. Applying groupByKey() to the output of step 2,

the result is a JavaPairRDD<K2,V2>, in which K2 is customerID and V2: is

Iterable<Tuple2<purchaseDate, Amount>

Step 4: Generate each customer’s list of Markov state. Sort each customer’s translation (Date,

Amount) by purchase date in ascending order. Then convert (Date, Amount) into a Markov

chain state. The final output is each customer’s list of Markov state.

Step 5: Create a Markov state sequence. Using PairFlatMap() function, to map each

customers’ state into state sequence of State_1, State_2, ..., State_n, as follow format:

<(State_1, State_2) , 1>, <(State_2, State_3), 1>..., <(State_n-1, State_n), 1>

Step 6: Calculate the frequency of each state sequence. Use recudeByKey() function to get

the occurrence of each state sequence. <(State_i, State_j) , 12>, <(State_m, State_n),

2345>..., <(State_n, State_k), 2>

 23

Step 7: Emit the final output. Use map() function to convert JavaPairRDD into JavaRDD

and return the final output.

4.2.3 Markov Chain MASS Implementation

For Markov MASS implementation, this project created a class Markov that implements Place

class. Place implements two methods: fileread(), and getState().

fileread(): Because we need to group the same customer's transaction together to generate

Markov state, I did not use MASS parallel IO to make each place to process portions of data. If

we do so, the transaction data of each customer would be fragmented to places. When merging the

transactions from the same customer, it would involve lots of data shuffling.

Therefore, rather than using MASS parallel IO, I let each place read the entire file. While

reading, I used the hash value of the customerID mod total number of places to get a hash number

(line 4-8). In this way, only the transactions whose customer hash number has the same value as

the current place index are placed to this place. When the hash number is different from the current

place index value, ignore this transaction record.

1 while (scanner.hasNextLine()) {

2 String[] tokens = scanner.nextLine().trim().split(",");

3 String customerId = tokens[0].trim();

4 if(customerId.hashCode() % nNodes == nodeId){

5 if(transactions.get(customerId) == null){

6 transactions.put(customerId, new TreeMap<Long, Long>());

7 }

8 transactions.get(customerId).put(date, amount);

9 }

10 }

I initially expected this design would allow each place to process specific customer data and

 24

reduce data shuffling. However, the performance is different from what I expected. We will discuss

this in detail in Section 5.

getState() is equivalent to integrating the steps 4, 5, 6, and 7 of Spark implementation into the

same method. First, sort its portion of customer’s transactions (Date, Amount) by purchase date in

ascending order and convert (Date, Amount) into Markov state; Then, create a Markov state

sequence and return it to the driver; Finally, the primary method collects all partial Markov state

sequences in each place and gets the final Markov state sequence.

4.3 Connected Components Implementation and Issues

4.3.1 Connected Components Hadoop Implementation

The implementation of Connected Components on Hadoop builds on the MapReduce design of

Connected Components in Friso van Vollenhoven’s blog [42]. It Applies two map-reduce jobs to

solve the problem:

For the first Map-Reduce job, it transforms the edge lists to a representation of the adjacency

list. For the second Map-Reduce job, the Mapper maps the adjacency list of the source node and

label them with partition id numbers; the Reducer finds the smallest partition ID for each node ID

it belongs to, and set the partition ID of each record to the smallest partition ID. The program keeps

repeating the second Map-Reduce job until nothing changes, and it mean all connected node have

been grouped. Figure 11 indicates the details of how each node spreads the lower component ID

to one more level of neighbors at each Map-Reduce step.

 25

The code of implementation on Hadoop builds on and modifies Nihar Suryawanshi’s project

on GitHub [43].

Figure 11. MapReduce of Connected Components Spreads the Component ID to Neighbors

4.3.2 Connected Components Spark Implementation

The implementation of Spark Connected Component follows the same logic of implementation on

MapReduce. Like Markov Chain (in Section 4.2.2) and Top K (in Section 4.1.1) on Spark, Spark

implementation uses its API and involves more data transformation steps. The data transformation

steps are as shown in Figure 11. Since the implementation of Connected Components are similar

to that of MapReduce, further interpretation is waived here.

 26

4.3.3 Connected Components MASS Implementation

For the MASS version of Connected Components, this project develops a Node class that

implements Place class and it represents a graph node in the graph. Each node maintains the

current node index and component ID. The component ID indicates which component the current

node belongs to, and it is initialized with the node index ID.

In addition, this project created a Spreader class that implements Agent class. Initially, one

agent is populated over each place. This agent takes two information: the node index (component

ID) it was populated and a list of node indexes that this agent has visited. Hereafter, let agents roll

down to the neighbor nodes with higher index.

Figure 12. Connected Components MASS Implementation

Figure 12 gives a view of how agents update the components information. The agents spread

the current lowest component ID to all neighbors who have a higher index than the current graph

node via onArrival() and onDeparture().

• onArrival(): If this node has a higher component ID than the one current agent carrying,

updates the component ID of this node. Then, give the index of the next neighbor node to

the current agent to let it spread. However, if the neighbor node has a lower component ID,

 27

terminate the current agents.

• onDeparture(): If the next neighbor has not been visited, migrate the agent toward the next

neighbor.

