
Development of Application Programs  

Oriented to Agent-Based Data Analysis 

 

 

 

Chang Liu 

 

 

A whitepaper 

submitted in partial fulfillment of the 

requirements for the degree of 

 

Master of Science in Computer Science & Software Engineering 

 

University of Washington 

2020 

 

Project Committee: 

Munehiro Fukuda, Committee Chair 

Robert Dimpsey, Committee Member 

Michael Stiber, Committee Member 

 

Program Authorized to Offer Degree: 

Computer Science & Software Engineering



©Copyright 2020 

Chang Liu



 i 

Contents 

1. Introduction ............................................................................................................................ 1 

1.1 Background ....................................................................................................................... 1 

1.2 Motivation ......................................................................................................................... 1 

1.3 Project Goals ..................................................................................................................... 2 

2. Related Work ......................................................................................................................... 3 

2.1 Data-streaming Tools in Data Analysis ............................................................................ 3 

2.1.1 Hadoop ................................................................................................................... 3 

2.1.2 Spark ...................................................................................................................... 5 

2.1.3 Limitations ............................................................................................................. 6 

2.2 Agent-based Modelling in Data Analysis: MASS ............................................................ 7 

2.2.1 MASS Library ........................................................................................................ 7 

2.2.2 Previous Work on MASS....................................................................................... 9 

2.3 Summary ......................................................................................................................... 10 

3. Selection of Applications ..................................................................................................... 10 

3.1 Data-streaming-based Applications ................................................................................ 11 

3.1.1 Top K ................................................................................................................... 11 

3.1.2 Markov-Chain ...................................................................................................... 12 

3.1.3 Summary .............................................................................................................. 13 

3.2 Analysis of Structured Data ............................................................................................ 13 

3.2.1 Connected Components ....................................................................................... 13 

3.2.2 Matrix Multiplication ........................................................................................... 14 

3.2.3 Summary .............................................................................................................. 15 

4. Application Development with MapReduce, Spark, and MASS ..................................... 16 

4.1 Top K: Implementation and Issues ................................................................................. 16 

4.1.1 Top K Hadoop Implementation ........................................................................... 16 

4.1.2 Top K Spark Implementation............................................................................... 17 

4.1.3 Top K MASS Implementation ............................................................................. 18 

4.2 Markov: Implementation and Issues ............................................................................... 20 

4.2.1 Markov Chain Hadoop Implementation .............................................................. 20 

4.2.2 Markov Chain Spark Implementation .................................................................. 22 

4.2.3 Markov Chain MASS Implementation ................................................................ 23 

4.3 Connected Components Implementation and Issues ...................................................... 24 

4.3.1 Connected Components Hadoop Implementation ............................................... 24 

4.3.2 Connected Components Spark Implementation................................................... 25 

4.3.3 Connected Components MASS Implementation ................................................. 26 

4.4 Matrix Multiplication: Implementation and Issues ......................................................... 27 

4.4.1 Matrix Multiplication Hadoop Implementation ................................................... 27 

4.4.2 Matrix Multiplication Spark Implementation ...................................................... 28 

4.4.3 Matrix Multiplication MASS Implementation..................................................... 29 



 ii 

5. Comparison of MapReduce, Spark, and MASS ............................................................... 31 

5.1 Comparison of Programmability..................................................................................... 31 

5.1.1 Intuitive Programming ......................................................................................... 31 

5.1.2 Boilerplate Code Ratio ......................................................................................... 36 

5.2 Performance .................................................................................................................... 37 

5.2.1 Top K Application and Performance ................................................................... 38 

5.2.2 Markov Chain Application and Performance ...................................................... 39 

5.2.3 Connected Components & Matrix Multiplication Application and Performance 41 

5.3 Summary ......................................................................................................................... 44 

6. Conclusion ............................................................................................................................ 46 

 



 iii 

University of Washington 

 

Abstract 

 

Development of Application Programs Oriented to Agent-Based Data Analysis 

Chang Liu 

 

Chair of the Supervisory Committee: 

Professor Munehiro Fukuda 

Computing and Software Systems 

Different software has been developed in the last two decades to accelerate big data 

parallelism processes, such as MapReduce, Spark, and Storm. Besides these data-streaming tools, 

agent-based modelling (ABM) provides an alternative approach for data discovery and gain 

recognition on its programmability and intuition of coding. As a tool of ABM, the Multi-Agent 

Spatial Simulation library (MASS) is developed by Distributed Systems Laboratory (DSL) at the 

University of Washington, Bothell and strives to parallelize agent-based models over a cluster 

system. This project is to extend the initial achievement in agent-based data analysis by exploring 

more data science applications and identifying more data science applications that would be the 

better fit to agent-based parallelization.  

This project presents the algorithm designs and implementation process for four applications 

of Top K, Markov Chain, Connected Components, and Matrix Multiplication on MapReduce, 

Spark, and MASS. In addition, this project compares the programmability and execution 

performance of four applications on three frameworks. This study further discussed the previous 

research on the MASS and the strengths and weaknesses of MASS when it is used to implement 

data applications.
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1. Introduction 

1.1 Background 

Traditional software applications normally could store and process data with the help of a 

centralized server. However, when it comes to the large dataset, the data analysis is not just about 

scale and volume, but also involves velocity, variety, and complexity. Different software has been 

developed in the last two decades to accelerate big data computing, such as MapReduce, Spark, 

and Storm. These software tools provide their standard program paradigm to facilitate 

parallelization on cluster computing. The concept behind these tools is data streaming through 

batch processing. Batch processing is an automated job that “can run without end-user interaction, 

or can be scheduled to run as resources permit” [1]. These tools perform data transformation and 

computation on batches of data in parallel to maximize performance (Spark by mini-batches, and 

Storm process event by event). However, these applications are not the only solutions for large 

dataset. There are still alternative approaches being developed such as agent-based data discovery. 

Researchers and engineers have been developing and testing these frameworks for data processes. 

This project tends to join previous effort by exploring tools and algorithms for agent-based data 

discovery.  

1.2 Motivation 

MapReduce and Spark are two major software tools to facilitate big data analysis with a cluster 

system or even in the cloud. Nevertheless, not all data science applications fit into their 

computation models. For instance, consider one of the graph problems: identifying triangles in a 
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social network, which shows the friendship degree of the network. The corresponding MapReduce 

and Spark programs need to separately enumerate all combinations of two connected edges; to 

narrow them down to those that have another edge to bridge the first and the last vertices, (which 

makes a triangle); and to remove duplicated triangles. Contrary to their exhaustive and repetitive 

data transformations, the same program can be much more intuitively and smoothly described by 

walking an execution entity called “agent” along with a series of three graph edges from each 

vertex and checking the third edge’s reachability back to the original edge.  

 Using lightweight reactive agents, this approach allows frequent agent migration and fine-

grained data analysis in data discovery. This approach focuses on discovering the attribute of 

dataset by observing emergent group behavior of many agents, such as walking, dissemination, 

swarming, and overriding. Based on this approach, Distributed Systems Laboratory (DSL) at the 

University of Washington, Bothell, developed the Multi-Agent Spatial Simulation library (MASS). 