4.4 Matrix Multiplication: Implementation and Issues

4.4.1 Matrix Multiplication Hadoop Implementation

For Matrix Multiplication, there are two popular MapReduce designs: CPMM and RMM. The

RMM implements a replication-based strategy in one single MapReduce job, while CMPP

implements a cross product strategy requiring two jobs. In a study [44]，Ghoting et. al. analyzed

the performance differences between RMM and CPMM, and found CPMM is better because

CPMM has higher degrees of parallelism, performs stably, and outperforms RMM. This is the

reason why we choose CPMM as our implementation plan.

The implementation of Matrix Multiplication on Hadoop builds on Archana Masilamani’s

implementation [45]. This project further reviewed and implemented the code based on her work.

This algorithm requires two rounds of MapReduce jobs (See Figure 13). From the first job,

input matrix sub-blocks Ai,k and Bk,j are aggregated together according to the same key k, and then

the reducer phase obtains the intermediate result matrix Pk
i,j= Ai,k Bk,j. Then, the second job

accumulate the previous Pk
i,j and obtain the final result submatrix Ci,j=kPk

i,j .

 28

Figure 13. Matrix Multiplication Hadoop Implementation [46]

4.4.2 Matrix Multiplication Spark Implementation

Similar to MapReduce implementation, there are two shuffle phases for the Spark implementation.

As shown in Figure 14, Spark also implemented CPMM. Since the algorithm design follows the

same logic of MapReduce, further interpretation is saved here on the process of Spark

implementation.

Figure 14. Matrix Multiplication Spark Implementation [47]

 29

4.4.3 Matrix Multiplication MASS Implementation

The MASS project is implemented using Cannon’s algorithm. Cannon's algorithm is a distributed

solution for matrix multiplication. It is especially suitable for computers laid out in an n* n mesh

[48]. Considering distributed two n * n matrices A and B into p blocks. Therefore, each process gets

a block of matrices A and B which is size (n ∕√𝑝×(n ∕√𝑝). Process P(i , j) stores matrix A(i , j) and

matrix B(i , j) and computes the block of the result matrix C(i , j).

The algorithm can be majorly described in two steps: matrices alignment and matrices shifting.

Figure 15 indicates how matrices A and B are initialized and aligned, how data is shifted, and how

the data unit is performing the multiplication.

• Step 1 matrices alignment: The initial step of the algorithm regards the alignment of the

matrices. As shown in Figure 15, 15.a and 15.b show the initial metrices A and B that

distributed on a 4 * 4 clusters. Before performing the matrix multiplication, we first want

to shift all submatrices A(i , j) to the left (with wraparound) by i steps and all submatrices

B(i , j) up (with wraparound) by j steps. Figure 15.c and 15.d shows a view of matrices

distribution after alignment.

• Step 2 matrices shifting: At each iteration step, each process would perform a

multiplication at local block and accumulate the current block of multiplication result to

the local matrix C. When local multiplication is done, each block of A moves one step left

and each block of B moves one step up (again with wraparound). The matrices shifting is

shown in Figure 15.e and 15.f. Thereafter, each process could perform next block

multiplication, add to partial result, repeat until all blocks have been multiplied.

 30

Figure 15. Cannon’s Matrix Multiplication algorithm [49]

The Matrix Multiplication for MASS simulates the implementation of Cannon’s Algorithm. I

created a SubMatrix class that implements Place class. As mentioned previously, for two matrices

A and B of size n * n, initialize p SubMatrix to parallelize the matrix multiplication, each

SubMatrix holds a block of matrices A and b of size (n ∕√𝑝)×(n ∕√𝑝). Each SubMatrix also holds

a matrix C of size (n ∕√𝑝)×(n ∕√𝑝) that keep accumulating the partial matrix multiplication results.

I also created a Carrier class that implements the Agent class. Two agents are initialized at

 31

each place. The agent with even index carries matrix A, and agent with odd matrix carries matrix

B. The two agents carry each matrix to perform matrix alignment and shifting according to the

Cannon’ algorithm.

5. Comparison of MapReduce, Spark, and MASS

To answer the research question of how the application fits with agent-based parallelization, this

project applies two metrics of programmability and performance.

5.1 Comparison of Programmability

To analyze the difficulties of programming, this section will compare three frameworks based on

programming intuitivity (including algorithmic modelling, data representation, number of

methods), and boilerplate code ratio.

5.1.1 Intuitive Programming

As mentioned in Section 2, due to the limitation of the programming paradigm, implementing the

parallel version of the algorithm by MapReduce and Spark is quite different from that of basic java

programming for sequential version.

Taking MapReduce as an example, all operations of MapReduce must be converted into two

operations: Map and Reduce, which is not easy to adapt to all situations. To fit with Map-Reduce

program framework, the programmer often could not use familiar programming patterns and data

structures (such as Map and Queue) provided by Java library. Therefore, MapReduce is generally

considered difficult to program. Meanwhile, it is a similar issue on Spark.

 32

In comparison, when the algorithm is suitable for the agent-based model, MASS can describe

the problem more intuitively. MASS programming needs to implement Place and Agent as

paradigm, but their methods are all user-defined. Compared to MapReduce and Spark, the learning

curve for MASS is lower.

 Particularly when the algorithm needs to deal with complex data structures, parallel

programming on MASS framework can simulate the problem-solving process using agents. It

allows frequent agent migration and fine-grained data discovery. The intuitive programming of

MASS will be further analyzed and evidenced by algorithmic modelling, data representation, and

the number of methods.

5.1.1.1 Algorithmic Modelling

Taking the implementation of Connection Component on MASS as an example, the program of

MASS could be intuitively described as: Each agent carries the component ID and walks around

the graph to group components. When the agent arrives the current node whose component ID is

smaller than the one the agent carries, this agent stops spreading and terminates; Otherwise, it

updates the current node’s component ID with the smaller one brought by this agent, and spawn

children agents to all neighbor nodes with greater index than the current node to expand the current

connected component. From this example，we find that MASS parallelizes the algorithm by using

multiple agents to simulate the problem-solving process.

On the contrary, the implementations of MapReduce and Spark programs are abstract. As

described in 4.3.1, and 4.3.2，the MapReduce and Spark solutions are implemented according to

Frigo Vanllenhoven’s Blog [50]. Taking MapReduce as an example. Generally, every MapReduce

 33

step serves the purpose of spreading the lower component ID to one more level of neighbors. But

each step of map and reduce data transformation is not a straightforward directive to group more

nodes to the current component. The author uses a long blog post to explain this MapReduce design

and every data transformation step. That is saying that MapReduce is not as direct as MASS to

describe the problem.

 Taking Matrix Multiplication as a further example. As described in 4.4.3, the MASS

implementation simulates the algorithm of Cannon’s algorithm very well. Two agents are

generated at each place, and an agent with even index carries matrix A, and agent with odd matrix

carries matrix B. The two agents carry each matrix to perform matrix shifting (A matrix moves

one step left and B matrix moves one step up), Then at each iteration each matrix block

accumulates partial results, and repeats until all blocks of the matrix have been multiplied.

Now we compare the implementation of MASS with MapReduce and Spark, both of them use

the CPMM algorithm [51]. Because Spark implementation is derivative from MapReduce, here we

still take MapReduce as an example. If we look back to Section 4.4.1, as indicated by Figure 13,

in the first Map-Reduce step, it aggregates Ai,k and Bk,j to get Pk
i,j= Ai,k Bk,j according to the same K.

In the second Map-Reduce step, it accumulates Pk
i,j to obtain the final result submatrix Ci,j=kPk

i,j. The

design of the Map-Reduce algorithm is more abstract than MASS. What to select as the key in

each MapReduce step is difficult to think of. Therefore, if engineers are not very skilled in

MapReduce and Spark, the parallel algorithm design is hard.

In summary, observing the programmatic modeling MASS parallelizes the algorithm by using

multiple agents to simulate the problem-solving process. This makes the MASS program easier to

 34

design and easier to understand. Meanwhile, we have to acknowledge that observations above are

based on algorithms involving structured data. If these algorithms are processing plain data, or the

algorithms are quite suitable for MapReduce framework such as Top K, the difficulty of

implementation on three frameworks are quite similar.

5.1.1.2 Data Representation

Another evidence of intuitive programming is data representation, which refers to how the

paradigm internally represents the input data used in each algorithm. As indicated in Table 2, this

study found that MASS is able to represent both plain and structured data. This result corresponded

to Gordon’s finding on the flexibility of MASS [52]. The flexibility of MASS allows better

representing input data and therefore has more advantages in algorithm design.

 Table 2. Data Representation

Paradigm Top K Markov Chain Connected Components Matrix Multiplication

MASS Plain Plain structured structured

Spark Plain Plain Plain Plain

MapReduce Plain Plain Plain Plain

5.1.1.3 Number of Methods

Besides the difficulties of algorithmic modelling and data representation, a further evidence for

intuitive programming is the number of methods used for programming. The number of methods

represents the number of modules used to get the final data transformation. It refers to the

complexity and easiness of each step of data transformation. We can see from Table 3 that MASS

can generally solve the problem with fewer methods. The other two frameworks use more methods

 35

because they are limited by their program paradigm, whose data transformation must be operated

using the inherent API.

Table 3. Number of Methods

Parallel

Framework

Top

K

Markov

Chain

Connected

Components

Matrix

Multiplication

MapReduce 5 10 6 6

Spark 4 12 7 8

MASS 5 8 5 5

Taking Markov Chain as an example, Markov chain processes plain data, but Spark uses 12

methods, MapReduce uses 10 methods, and MASS uses only 8 methods. This is because this

algorithm involves many steps of data transformation. For Spark, transforming the data from one-

to-many, many-to-many and many-to-one must use certain fixed APIs. On the other hand, since

MASS is similar to basic java programming, users can use the common data structure to combine

several relative data transformation operations in one method. With proficiency in Spark program

paradigm, programming can become smooth, but if engineers are not very proficient and the data

transformation of the algorithm is complex, modelling problems to Spark can be more difficult

than to MASS.