The MASS library has been used for simulating transportation, social-network and biology 

problems. It has also been used for analyzing large datasets [2], and paralleling data-science 

applications to extend the use case of MASS in the data analysis area. 

1.3 Project Goals 

In previous research, DSL lab has already parallelized six data-science applications with MASS 

and compared their programmability and execution performance with MapReduce and Spark.  

This project aims to extend these initial achievements in agent-based data analysis by 

exploring more data science applications and identifying which data science applications would 
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be the best fit to agent-based parallelization. Additionally, this project tends to discover the 

strengths and weaknesses of MASS when it is used to implement data applications. Specifically, 

this project tested four applications of Top K, Markov Chain, Connected Components, and Matrix 

Multiplication in MASS, MapReduce, and Spark and the key criteria are programmability and 

execution performance.  

2. Related Work 

This section reviewed two conventional data-streaming approaches of Hadoop and Spark, and 

further summarized and discussed the previous endeavor with the MASS library. 

2.1 Data-streaming Tools in Data Analysis 

Hadoop and Spark are two of the most popular software for big data analysis. This section provides 

the background information on these two software tools, and further interprets why these data-

streaming models are so popular, and what problems exist. 

2.1.1 Hadoop 

Hadoop is a platform for distributed storing and analyzing very large data sets. It provides both 

infrastructure and programming models: Hadoop distributed file system (HDFS) and MapReduce. 

The way these modules are woven together is what makes Hadoop so successful.  

 

 

 

 

Figure 1. Data Splitting on Hadoop Distributed File System [3] 



 4 

HDFS has superior fault tolerance and no limit on how big the files can be [4]. As shown in 

Figure 1, HDFS splits the file into blocks, and then it automatically replicates and distributes these 

blocks on the Hadoop cluster. Splitting files into blocks makes it easy to analyze the data in a 

distributed fashion. 

MapReduce is a framework for distributed data analysis. There are two important tasks in the 

MapReduce: Map and Reduce. The Map task takes a set of data and converts it into another set of 

data, where each element is broken down into tuples (key/value pairs). The Reduce task takes the 

output of the Map as input and combines these data tuples (key/value pairs) into a smaller set of 

tuples. The reduce task is always executed after the map job [5]. 

 

Figure 2. Execution Overview of MapReduce [6] 

Figure 2 shows the flows of a MapReduce operation and its several phases. In conjunction with 

HDFS, MapReduce is able to analyze the blocks of a file in parallel. 

The MapReduce framework provides several benefits: Programming model together with 

infrastructure; The ability to write programs that run on lots of machines; automatic parallelization 

and distribution; fault tolerance; and program/job scheduling, status checking, and monitoring [7].  
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2.1.2 Spark 

Spark started in 2009 at the University of California, Berkeley and is considered to be the successor 

to MapReduce for data processing. Spark introduces an abstraction named Resilient Distributed 

dataset (RDD). An RDD is a read-only collection of objects partitioned across a set of machines 

that can be rebuilt if a partition is lost [8]. Spark and its RDDs were developed in response to 

limitations in the MapReduce cluster computing paradigm [ 9 ]. Because MapReduce was not 

efficient enough for iterative and interactive jobs, Spark strives to be fast for interactive queries 

and iterative algorithms and further support in-memory storage and efficient fault recovery [10].  

 

Figure 3. Execution Overview of Spark [11] 

As shown in Figure 3, the execution of Spark involves runtime concepts such as driver, 

executor, task, job, and stage [12]. At runtime, Spark application is mapped to a single driver 

program execution process and a set of distributed processes on the hosts in the cluster. The driver 

process manages the job stream and schedules the task and is available for the entire time the 

application is running. 

The executors are responsible for performing work in the form of tasks and storing any cached 

data. The execution life of the program depends on whether dynamic allocation is enabled. The 

https://en.wikipedia.org/wiki/MapReduce
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executor has a number of slots for running tasks and will run many slots simultaneously during its 

lifetime. Invoking an action in a Spark application triggers a startup job to implement it. Spark 

checks the data set that the operation depends on and develops an execution plan. The execution 

plan assembles the data set into phases. A stage is a collection of tasks that run the same code, 

each code on a different subset of data [13]. 

Spark mainly executes in-memory computations in a distributed environment. It offers 

incredible processing speed, making it desirable for everyone interested in big data analytics [14]. 

2.1.3 Limitations  

There are several reasons made conventional approaches to data streaming approaches very 

popular. Firstly, they are endorsed and maintained by Apache—an influential open-source 

community. The community improves the core software and contributes practical add-on packages 

[15]. Because of all those side projects, Hadoop and Spark have turned more into an ecosystem for 

storing and processing big data.  

In addition, these tools are particularly suitable for flat texts [16], e.g. statistical analysis of data 

streamed from social, business, and IoT environments. Services of partitioning, flattening and 

streaming multidimensional data extend the practicability of analyzing structured datasets. In 

general, these approaches provide straightforward programming frameworks for parallel 

computing and interpretive execution environments.  

However, these frameworks still have problems with programmability and execution 

performance of data discovery, especially for structured datasets [17]. For instance, Hadoop and 

Spark usually decompose the entire data operation into multiple small tasks. Each task must deal 
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with the entire file or stream, complete the previous task and then start the next task. Usually, these 

data stream models do not maintain the entire data structure in distributed memory on the cluster. 

However, MASS can maintain the data structure in-memory over the distributed system, which 

we will discuss later. Therefore, if there is a large data set that repetitive MapReduce invocations 

and Spark transformations need to process, the processes of transferring back and forth or 

swapping in and out data between disk and memory could slow down the execution speed. 

Moreover, these data stream models each provide their unique program paradigm (e.g. 

map/reduce functions in MapReduce, lambda expressions in Spark). Following these program 

paradigms will increase a certain amount of boilerplate code. Meanwhile, from the perspective of 

programmability, developers need to disassemble the original algorithm and transform it into these 

models. There is a certain learning curve to overcome. ABM expresses the algorithm more 

intuitively and its programming is closer to basic java programming and requires less conversion 

for the users. 

2.2 Agent-based Modelling in Data Analysis: MASS 

2.2.1 MASS Library 

As mentioned in Section 1.2, MASS is a parallel-computing library to develop and execute multi-

agent simulations with multiple computer [ 18 ]. It provides the efficiency of agent-based 

parallelization while abstracting parallel environments for ABM. It provides an intermediate layer 

that only requires the user to provide code related to their project without having to manage the 

details of the parallelization [19]. 
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Two key concepts within MASS library are: places and agents. Each Place element is 

automatically mapped to one of the compute nodes, has a logical array index, and is capable of 

calling a given function in parallel and exchanging data with other elements. On the other hand, 

agents are a set of execution instances that can reside somewhere, migrate to any other place using 

a matrix index (thus copying itself), and interact with other agents through their local location [20]. 

 

Figure 4. Execution Model of MASS Library [21] 

As illustrated in Figure 4, Places maps to threads, and agents map to processes. Unless the 

programmer indicates the places-partitioning algorithm, the MASS library divides the place into 

smaller strips in the vertical or X coordinate direction, and then assigns each stripe to and executes 

by a different thread. In contrast to the place, the agents are grouped into bundles, each of which 

is assigned to a different process, in which multiple threads continue to check in and check out the 

agents one by one from the bag while they are ready to execute the new agent [22]. 