In summary, the Section 5.1.1 interprets the intuitivity of MASS programming from

algorithmic modelling, data representation, and number of methods. Comparing with the other two

frameworks, MASS parallel framework is not significantly different from common java

programming. When converting complex algorithms (such as graph problems) and closely related

data structures (such as Matrix Multiplication), MASS is easier to design and understand than

 36

Hadoop and Spark. For general engineers, once they understand the design concept of MASS,

programming is more intuitive in MASS.

5.1.2 Boilerplate Code Ratio

In a previous project on MASS, Gordon found that both MASS and Spark use less boilerplate code

than MapReduce [53]. In his project, Gordon explained that MapReduce needs extra boilerplate

code to know what files to set up and where to find them. It requires understanding of the

underlying HDFS. By comparison, MASS and Spark save this complexity.

Table 4. Boilerplate Code

Parallel

Framework
Top K

Markov

Chain

Connected

Components

Matrix

Multiplication
Average

MapReduce 10.7% 8.5% 13.9% 16% 12.6%

Spark 4.5% 2.4% 6.2% 6.2% 4.5%

MASS 5.2% 6.6% 9.6% 12.6% 8.6%

This study adopts the same metrics of boilerplate ratio. Table 7 shows the boilerplate ratios

for each algorithm as well as the average ratio among all frameworks. As indicated from Table 4,

this study generally proves the advantages of MASS and Spark，MapReduce requires the most

boilerplate code than the other two frameworks. This corresponds to Gordon’s finding on

boilerplate ratio yet the difference is that this study applies a definition of boilerplate code that is

slightly different from Gordon’s.

In Gordon’s definition, boilerplate refers to all configuration lines in MapReduce and Spark

are counted, and all lines that use MASS.* are counted in MASS. The lines that parse command

 37

line arguments in all three frameworks are also counted. Meanwhile, the place and constructor

lines are left out.

However, this study defined boilerplate as “sections of code that have to be included in

many places with minor alteration and accomplish only minor functionality” [54]. Therefore, in

my statistics, codes that serve the requirement of the framework are also included. Besides

configuration lines and parse command line, I also include three types of lines: (1) the repeated

header in MapReduce, which must be included each time when using Map class and Reduce class;

(2) switch method in MASS that invokes internal methods of place and agent through callAll(); (3)

constructor lines in MASS, since these are also part of the MASS framework that have to be

included.

In summary, Section 5.1 compares the programmability on MapReduce, Spark, and MASS.

It is found that MASS has more intuitive programming, and it also has less boilerplate ratio,

and less difficulties in configuration compared to MapReduce and Spark.

5.2 Performance

This section compares the performance (running time in millisecond) of applications of Top K,

Markov Chain, Connected Components, and Matrix Multiplication on three frameworks, and

further discusses the performance and shortcomings of three frameworks.

The performance is assessed by the running time with the unit of millisecond. Performance

results of this project were executed on the cssmpi cluster at the University of Washington, Bothell.

The cluster includes eight Dell Optiplex 710 desktops, each with an Intel i7-3770 Quad-Core CPU

 38

at 3.40 GHz and 16 GB RAM. MapReduce, Spark, and MASS were executed on these machines

using 1 to 8 nodes. The result of each performance was from the average outcome of 5 to 10 times

stable running.

5.2.1 Top K Application and Performance

5.2.1.1 Top K Application

The Top K algorithm can be used to solve problems like "top 50 hottest topics" in real life. The

application of this study simulates this problem by finding k most frequent IDs in a given document.

A python script was written and generates an input file with 10 million ID-frequency pairs (See

Appendix 1 for a screenshot of the input file generated via the Python script and Appendix 2 for a

screenshot of output top 50 most frequent IDs get after running the Top K algorithm).

5.2.1.2 Top K Performance

Figure 16. Top K’s Performance Comparison of Hadoop, Spark, and MASS

Figure 16 indicates the performance of Top k programs implemented on Hadoop, Spark, and

MASS on one, two, four, and eight nodes on cssmpi cluster. The data size is 10 million, and the

unit of running time is millisecond.

MILLISEC

 39

We could tell from Figure 16 that Spark always uses the least time from single to 8 nodes, and

MASS ranked second. The reason is that Spark and MASS processes data in random access

memory (RAM). It helps with both frameworks with better performance, but there are memory

issues for both Spark and MASS. We will discuss more in detail in Section 5.1.4. Hadoop uses the

longest time because MapReduce persists data back to the disk after a map or reduce action.

Another observation is that from 4 nodes to 8 nodes, the performance of MASS keeps

improving significantly, but the performance of Spark does not improve much.

Last observation is as indicated in Table 5, reading files costs the longest time during the

MASS operation. MapReduce, on the other hand, kills its processes as soon as a job is done, so it

can easily run alongside other services with minor performance differences.