As a tool of agent-based data analysis, MASS has some features and advantages that are 

exclusive to conventional data-streaming tools. The main difference is the computing units. MASS 
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dispatches agent(s) as computing units to the dataset. There is a parallel loading of a structured 

dataset and the structure is held in memory. It further facilitates repetitive but various analysis [23].  

In addition, the programming in MASS is also intuitive that algorithm developers can code 

behaviors of agents as if they drive agents out to a dataset [24]. Moreover, as agent-based modelling 

becomes more popular, it has been applied to computational optimization with many biological-

inspired algorithms such as ant colonial optimization. This study will use these features to explore 

the potential of MASS for some specific big data analysis issues. 

2.2.2 Previous Work on MASS 

There has been increasing research on the MASS and exploration of its function, and its 

programmability and performance using different algorithms. As the founder of MASS library, 

Fukuda and his DSL lab team [25] discusses the advantages and challenges of agent-based data 

discovery, introduced several agent-based analyzing algorithms, and further strategized the 

implementation. In the continuing studies [ 26 ][ 27 ], Fukuda, Gordon and other team members 

explored algorithms including K Means Clustering, K Nearest Neighbor Classification, Triangle 

Counting in Graphs, and the Traveling Salesman Problem. It is found that MASS, as a tool of 

ABM, is quite intuitive with respect to coding programs for distributed data analysis while being 

efficient. Woodring et. al [28] examined the practicability of MASS via climate change research 

with web-interfaced climate analysis. In this research, MASS demonstrated practical advantages 

and performance improvements. Sell [ 29 ] explored the enhancement of programmability by 

designing, implementing, and evaluating these two agents descriptively enhancements of event-

driven agent behavioral execution and direct inter-agent broadcast.  With previous studies on 
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MASS, DSL lab still need to extend more benchmarks to identify the application domains that 

agents can take advantage of. Therefore, this study borrowed the idea of Gordon’s research and 

extended his research with more algorithms, which might contribute to the future work to create 

some data science library and graph library. Moreover, Gordon’s project only compared the 

performance of multiple node on the Spark and MASS. Because of no sufficient memory to the 

research account used in his project, Gordon only study the performance results for a single node 

on MapReduce. This project tried to fill the gap by implementing four applications on all three 

frameworks and comparing the performance of both single and multiple nodes.  

2.3 Summary 

Extending Gordon’s research, this study selected more data analysis algorithms to further verify 

his conclusions. When selecting data analysis algorithms, the rationales are that Top K and Markov 

Chain are data-streaming tools and Connected Components and Matrix multiplication are more 

conducive to ABM. The following sections will explain these algorithms in detail, the 

implementation on the three frameworks, and results and observations from the perspective of 

performance and programmability.  

Based on previous research and conclusions, this project also intends to examine the strengths 

and weaknesses of MASS when it is used to implement data analysis applications. This study will 

also discuss and suggest possible improvements of the MASS library. 

3. Selection of Applications 

Since Hadoop, Spark, and MASS, as clustering programming, often solve the problems with large 
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dataset, we selected four algorithms that tend to solve the common problem of big data. The four 

algorithms are: Top K, Markov Chain, Connected Components and Matrix Multiplication. This 

project implemented these algorithms in Hadoop, Spark, and MASS, benchmarked their 

performances, and made some further discussions.  

In addition, based on previous research, Hadoop and Spark usually are suitable for solving the 

data-streaming-based problems. Therefore, two algorithms are selected, Top K and Markov Chain, 

that usually involve more data-streaming operations when processing these problems. On the other 

hand, another set of two algorithms were chosen: Connected Components and Matrix 

Multiplication, that are suitable for problem solving via modeling into ABM. 

This chapter will explain each algorithm and the type of problems it usually solves. The next 

chapter introduces the implementation details of each algorithm on the three frameworks of 

Hadoop, Spark, and MASS. 

3.1 Data-streaming-based Applications 

3.1.1 Top K  

The notion of a “Top K” is ubiquitous in the field of information retrieval. A top 10 list is usually 

associated with the “first-page” of results from a search engine” [30].  

A common way to implement the Top K algorithm in Java is to use a priority queue or treemap. 

The top of the priority queue or the first entry of the treemap is the smallest element among k 

elements. Moreover, we maintain the largest k elements within the priority queue or treemap. We 

keep comparing each element to the priority queue or treemap. If the element is larger than the top, 
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pop the current top and add a new element to the priority queue or treemap, otherwise, ignore this 

element. 

3.1.2 Markov-Chain 

Markov chain is a machine learning algorithm whose model is described by an undirected graph. 

A Markov Chain model makes the prediction based on the probability from one state to another 

state. Let S = {S1, S2, S3, ...} be a set of finite states. We want to collect the following probabilities: 

P (Sn|Sn–1,Sn–2, ..., S1).  

Table 1. City Weather Pattern (Markov Probability Transition Table) [31] 

  Tomorrow’s Weather 

Today’s weather sunny    rainy cloudy foggy 

sunny 0.6  0.1  0.2   0.1  

rainy 0.5 0.2  0.2  0.1  

cloudy 0.1  0.7  0.1  0.1  

foggy 0.0  0.3 0.4  0.3 

The Markov’s first-order assumption is the following: P (Sn|Sn–1,Sn–2, ..., S1) ≈ P (Sn|Sn–

1). This approximation states the Markov property: the state of the system at time t + 1 depends 

only on the state of the system at time t. The Markov second-order assumption is the following: P 

(Sn|Sn–1,Sn–2, ..., S1) ≈ P (Sn|Sn–1,Sn–2). With Markov assumption, we can predict the 

possibility from one state to another by expressing the joint probability. After we calculate the 

possibilities from one state to another based on a large amount of data, we can build a Markov 

probability transition table, which is the machine learning model we use to perform prediction. 

Table 1 is shown as an example using the city Weather Pattern [32], the sum of each row is 1.00. 

Typically, a machine learning–based solution consists of two distinct phases: (1) Phase 1: build a 
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model by using historical training data; (2) Phase 2: make a prediction for the next new data using 

the model built in Phase 1. 

This project mainly focuses on Phase 1. This phase involves processing a large amount of data 

to get the statistics from one state to another and builds a Markov probability transition table. Once 

we have created this table, getting the possibilities from one state to another is a simple 

computation, so it is not the scope of this project. 

3.1.3 Summary 

The first two applications in this study, Top K and Markov Chain, mainly processed plain data. 

During the processing, the data is distributed to different execution units, and operations on each 

execution unit are relatively independent. In other words, the data processing on each unit involves 

little information exchange with each other. This is what this research meant by data-streaming 

applications and also why we implemented them first in this research. In Section 5, the research 

will further discuss the execution performance of these two applications on MapReduce, Spark, 

and MASS.  

3.2 Analysis of Structured Data 

3.2.1 Connected Components 

The third application of this study parallelized is connected components (CC) in an undirected 

graph. A Connected Components represents “a maximal set of vertices such that there is a 

connection between every pair of vertices. The components are separate ‘pieces’ of the graph such 

that there is no connection between the pieces.” [33]. As shown in Figure 5, Connected Components 
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means partitioning a graph into chunks in such a way that there are paths to connect all pairs of 

vertices within the chunk. 

  

Figure 5. The Connected Components of a Graph [34] 

We could use different graph search algorithms, such as breadth-first search and depth-first 

search, to solve the Connected Components problem. Taking breadth-first search as an example, 

we could start from the very first vertex, and then everything we find during this search must be 

part of the same connected component. We further repeat the search to identify the next component 

from any undiscovered vertex (if one exists), and so on until all vertices are found [35].   

3.2.2 Matrix Multiplication 

 

Figure 6. Matrix Multiplication [36] 

Matrix Multiplication, in mathematics, is a binary operation that produces a matrix from two 

matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the 

https://en.wikipedia.org/wiki/Binary_operation
https://en.wikipedia.org/wiki/Matrix_(mathematics)
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number of rows in the second matrix (See Figure 6). 

A simple algorithm can be constructed which loops over the indices i from 1 through n and j 

from 1 through p, computing the above using a nested loop: [37] 

Input: matrices A and B 

Let C be a new matrix of the appropriate size 

for i from 1 to n: 

    for j from 1 to p: 

        Let sum = 0 

        for k from 1 to m: 

            set sum ← sum + Aik × Bkj 

            set Cij ← sum 

return C 

3.2.3 Summary 

The two algorithms, Connected Components and Matrix Multiplication are selected in this 

research as two typical algorithms of processing structured dataset. As mentioned in Section 3.1, 

the first two algorithms (Top K and Markov Chain) processed plain data, and the computation of 

each unit is relatively independent. When designing and implementing the MASS-paralleled 

version of Top K and Markov chain, we found there is no need to use agents since using Places 

alone could achieve MASS-version parallelization. Therefore, it is not necessary to use agents to 

carry parts of the information and then walk, disseminate, or swarm on data structure to observe 

emergent group behavior.  

In order to be able to benefit from “data discovery”, Section 3.2 further chose two algorithms 

that involve structured data (graph for Connected Components and 2D-array for Matrix 

Multiplication). In this way, when using MASS to parallelize these two algorithms, the projects 
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need to maintain structured dataset in memory, and then use the agents to achieve “data discovery”. 

In Section 5, we will further discuss their performance and the observation.  

4. Application Development with MapReduce, Spark, and MASS 

This section covers the implementations of Tok K, Markov Chain, Connected Component in 

Graphs, and Matrix Multiplication using MapReduce, Spark, and MASS. Section 5 will discuss 

the quantitative and qualitative analysis of four algorithms. This section built on Parsian’s work 

on data algorithms including Top K and Markov Chain for Spark and MapReduce. In addition, 

this project developed on and modified Nihar Suryawanshi’s MapReduce implementation of 

Connected Components project [38] and Archana Masilamani’s MapReduce implementations of 

Matrix Multiplication [39].  

4.1 Top K: Implementation and Issues 

4.1.1 Top K Hadoop Implementation 

 

Figure 7. Top K Hadoop Implementation [40] 
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The MapReduce solution for Top K algorithm is presented in Figure 7. The HDFS partitioned the 

input into smaller chunks, and each chunk is sent to a mapper, which creates a local top k and then 

emits the local top k to the reducer. In emitting the mappers' output, we use a single reducer key 

so that all the mappers' output will be consumed by a single reducer. Finally, the single reducer 

will find the final top k from all the local top k passed from the mappers. 

In general, in most of the MapReduce algorithms, using a single reducer is problematic and 

will cause a performance bottleneck (because one reducer in one server receives all the data, and 

all the other cluster nodes do nothing, so all of the pressure and load is on that single node).   

However, a single reducer in this project works appropriately, because the size of each Top k 

passed from the mapper is k. Assuming we have 1,000 mappers, the reducer will get 1,000 * k 

records. It is not enough data to cause a performance bottleneck [41]. 

4.1.2 Top K Spark Implementation 

 

Figure 8. Top K Spark Implementation 
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The parallel implementation of Top K Spark follows the same logic that of MapReduce - finding 

the local top k in each partition and then get the final top k from all the local top k. The main 

difference is that Spark provides a rich set of functional programming APIs. There are four main 

steps (shown in Figure 8) of Top k Spark implementations:  

Step 1: Read the input file from the local filesystem and create an RDD (JavaRDD<String>). 

Step 2: Use mapToPair() to create a new RDD (JavaPairRDD<String, Long>) from an 

existing RDD (JavaRDD<String>). The output of this step is Tuple2<K, V>, in which Key 

corresponds to ID and Value corresponds to frequency. 

 Step 3: Create a local top k for each input partition. Use mapPartitions() to create a new RDD 

(JavaRDD<SortedMap<Integer, String>>) from an existing RDD (JavaPairRDD<String, 

Integer>). Create and initialize a TreeMap<Integer, String>, and maintain a local top k using 

this treeMap from each partition. Finally, return the result of a local top 10 list. 

Step 4: Create the final top k using collect(). Use the collect() method to get all local top k. 

Iterates over all local top k created per partition and creates a single final top k. 

4.1.3 Top K MASS Implementation 

The solution of MASS is inspired by that of MapReduce as well. This project implemented a TopK 

class that extends Place class. The MASS program will create number of clusters * number of 

cores places. In an ideal situation, each place runs on a core with no places waiting, and we could 

use the computation resources on the cluster most efficiently. Each place handles two functions: 

fileread(), and getTopK(). 
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Figure 9. Top K MASS Implementation 

⚫ As shown in Figure 9, fileread() (line 5) uses MASS parallel IO to read equal portions of 

data into memory. 

⚫ Then getTopK() (line 6) reads its portion of data, maintains a local treeMap of size k to 

find a local sub-top k, Then, returns the local top k to the main class. 

⚫ Finally, the main method collects local top k (line 7) from all places and gets the final top 

k.   

1  main(){ 

2      int numberOfPlace = MASSBase.getSystemSize() * NUMBER_OF_CORE; 

3      Places places = new Places(1, TopK.class.getName(), 

4                (Object) topKValue, numberOfPlace); 

5      places.callAll(TopK.fileread_, (Object) filenames); 

6      Object[] subTopKs = places.callAll(TopK.topK_, null); 

7      Integer[][] finalTopK = finalTopK(subTopKs, kValue); 

8  } 

The MASS implementation does not require discovering specific data attributes when finding 

the top k. Therefore, it does not use agent, but only the Place to parallelly data processing.  
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4.2 Markov: Implementation and Issues 

4.2.1 Markov Chain Hadoop Implementation 

The Markov Chain algorithm involve many steps of data transformation. As shown in Figure 10, 

The MapReduce solution for Markov chain involves two MapReduce jobs.  

 

Figure 10. Markov Chain MapReduce and Spark Implementation 

For Job 1, the goal is to generate Time-Ordered Markov state for each customer. 