Table 5. Top K MASS Running Time on Each Step (1 - 8 nodes)

Time on Each Step 1 node 2 nodes 4 nodes 8 nodes

Time of Places creation 91 139 1156 196

Time of Read input 29249 14605 8450 5066

Time of GetSubTree 104 143 100 146

Time of GetFinalTop K 2 1 2 2

Total time 29449 14888 9708 5410

5.2.2 Markov Chain Application and Performance

5.2.2.1 Markov Chain Application

The data used in this project is a simulated customer transaction history data generated by Pranab

Ghosh’s Ruby script [55] (See Appendix 3 for a screenshot of the input file generated by the Ruby

 40

script). In total, there are 10 million transaction records in the simulated customer transaction

history. Each input record has the following format: <customerID, transactionID, purchaseDate,

amount>. (See Appendix 5 for a screenshot of the output of this program. Each line represents the

number of times that a Markov state sequence has occurred. This is almost a Markov Probability

Transition Table (MRTT). This MRTT can be used as a machine learning model to predict the

next effective date to send a marketing email to that customer.)

5.2.2.2 Markov Chain Performance

Figure 17 indicates the performance of Markov Chain implementation on Hadoop, Spark, and

MASS running with one node, two nodes, four nodes, and eight nodes.

Figure 17. Markov Chain’s Performance Comparison on Hadoop, Spark, and MASS

 We could tell from Figure 17 that the performance of Spark outperforms the other two

frameworks on every cluster setup. Hadoop is slightly better than the MASS, and MASS has the

worst performance.

The reason why MASS performs not well is that the expense of IO is significantly dominant

than computation for this algorithm. We can observe the IO expenses from Table 6 that the MASS

 41

program spends 100 to 140 seconds in total to build the Markov Chain Model, in which 100

seconds is spent on IO. Although the time spent on the computing part to build the model decreases

along with more nodes, it does not contribute much to the overall performance. Section 4.2.3 will

explain the algorithm design of Markov Chain on MASS at Section 4.2.3. The performance shows

that the current parallel strategy might not be the best one for Markov Chain Algorithm. In the

future, with more time, it is possible to redesign other parallel strategies. One possible design is to

make better use of MASS parallel IO to make each place only read partial data to improve the

performance.

Table 6. Markov Chain MASS Running Time on Each Step (1 - 8 nodes)

Time on Each Time 1 node 2 nodes 4 nodes 8 nodes

Time of Reading input file 116737 112592 105172 98115

Time of getting sub Markov State 2032 1188 708 356

Total Time 137166 125269 108080 103902

5.2.3 Connected Components & Matrix Multiplication Application and Performance

Considering the performance of the Connected Components and Matrix Multiplication shares a lot

of similarities. This study will discuss the performance of these two applications together in this

section.

5.2.3.1 Connected Components Application

Connected Components can be used to calculate the connectivity of different network

configurations [56] when measuring routing performance in multihop wireless networks in real

life. Other than that, Connected Components is often used as the first step for many graph

 42

algorithms. For example, in social networks, a group of people usually have a close relationship.

Many of these groups usually like some common websites or play common games. The CC

algorithm is used to find such groups and recommend them to people in the group who have not

yet liked these websites or games.

This project modified the original existing class called GraphGren.java in the DSL lab, and

used it to generate a graph of size 2000. This graph is by default separated into at least four different

components. (Appendix 5 shows the input format of this application. Each line consists of two

parts, representing the current node index before the colon and all the neighbors of the current

node listed after the colon. The output of this application is formatted as follows: <number of

node in this connected component> : < list of nodes within the current connected component>.)

5.2.3.2 Matrix Multiplication Application

This project wrote a simple java class MatrixGen.java that creates two matrices: A (of dimension

2048 * 2048) and B (dimension 2048 * 2048). After parallel performs matrix multiplication, the

output is 2048 * 2048 matrix C where C [i] [j] is the dot product of the ith row of A and the jth

column of B.

5.2.3.3 Connected Components and Matrix Multiplication Performance

Figure 18 indicates the performance of Connected Components implementation on Hadoop, Spark,

and MASS running with one node, two nodes, four nodes, and 7 nodes. Figure 19 indicates the

performance of Matrix Multiplication running on one node, and four nodes. In the final phase of

this project, node 8 of cssmpi cluster (see Section 5.2 for cluster equipment information) had

technical issues of logging. Therefore, both programs could not be tested using eight nodes.

 43

Figure 18. Connected Components’ Performance Comparison

on Hadoop, Spark, and MASS

Because MASS version of Matrix Multiplication was achieved via Cannon’s Algorithm.

Cannon’s Algorithm is especially suitable for computers with n* n cores. Cssmpi cluster has 8

node and 32 cores in total. If we want to use the number of cores as a square number (n* n), this

project would only be able to test single node (4 cores) and 4 node (16 cores) in cluster.

Figure 19. Matrix Multiplication’s Performance Comparison

on Hadoop, Spark, and MASS

As discussed in Section 3.2.3, algorithms of Connected Components and Matrix

Multiplication are selected to be able to benefit from “data discovery”. These two algorithms

involve structured data (graph for Connected Components and 2D-array for Matrix Multiplication).

 44

As described in Sections 4.3.3 and 4.4.3，both algorithms use multiple agents to parallelize the

problem-solving process.

Considering these similarities, the performance of these two algorithms are discussed together.

As indicated Figures 18 and 19, when these two algorithms are tested in fewer nodes (1 node, 2

nodes), the execution time of MASS is much higher than the other two frameworks. The reason is

that when the total amount of data to be processed remains the same, the fewer nodes are used in

the cluster, the more agents populated on each node, and the larger overhead caused by the agent

object creation. That is to say, when fewer nodes are used in the cluster, the overhead of MASS

cause by agent creation is larger.