● Mapper: Accept the customer transaction data and map each input record to <customerID, 

(Date1, Amount1)> pairs (line 3 - 6). 

1  public void map(LongWritable key, Text value, Context context){     

2   String[] tokens = StringUtils.split(value.toString(), ","); 

3   reducerKey.set(tokens[0]); //customer-id 

4       //(purchase-date, amount) 

5   reducerValue.set(tokens[2], tokens[3]);  

6   context.write(reducerKey, reducerValue); 

7  } 

● Reducer: Reduce all transactions (Date, Amount) from the same customerID to a list and 
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sort the transactions by purchase date in ascending order (lines 2 - 5); Then, convert 

transactions into a two-letter symbol that stands for a Markov chain state (lines 7 - 16, 

Table 3).  The final output generated from this reducer is as follows: (<customerID>, 

<State_1>, <State_2>, ..., <State_n>) 

1  public void reduce(Text key, Iterable<PairOfLongInt> values,        Context context){ 

2    List<PairOfLongInt> list = new ArrayList<PairOfLongInt>(); 

3    for (PairOfLongInt pair : values) { list.add(pair.clone());} 

4    // sort by purchase-date: (Date1, Amount), (Date2, Amount)...  

5    Collections.sort(list, (o1, o2) -> { o1.compareTo(o2);}); 

6 

7    for (int i = 1; i < list.size(); i++) { 

8      long daysDiff = curDate - prevDate; 

9      String dateState = (daysDiff < 30) ? "S" :  

10                          (daysDiff < 60)? "M" : "L"; 

11      String amountState = (prevAmount < 0.9 * curAmount)? "L" : 

12                          (prevAmount < 1.1 * curAmount)? "E": "G"; 

13      output.append("," + dateState + amountState); 

14    } 

15    // output: <State1><,><State2><,>...<,><StateN> 

16    context.write(null, new Text(output.toString())); 

17  } 

For job 2, the goal is to combine all customer’s Markov state to get state sequence and count 

occurrence of each state sequence to build a Markov State Transition Model. (line 3 - 6) 

1 protected void reduce(PairOfStrings key, Iterable<IntWritable>     

2                        values, Context context) { 

3    int finalCount = 0; 

4    for (IntWritable value : values) { finalCount += value.get();} 

5    context.write(new Text(fromState + "," + toState),  

6                   new IntWritable(finalCount)); 

7 } 
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4.2.2 Markov Chain Spark Implementation 

Follows the same logic of the MapReduce implementations, the Spark solution is implemented in 

seven basic steps as shown in Figure 10: 

Step1: Convert the input into a JavaRDD<String>, in which each line is an input record (as 

defined in the preceding section) and is formatted as: 

<customerID  transactionD purchaseDate  amount> 

Step 2: Convert JavaRDD<String> into JavaPairRDD<K,V> and the return format is 

as  <customerID, (purchaseDate, Amount) >. 

Step 3: Group transactions by customerID. Applying groupByKey() to the output of step 2, 

the result is a JavaPairRDD<K2,V2>, in which K2 is customerID and V2: is 

Iterable<Tuple2<purchaseDate, Amount> 

Step 4: Generate each customer’s list of Markov state. Sort each customer’s translation (Date, 

Amount) by purchase date in ascending order. Then convert (Date, Amount) into a Markov 

chain state. The final output is each customer’s list of Markov state. 

Step 5: Create a Markov state sequence. Using PairFlatMap() function, to map each 

customers’ state into state sequence of State_1, State_2, ..., State_n, as follow format: 

<(State_1, State_2) , 1>, <(State_2, State_3), 1>..., <(State_n-1, State_n), 1> 

Step 6: Calculate the frequency of each state sequence. Use recudeByKey() function to get 

the occurrence of each state sequence. <(State_i, State_j) , 12>, <(State_m, State_n), 

2345>..., <(State_n, State_k), 2> 
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Step 7: Emit the final output. Use map() function to convert JavaPairRDD into JavaRDD 

and return the final output. 

4.2.3 Markov Chain MASS Implementation 

For Markov MASS implementation, this project created a class Markov that implements Place 

class.  Place implements two methods: fileread(), and getState().  

fileread(): Because we need to group the same customer's transaction together to generate 

Markov state, I did not use MASS parallel IO to make each place to process portions of data. If 

we do so, the transaction data of each customer would be fragmented to places. When merging the 

transactions from the same customer, it would involve lots of data shuffling. 

Therefore, rather than using MASS parallel IO, I let each place read the entire file. While 

reading, I used the hash value of the customerID mod total number of places to get a hash number 

(line 4-8). In this way, only the transactions whose customer hash number has the same value as 

the current place index are placed to this place. When the hash number is different from the current 

place index value, ignore this transaction record. 

1  while (scanner.hasNextLine()) { 

2    String[] tokens = scanner.nextLine().trim().split(","); 

3    String customerId = tokens[0].trim(); 

4    if(customerId.hashCode() % nNodes == nodeId){ 

5      if(transactions.get(customerId) == null){ 

6        transactions.put(customerId, new TreeMap<Long, Long>()); 

7      } 

8      transactions.get(customerId).put(date, amount); 

9    } 

10 } 

I initially expected this design would allow each place to process specific customer data and 
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reduce data shuffling. However, the performance is different from what I expected. We will discuss 

this in detail in Section 5. 

getState() is equivalent to integrating the steps 4, 5, 6, and 7 of Spark implementation into the 

same method. First, sort its portion of customer’s transactions (Date, Amount) by purchase date in 

ascending order and convert (Date, Amount) into Markov state; Then, create a Markov state 

sequence and return it to the driver; Finally, the primary method collects all partial Markov state 

sequences in each place and gets the final Markov state sequence. 

4.3 Connected Components Implementation and Issues 

4.3.1 Connected Components Hadoop Implementation 

The implementation of Connected Components on Hadoop builds on the MapReduce design of 

Connected Components in Friso van Vollenhoven’s blog [42]. It Applies two map-reduce jobs to 

solve the problem: 

For the first Map-Reduce job, it transforms the edge lists to a representation of the adjacency 

list. For the second Map-Reduce job, the Mapper maps the adjacency list of the source node and 

label them with partition id numbers; the Reducer finds the smallest partition ID for each node ID 

it belongs to, and set the partition ID of each record to the smallest partition ID. The program keeps 

repeating the second Map-Reduce job until nothing changes, and it mean all connected node have 

been grouped. Figure 11 indicates the details of how each node spreads the lower component ID 

to one more level of neighbors at each Map-Reduce step. 
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The code of implementation on Hadoop builds on and modifies Nihar Suryawanshi’s project 

on GitHub [43].  

 

Figure 11. MapReduce of Connected Components Spreads the Component ID to Neighbors 

4.3.2 Connected Components Spark Implementation 

The implementation of Spark Connected Component follows the same logic of implementation on 

MapReduce. Like Markov Chain (in Section 4.2.2) and Top K (in Section 4.1.1) on Spark, Spark 

implementation uses its API and involves more data transformation steps. The data transformation 

steps are as shown in Figure 11. Since the implementation of Connected Components are similar 

to that of MapReduce, further interpretation is waived here.  
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4.3.3 Connected Components MASS Implementation 

For the MASS version of Connected Components, this project develops a Node class that 

implements Place class and it represents a graph node in the graph. Each node maintains the 

current node index and component ID. The component ID indicates which component the current 

node belongs to, and it is initialized with the node index ID.  

In addition, this project created a Spreader class that implements Agent class. Initially, one 

agent is populated over each place. This agent takes two information: the node index (component 

ID) it was populated and a list of node indexes that this agent has visited. Hereafter, let agents roll 

down to the neighbor nodes with higher index. 

 

Figure 12. Connected Components MASS Implementation 

Figure 12 gives a view of how agents update the components information. The agents spread 

the current lowest component ID to all neighbors who have a higher index than the current graph 

node via onArrival() and onDeparture().  

•  onArrival(): If this node has a higher component ID than the one current agent carrying, 

updates the component ID of this node. Then, give the index of the next neighbor node to 

the current agent to let it spread. However, if the neighbor node has a lower component ID, 
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terminate the current agents. 

•  onDeparture(): If the next neighbor has not been visited, migrate the agent toward the next 

neighbor. 

4.4 Matrix Multiplication: Implementation and Issues 

4.4.1 Matrix Multiplication Hadoop Implementation 

For Matrix Multiplication, there are two popular MapReduce designs: CPMM and RMM. The 

RMM implements a replication-based strategy in one single MapReduce job, while CMPP 

implements a cross product strategy requiring two jobs. In a study [44]，Ghoting et. al. analyzed 

the performance differences between RMM and CPMM, and found CPMM is better because 

CPMM has higher degrees of parallelism, performs stably, and outperforms RMM. This is the 

reason why we choose CPMM as our implementation plan.  

The implementation of Matrix Multiplication on Hadoop builds on Archana Masilamani’s 

implementation [45]. This project further reviewed and implemented the code based on her work.  

This algorithm requires two rounds of MapReduce jobs (See Figure 13). From the first job, 

input matrix sub-blocks Ai,k and Bk,j are aggregated together according to the same key k, and then 

the reducer phase obtains the intermediate result matrix Pk
i,j= Ai,k Bk,j. Then, the second job 

accumulate the previous Pk
i,j and obtain the final result submatrix Ci,j=kPk

i,j . 
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Figure 13. Matrix Multiplication Hadoop Implementation [46] 

4.4.2 Matrix Multiplication Spark Implementation 

Similar to MapReduce implementation, there are two shuffle phases for the Spark implementation. 

As shown in Figure 14, Spark also implemented CPMM. Since the algorithm design follows the 

same logic of MapReduce, further interpretation is saved here on the process of Spark 

implementation. 

 

Figure 14. Matrix Multiplication Spark Implementation [47] 
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4.4.3 Matrix Multiplication MASS Implementation 

The MASS project is implemented using Cannon’s algorithm. Cannon's algorithm is a distributed 

solution for matrix multiplication. It is especially suitable for computers laid out in an n* n mesh 

[48]. Considering distributed two n * n matrices A and B into p blocks. Therefore, each process gets 

a block of matrices A and B which is size (n ∕√𝑝×(n ∕√𝑝). Process P(i , j) stores matrix A(i , j) and 

matrix B(i , j) and computes the block of the result matrix C(i , j). 

The algorithm can be majorly described in two steps: matrices alignment and matrices shifting. 

Figure 15 indicates how matrices A and B are initialized and aligned, how data is shifted, and how 

the data unit is performing the multiplication.  

• Step 1 matrices alignment: The initial step of the algorithm regards the alignment of the 

matrices. As shown in Figure 15, 15.a and 15.b show the initial metrices A and B that 

distributed on a 4 * 4 clusters. Before performing the matrix multiplication, we first want 

to shift all submatrices A(i , j) to the left (with wraparound) by i steps and all submatrices 

B(i , j) up (with wraparound) by j steps. Figure 15.c and 15.d shows a view of matrices 

distribution after alignment.   

• Step 2 matrices shifting: At each iteration step, each process would perform a 

multiplication at local block and accumulate the current block of multiplication result to 

the local matrix C. When local multiplication is done, each block of A moves one step left 

and each block of B moves one step up (again with wraparound). The matrices shifting is 

shown in Figure 15.e and 15.f. Thereafter, each process could perform next block 

multiplication, add to partial result, repeat until all blocks have been multiplied. 
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Figure 15. Cannon’s Matrix Multiplication algorithm [49] 

The Matrix Multiplication for MASS simulates the implementation of Cannon’s Algorithm. I 

created a SubMatrix class that implements Place class. As mentioned previously, for two matrices 

A and B of size n * n, initialize p SubMatrix to parallelize the matrix multiplication, each 

SubMatrix holds a block of matrices A and b of size (n ∕√𝑝)×(n ∕√𝑝). Each SubMatrix also holds 

a matrix C of size (n ∕√𝑝)×(n ∕√𝑝) that keep accumulating the partial matrix multiplication results.  

I also created a Carrier class that implements the Agent class. Two agents are initialized at 
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each place. The agent with even index carries matrix A, and agent with odd matrix carries matrix 

B. The two agents carry each matrix to perform matrix alignment and shifting according to the 

Cannon’ algorithm. 

5. Comparison of MapReduce, Spark, and MASS 

To answer the research question of how the application fits with agent-based parallelization, this 

project applies two metrics of programmability and performance.  

5.1 Comparison of Programmability 

To analyze the difficulties of programming, this section will compare three frameworks based on 

programming intuitivity (including algorithmic modelling, data representation, number of 

methods), and boilerplate code ratio.  

5.1.1 Intuitive Programming  

As mentioned in Section 2, due to the limitation of the programming paradigm, implementing the 

parallel version of the algorithm by MapReduce and Spark is quite different from that of basic java 

programming for sequential version.  

Taking MapReduce as an example, all operations of MapReduce must be converted into two 

operations: Map and Reduce, which is not easy to adapt to all situations. To fit with Map-Reduce 

program framework, the programmer often could not use familiar programming patterns and data 

structures (such as Map and Queue) provided by Java library. Therefore, MapReduce is generally 

considered difficult to program. Meanwhile, it is a similar issue on Spark.  
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In comparison, when the algorithm is suitable for the agent-based model, MASS can describe 

the problem more intuitively. MASS programming needs to implement Place and Agent as 

paradigm, but their methods are all user-defined. Compared to MapReduce and Spark, the learning 

curve for MASS is lower. 

 Particularly when the algorithm needs to deal with complex data structures, parallel 

programming on MASS framework can simulate the problem-solving process using agents. It 

allows frequent agent migration and fine-grained data discovery. The intuitive programming of 

MASS will be further analyzed and evidenced by algorithmic modelling, data representation, and 

the number of methods.  

5.1.1.1 Algorithmic Modelling 

Taking the implementation of Connection Component on MASS as an example, the program of 

MASS could be intuitively described as: Each agent carries the component ID and walks around 

the graph to group components. When the agent arrives the current node whose component ID is 

smaller than the one the agent carries, this agent stops spreading and terminates; Otherwise, it 

updates the current node’s component ID with the smaller one brought by this agent, and spawn 

children agents to all neighbor nodes with greater index than the current node to expand the current 

connected component. From this example，we find that MASS parallelizes the algorithm by using 

multiple agents to simulate the problem-solving process.  