However, with increasing nodes in the cluster, the performance of MASS improved

dramatically. As indicated in Figures 18 and 19, the velocity of performance improved from both

algorithms on MASS is much greater than the other two algorithms. Especially for Matrix

Multiplication, when the cluster increases the number of nodes from one to four, the performance

of MASS improves 6.5 times. If we can add more nodes to the cluster for testing, the performance

of MASS might even exceed Spark.

5.3 Summary

Section 5 discussed the programmability and performance of each algorithm on three frameworks

above. In the rest of this session, we will summarize the observation about performance and

programmability across all frameworks and applications.

 45

Firstly, when we compare the performance, Spark performs the best, followed by MASS, and

MapReduce performs the worst. As we discussed the reasons in Section 5.1.1, Spark and MASS

processes data in random access memory (RAM). Hadoop persists data back to the disk after a

map or reduce action. Therefore, from both theoretical and practical perspectives, Spark and

MASS outperform Hadoop MapReduce. On the other hand, this also makes Spark and MASS

limited in memory.

As for Spark, its RDD applies in-memory processing computation when data set can fit into

memory. However, as stated in the Spark Programming Guide，“When data does not fit in memory,

Spark will spill these tables to disk, incurring the additional overhead of disk I/O and increased

garbage collection.” [57] Although this project did not test data bigger than memory, theoretically

speaking, if the data is too big to fit into memory, Spark will suffer major performance

degradations.

MASS has a similar issue of memory. Taking Top K as an example, when distributing data, MASS

parallel IO first reads the entire input file into memory at once, and then process partition data

according to the offset of each place. If the input data file is larger than RAM size, MASS is not

able to process. As mentioned in Section 5.1.1, the design of MASS parallel IO leads to high cost.

Secondly, there are different overhead of each framework. From the performance of Top K,

Connected Components, and Matrix Multiplication, we could find that with increasing nodes in

the cluster, the velocity of performance improvement from MapReduce and Spark is not as steep

as MASS. This is probably because the design of MapReduce and Spark has more overhead

coming from iterative computations that need to pass over the same data many times. For data-

 46

streaming-based applications of Top K and Markov Chain, bottle neck is I/O, because data should

be read from and send back to the main program. For structured-data-applications of Connected

Components and Matrix Multiplication, the communication between different nodes would causes

overheads. These applications maintain structured data which has a close relationship and more

updates between data. When more node is being used in the cluster, the communication cost

increases.

If the number of nodes in the cluster is small, MASS tends to have more overhead. As

discussed in Section 5.1.3.3, this is probably caused by the needs to initialize too many places and

agents on each core.

Considering the performance and programmability comprehensively, this project found that

MASS achieve a proper balance as MASS has better performance with increasing nodes in the

cluster. In addition, MASS has more intuitive programming, and also has less boilerplate ratio,

compared MapReduce and Spark. The balance of programmability and performance of MASS

might appeal to engineers dealing with structured data analysis.

6. Conclusion

This project strives to extend the initial achievement in agent-based data analysis by exploring

more data science applications that would be the better fit to agent-based parallelization. This

project presents the algorithm designs and implementation process for four applications of Top K,

Markov Chain, Connected Components, and Matrix Multiplication on MapReduce, Spark, and

MASS. This project further compares the programmability and execution performance of four

 47

applications on three frameworks. Comprehensively speaking, MASS demonstrated the good

balance between programmability and execution performance for structured data analysis.

Based on the previous work on MASS and this project, future work could be taken in the areas

of Computational optimization, Graph algorithm, and Matrix operation library. In addition, we

could develop some agent-based modeling package in above for other researcher to extend the

study on the MASS.

 There are also few limitations of this project. This project only chose four data analysis

algorithms. Should this project have more algorithms, there would be more and stronger evidences

for the findings of this study. In addition, some findings of this study, such as the programmability,

could have more quantitative and qualitative evidence. Another limitation is the experience with

MapReduce, Spark, and MASS. Since the researcher still have rudimentary understanding of the

low-level implementation of these frameworks, the configuration and implementation of

algorithms could be optimized and the comparison would be more accurate.

 48

Appendix 1. Screenshot of Input of Top K

Appendix 2. Screenshot of Output of Top K

 49

Appendix 3. Screenshot of Input of Markov Chain

Appendix 4. Screenshot of Output of Markov Chain

 50

Appendix 5. Input of Connected Components Application

 51

References

[1] IBM Corporation. "What is batch processing?". zOS Concepts. Retrieved Oct 10, 2019 from

https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zconcepts/zconc_whatisb

atch.htm. Para. 1

[2] Woodring, J., Sell, M., Fukuda, M., Asuncion, H., & Salathe, E. (2017, June). A Multi-agent

Parallel Approach to Analyzing Large Climate Data Sets. In 2017 IEEE 37th International

Conference on Distributed Computing Systems (ICDCS) (pp. 1639-1648). IEEE.