On the contrary, the implementations of MapReduce and Spark programs are abstract. As 

described in 4.3.1, and 4.3.2，the MapReduce and Spark solutions are implemented according to 

Frigo Vanllenhoven’s Blog [50]. Taking MapReduce as an example. Generally, every MapReduce 
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step serves the purpose of spreading the lower component ID to one more level of neighbors.  But 

each step of map and reduce data transformation is not a straightforward directive to group more 

nodes to the current component. The author uses a long blog post to explain this MapReduce design 

and every data transformation step. That is saying that MapReduce is not as direct as MASS to 

describe the problem. 

 Taking Matrix Multiplication as a further example. As described in 4.4.3, the MASS 

implementation simulates the algorithm of Cannon’s algorithm very well. Two agents are 

generated at each place, and an agent with even index carries matrix A, and agent with odd matrix 

carries matrix B. The two agents carry each matrix to perform matrix shifting (A matrix moves 

one step left and B matrix moves one step up), Then at each iteration each matrix block 

accumulates partial results, and repeats until all blocks of the matrix have been multiplied. 

Now we compare the implementation of MASS with MapReduce and Spark, both of them use 

the CPMM algorithm [51]. Because Spark implementation is derivative from MapReduce, here we 

still take MapReduce as an example. If we look back to Section 4.4.1, as indicated by Figure 13, 

in the first Map-Reduce step, it aggregates Ai,k and Bk,j to get Pk
i,j= Ai,k Bk,j according to the same K. 

In the second Map-Reduce step, it accumulates Pk
i,j to obtain the final result submatrix Ci,j=kPk

i,j. The 

design of the Map-Reduce algorithm is more abstract than MASS. What to select as the key in 

each MapReduce step is difficult to think of. Therefore, if engineers are not very skilled in 

MapReduce and Spark, the parallel algorithm design is hard. 

In summary, observing the programmatic modeling MASS parallelizes the algorithm by using 

multiple agents to simulate the problem-solving process. This makes the MASS program easier to 
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design and easier to understand. Meanwhile, we have to acknowledge that observations above are 

based on algorithms involving structured data. If these algorithms are processing plain data, or the 

algorithms are quite suitable for MapReduce framework such as Top K, the difficulty of 

implementation on three frameworks are quite similar.  

5.1.1.2 Data Representation 

Another evidence of intuitive programming is data representation, which refers to how the 

paradigm internally represents the input data used in each algorithm. As indicated in Table 2, this 

study found that MASS is able to represent both plain and structured data. This result corresponded 

to Gordon’s finding on the flexibility of MASS [ 52 ]. The flexibility of MASS allows better 

representing input data and therefore has more advantages in algorithm design.  

 Table 2. Data Representation 

Paradigm Top K Markov Chain Connected Components Matrix Multiplication 

MASS Plain Plain structured structured 

Spark Plain Plain Plain Plain 

MapReduce Plain Plain Plain Plain 

5.1.1.3 Number of Methods 

Besides the difficulties of algorithmic modelling and data representation, a further evidence for 

intuitive programming is the number of methods used for programming. The number of methods 

represents the number of modules used to get the final data transformation. It refers to the 

complexity and easiness of each step of data transformation. We can see from Table 3 that MASS 

can generally solve the problem with fewer methods. The other two frameworks use more methods 
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because they are limited by their program paradigm, whose data transformation must be operated 

using the inherent API.  

Table 3. Number of Methods 

Parallel 

Framework 

Top 

K 

Markov 

Chain 

Connected 

Components 

Matrix 

Multiplication 

MapReduce 5 10 6 6 

Spark 4 12 7 8 

MASS 5 8 5 5 

Taking Markov Chain as an example, Markov chain processes plain data, but Spark uses 12 

methods, MapReduce uses 10 methods, and MASS uses only 8 methods. This is because this 

algorithm involves many steps of data transformation. For Spark, transforming the data from one-

to-many, many-to-many and many-to-one must use certain fixed APIs. On the other hand, since 

MASS is similar to basic java programming, users can use the common data structure to combine 

several relative data transformation operations in one method. With proficiency in Spark program 

paradigm, programming can become smooth, but if engineers are not very proficient and the data 

transformation of the algorithm is complex, modelling problems to Spark can be more difficult 

than to MASS. 

In summary, the Section 5.1.1 interprets the intuitivity of MASS programming from 

algorithmic modelling, data representation, and number of methods. Comparing with the other two 

frameworks, MASS parallel framework is not significantly different from common java 

programming. When converting complex algorithms (such as graph problems) and closely related 

data structures (such as Matrix Multiplication), MASS is easier to design and understand than 
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Hadoop and Spark. For general engineers, once they understand the design concept of MASS, 

programming is more intuitive in MASS. 

5.1.2 Boilerplate Code Ratio 

In a previous project on MASS, Gordon found that both MASS and Spark use less boilerplate code 

than MapReduce [53]. In his project, Gordon explained that MapReduce needs extra boilerplate 

code to know what files to set up and where to find them. It requires understanding of the 

underlying HDFS. By comparison, MASS and Spark save this complexity.  

Table 4. Boilerplate Code 

Parallel 

Framework 
Top K 

Markov 

Chain 

Connected 

Components 

Matrix 

Multiplication 
Average 

MapReduce 10.7% 8.5% 13.9% 16% 12.6% 

Spark 4.5% 2.4% 6.2% 6.2% 4.5% 

MASS 5.2% 6.6% 9.6% 12.6% 8.6% 

This study adopts the same metrics of boilerplate ratio. Table 7 shows the boilerplate ratios 

for each algorithm as well as the average ratio among all frameworks. As indicated from Table 4, 

this study generally proves the advantages of MASS and Spark，MapReduce requires the most 

boilerplate code than the other two frameworks. This corresponds to Gordon’s finding on 

boilerplate ratio yet the difference is that this study applies a definition of boilerplate code that is 

slightly different from Gordon’s.  

In Gordon’s definition, boilerplate refers to all configuration lines in MapReduce and Spark 

are counted, and all lines that use MASS.* are counted in MASS. The lines that parse command 
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line arguments in all three frameworks are also counted. Meanwhile, the place and constructor 

lines are left out.  

However, this study defined boilerplate as “sections of code that have to be included in 

many places with minor alteration and accomplish only minor functionality” [54].  Therefore, in 

my statistics, codes that serve the requirement of the framework are also included. Besides 

configuration lines and parse command line, I also include three types of lines: (1) the repeated 

header in MapReduce, which must be included each time when using Map class and Reduce class; 

(2) switch method in MASS that invokes internal methods of place and agent through callAll(); (3) 

constructor lines in MASS, since these are also part of the MASS framework that have to be 

included. 

In summary, Section 5.1 compares the programmability on MapReduce, Spark, and MASS. 

It is found that MASS has more intuitive programming, and it also has less boilerplate ratio, 

and less difficulties in configuration compared to MapReduce and Spark. 