[3] A. Kretz, What is Hadoop and Why is it so Freakishly Popular?

https://andreaskretz.com/2016/11/30/what-is-hadoop-and-why-is-it-so-freakishly-popular/,

Para.8

[4] A. Kretz, What is Hadoop and Why is it so Freakishly Popular?

https://andreaskretz.com/2016/11/30/what-is-hadoop-and-why-is-it-so-freakishly-popular/,

Para.17

[5] MapReduce: Parallel & Distributed Programming Model, Tutorials Point,

https://www.tutorialspoint.com/map_reduce/map_reduce_tutorial.pdf, p.4.

[6] MapReduce: Parallel & Distributed Programming Model, Tutorials Point,

https://www.tutorialspoint.com/map_reduce/map_reduce_tutorial.pdf, p.5.

[7] M. Parsian, Data Algorithms Recipes for Scaling Up with MapReduce and Spark. O'Reilly

Media, Inc. 2015.

[8] Karau, H., Konwinski, A., Wendell, P., & Zaharia, M. (2015). Learning spark: lightning-fast

big data analysis. O'Reilly Media, Inc.

[9] Apache Spark. https://en.wikipedia.org/wiki/Apache_Spark, Para. 3.

[10] Karau, H., Konwinski, A., Wendell, P., & Zaharia, M. (2015). Learning spark: lightning-

fast big data analysis. O'Reilly Media, Inc.

[11] Spark Guide, Cloudera, October 16, 2018 retrieved from

https://www.cloudera.com/documentation/enterprise/5-6-x/PDF/cloudera-spark.pdf, p.8.

https://andreaskretz.com/2016/11/30/what-is-hadoop-and-why-is-it-so-freakishly-popular/
https://en.wikipedia.org/wiki/Apache_Spark

 52

[12] Spark Guide, Cloudera, October 16, 2018 retrieved from

https://www.cloudera.com/documentation/enterprise/5-6-x/PDF/cloudera-spark.pdf, p.8.

[13] Munehiro Fukuda. A Parallel Multi-Agent Spatial Simulation Environment for Cluster

Systems (18 pages), the 16th IEEE International Conference on Computational Science and

Engineering, Sydney, Australia, December 4, 2013.

http://depts.washington.edu/dslab/MASS/docs/ieee_cse2013.ppt

[14] Spark vs Hadoop MapReduce – Comparing Two Big Data Giants

https://www.intellectsoft.net/blog/spark-vs-hadoop/, Para. 4

[15] Spark vs Hadoop MapReduce – Comparing Two Big Data Giants

https://www.intellectsoft.net/blog/spark-vs-hadoop/, Para. 5.

[16] M. Sell and M. Fukuda. Agent Programmability Enhancement for Rambling over a

Scientific Dataset, unpublished paper

[17] Fukuda, M., Gordon, C., Mert, U., Sell, M.: Agent-Based Computational Framework for

Distributed Analysis. IEEE Computer (to appear in March 2020).

https://doi.org/doi:10.1109/MC.2019.2932964

[18] Munehiro Fukuda. MASS: A Multi-Agent Spatial Simulation Library (a one-Page flier),

Office of Research - Undergraduate Research Fair, University of Washington Bothell, October

15, 2013, http://depts.washington.edu/dslab/MASS/docs/Fukuda-UGradResearch.pptx, Para. 4

[19] Fukuda, M. & Kim. W. Toward the Practicalization of Agent-Based Data Discovery.

Computing and Software Systems, Unpublished Manuscript.

[20] Ma, Z., & Fukuda, M. (2015, December). A multi-agent spatial simulation library for

parallelizing transport simulations. In 2015 Winter Simulation Conference (WSC) (pp. 115-126).

IEEE.

[21] Ma, Z., & Fukuda, M. (2015, December). A multi-agent spatial simulation library for

parallelizing transport simulations. In 2015 Winter Simulation Conference (WSC) (pp. 115-126).

IEEE.

http://depts.washington.edu/dslab/MASS/docs/ieee_cse2013.ppt
https://www.intellectsoft.net/blog/spark-vs-hadoop/
https://www.intellectsoft.net/blog/spark-vs-hadoop/

 53

[22] Fukuda, M. MASS: Parallel-Computing Library for Multi-Agent Spatial Simulation.

Retrieved Feb. 10, 2020. from

http://faculty.washington.edu/mfukuda/doc/MassSpec_050710.pdf. Para. 5.

[23] Fukuda, M., Gordon,C. Mert, U., & Sell, M. "An Agent-Based Computational Framework

for Distributed Data Analysis," IEEE Computer, Vol.53, No.3, DOI:10.1109/MC.2019.2932964,

March 2020

[24] Fukuda, M. & Kim. W. Toward the Practicalization of Agent-Based Data Discovery.

Computing and Software Systems, Unpublished Manuscript.

[25] Fukuda, M. & Kim. W. Toward the Practicalization of Agent-Based Data Discovery.

Computing and Software Systems, Unpublished Manuscript.

[26] Fukuda, M., Gordon,C. Mert, U., & Sell, M. "An Agent-Based Computational Framework

for Distributed Data Analysis," IEEE Computer, Vol.53, No.3, DOI:10.1109/MC.2019.2932964,

March 2020

[27] Gordon. C. (2018). Agent-Based Data Science and Machine Learning. unpublished master’s

thesis. University of Washington, Bothell, WA.

[28] Woodring, J., Sell, M., Fukuda, M., Asuncion, H., & Salathe, E. (2017, June). A Multi-

agent Parallel Approach to Analyzing Large Climate Data Sets. In 2017 IEEE 37th International

Conference on Distributed Computing Systems (ICDCS) (pp. 1639-1648). IEEE.

[29] M. Sell and M. Fukuda. Agent Programmability Enhancement for Rambling over a

Scientific Dataset, Unpublished paper

[30] Fagin, R., Kumar, R., & Sivakumar, D. (2003). Comparing top k lists. SIAM Journal on

discrete mathematics, 17(1), 134-160.

[31] M. Parsian, Data Algorithms Recipes for Scaling Up with MapReduce and Spark. O'Reilly

Media, Inc., p.259, 2015.

[32] M. Parsian, Data Algorithms Recipes for Scaling Up with MapReduce and Spark. O'Reilly

Media, Inc., p.258, 2015.

[33] Steven S. Skiena. (2008). The Algorithm Design Manual. Springer, p.166

 54

[34] “Depth First Search” Retrieved Feb. 26, 2020, from

https://www.hackerearth.com/practice/algorithms/graphs/depth-first-search/tutorial

[35] Steven S. Skiena. (2008). The Algorithm Design Manual. Springer. p. 166

[36] “Numpy Matrix Multiplication.”Retrieved Feb. 26, 2020, from

https://hackr.io/blog/numpy-matrix-multiplication. Para 1.

[37] “Matrix multiplication algorithm.” Retrieved Feb. 26, 2020,

from ”https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm. Para. 5.

[38] https://github.com/niharsuryawanshi/Graph-Analysis-Projects-Using-Hadoop-Map-Reduce

[39] https://github.com/nm4archana/BigDataAnalysis-Comet

[40] M. Parsian, Data Algorithms Recipes for Scaling Up with MapReduce and Spark. O'Reilly

Media, Inc., p.44, 2015.

[41] M. Parsian, Data Algorithms Recipes for Scaling Up with MapReduce and Spark. O'Reilly

Media, Inc., p.44, 2015.

[42] https://blog.godatadriven.com/graph-partitioning-in-mapreduce-with-cascading

[43] https://github.com/niharsuryawanshi/Graph-Analysis-Projects-Using-Hadoop-Map-Reduce

[44] Ghoting, A., Krishnamurthy, R., Pednault, E., Reinwald, B., Sindhwani, V., Tatikonda,

S., ... & Vaithyanathan, S. (2011, April). SystemML: Declarative machine learning on

MapReduce. In 2011 IEEE 27th International Conference on Data Engineering (pp. 231-242).

IEEE. p.232

[45] https://github.com/nm4archana/BigDataAnalysis-Comet

[46] Ghoting, A., Krishnamurthy, R., Pednault, E., Reinwald, B., Sindhwani, V., Tatikonda,

S., ... & Vaithyanathan, S. (2011, April). SystemML: Declarative machine learning on

MapReduce. In 2011 IEEE 27th International Conference on Data Engineering (pp. 231-242).

IEEE. p.232

[47] Tang, Y. (2016). Study and implementation on distributed large scale matrix computation

algorithms with Spark. Unpublished Master’s Thesis. Nanjing University, China. p.21.

[48] Matrix Multiplication on a Distributed Memory Machine, www.phy.ornl.gov

 55

[49] https://iq.opengenus.org/cannon-algorithm-distributed-matrix-multiplication/

[50] https://blog.godatadriven.com/graph-partitioning-in-mapreduce-with-cascading

[51] Ghoting, A., Krishnamurthy, R., Pednault, E., Reinwald, B., Sindhwani, V., Tatikonda,

S., ... & Vaithyanathan, S. (2011, April). SystemML: Declarative machine learning on

MapReduce. In 2011 IEEE 27th International Conference on Data Engineering (pp. 231-242).

IEEE. p.232

[52] Gordon. C. (2018). Agent-Based Data Science and Machine Learning. unpublished master’s

thesis. University of Washington, Bothell, WA. p.26.

[53] Gordon. C. (2018). Agent-Based Data Science and Machine Learning. unpublished master’s

thesis. University of Washington, Bothell, WA. p.24.

[54] Lämmel, R., & Jones, S. P. (2003). Scrap your boilerplate: a practical design pattern for

generic programming. ACM SIGPLAN Notices, 38(3), 26-37.

[55] buy_xaction.rb, https://github.com/pranab/avenir/blob/master/resource/buy_xaction.rb. as

cited in M. Parsian, Data Algorithms Recipes for Scaling Up with MapReduce and Spark.

O'Reilly Media, Inc., p.263, 2015.

[56] “Routing performance in the presence of unidirectional links in multihop wireless

networks”. Retrieved Feb. 26, 2020, from http://u6.gg/rDnun. Para.1.

[57] “RDD Programming Guide.” Retrieved Feb. 26, 2020, from

hhttp://spark.apache.org/docs/latest/rdd-programming-guide.html. Para. 35.