5.2 Performance  

This section compares the performance (running time in millisecond) of applications of Top K, 

Markov Chain, Connected Components, and Matrix Multiplication on three frameworks, and 

further discusses the performance and shortcomings of three frameworks.  

The performance is assessed by the running time with the unit of millisecond. Performance 

results of this project were executed on the cssmpi cluster at the University of Washington, Bothell. 

The cluster includes eight Dell Optiplex 710 desktops, each with an Intel i7-3770 Quad-Core CPU 
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at 3.40 GHz and 16 GB RAM. MapReduce, Spark, and MASS were executed on these machines 

using 1 to 8 nodes. The result of each performance was from the average outcome of 5 to 10 times 

stable running. 

5.2.1 Top K Application and Performance 

5.2.1.1 Top K Application 

The Top K algorithm can be used to solve problems like "top 50 hottest topics" in real life. The 

application of this study simulates this problem by finding k most frequent IDs in a given document. 

A python script was written and generates an input file with 10 million ID-frequency pairs (See 

Appendix 1 for a screenshot of the input file generated via the Python script and Appendix 2 for a 

screenshot of output top 50 most frequent IDs get after running the Top K algorithm). 

5.2.1.2 Top K Performance 

  

Figure 16. Top K’s Performance Comparison of Hadoop, Spark, and MASS 

Figure 16 indicates the performance of Top k programs implemented on Hadoop, Spark, and 

MASS on one, two, four, and eight nodes on cssmpi cluster. The data size is 10 million, and the 

unit of running time is millisecond.  

MILLISEC
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We could tell from Figure 16 that Spark always uses the least time from single to 8 nodes, and 

MASS ranked second. The reason is that Spark and MASS processes data in random access 

memory (RAM). It helps with both frameworks with better performance, but there are memory 

issues for both Spark and MASS. We will discuss more in detail in Section 5.1.4. Hadoop uses the 

longest time because MapReduce persists data back to the disk after a map or reduce action.  

Another observation is that from 4 nodes to 8 nodes, the performance of MASS keeps 

improving significantly, but the performance of Spark does not improve much. 

Last observation is as indicated in Table 5, reading files costs the longest time during the 

MASS operation. MapReduce, on the other hand, kills its processes as soon as a job is done, so it 

can easily run alongside other services with minor performance differences. 

Table 5. Top K MASS Running Time on Each Step (1 - 8 nodes) 

Time on Each Step 1 node 2 nodes 4 nodes 8 nodes 

Time of Places creation 91 139 1156 196 

Time of Read input 29249 14605 8450 5066 

Time of GetSubTree 104 143 100 146 

Time of GetFinalTop K 2 1 2 2 

Total time 29449 14888 9708 5410 

5.2.2 Markov Chain Application and Performance 

5.2.2.1 Markov Chain Application 

The data used in this project is a simulated customer transaction history data generated by Pranab 

Ghosh’s Ruby script [55] (See Appendix 3 for a screenshot of the input file generated by the Ruby 
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script). In total, there are 10 million transaction records in the simulated customer transaction 

history. Each input record has the following format:   <customerID, transactionID, purchaseDate, 

amount>. (See Appendix 5 for a screenshot of the output of this program. Each line represents the 

number of times that a Markov state sequence has occurred. This is almost a Markov Probability 

Transition Table (MRTT). This MRTT can be used as a machine learning model to predict the 

next effective date to send a marketing email to that customer.) 

5.2.2.2 Markov Chain Performance 

Figure 17 indicates the performance of Markov Chain implementation on Hadoop, Spark, and 

MASS running with one node, two nodes, four nodes, and eight nodes.  

  

Figure 17. Markov Chain’s Performance Comparison on Hadoop, Spark, and MASS 

      We could tell from Figure 17 that the performance of Spark outperforms the other two 

frameworks on every cluster setup. Hadoop is slightly better than the MASS, and MASS has the 

worst performance.  

The reason why MASS performs not well is that the expense of IO is significantly dominant 

than computation for this algorithm. We can observe the IO expenses from Table 6 that the MASS 
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program spends 100 to 140 seconds in total to build the Markov Chain Model, in which 100 

seconds is spent on IO. Although the time spent on the computing part to build the model decreases 

along with more nodes, it does not contribute much to the overall performance. Section 4.2.3 will 

explain the algorithm design of Markov Chain on MASS at Section 4.2.3. The performance shows 

that the current parallel strategy might not be the best one for Markov Chain Algorithm. In the 

future, with more time, it is possible to redesign other parallel strategies. One possible design is to 

make better use of MASS parallel IO to make each place only read partial data to improve the 

performance. 

Table 6. Markov Chain MASS Running Time on Each Step (1 - 8 nodes) 

Time on Each Time 1 node 2 nodes 4 nodes 8 nodes 

Time of Reading input file 116737 112592 105172 98115 

Time of getting sub Markov State 2032 1188 708 356 

Total Time 137166 125269 108080 103902 

5.2.3 Connected Components & Matrix Multiplication Application and Performance 

Considering the performance of the Connected Components and Matrix Multiplication shares a lot 

of similarities. This study will discuss the performance of these two applications together in this 

section. 

5.2.3.1 Connected Components Application 

Connected Components can be used to calculate the connectivity of different network 

configurations [56] when measuring routing performance in multihop wireless networks in real 

life.  Other than that, Connected Components is often used as the first step for many graph 
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algorithms. For example, in social networks, a group of people usually have a close relationship. 

Many of these groups usually like some common websites or play common games. The CC 

algorithm is used to find such groups and recommend them to people in the group who have not 

yet liked these websites or games. 

This project modified the original existing class called GraphGren.java in the DSL lab, and 

used it to generate a graph of size 2000. This graph is by default separated into at least four different 

components. (Appendix 5 shows the input format of this application. Each line consists of two 

parts, representing the current node index before the colon and all the neighbors of the current 

node listed after the colon. The output of this application is formatted as follows:  <number of 

node in this connected component> : < list of nodes within the current connected component>. ) 

5.2.3.2 Matrix Multiplication Application 

This project wrote a simple java class MatrixGen.java that creates two matrices: A (of dimension 

2048 * 2048) and B (dimension 2048 * 2048). After parallel performs matrix multiplication, the 

output is 2048 * 2048 matrix C where C [i] [j] is the dot product of the ith row of A and the jth 

column of B. 

5.2.3.3 Connected Components and Matrix Multiplication Performance 

Figure 18 indicates the performance of Connected Components implementation on Hadoop, Spark, 

and MASS running with one node, two nodes, four nodes, and 7 nodes. Figure 19 indicates the 

performance of Matrix Multiplication running on one node, and four nodes. In the final phase of 

this project, node 8 of cssmpi cluster (see Section 5.2 for cluster equipment information) had 

technical issues of logging. Therefore, both programs could not be tested using eight nodes.  
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Figure 18. Connected Components’ Performance Comparison  

on Hadoop, Spark, and MASS 

 

Because MASS version of Matrix Multiplication was achieved via Cannon’s Algorithm. 

Cannon’s Algorithm is especially suitable for computers with n* n cores. Cssmpi cluster has 8 

node and 32 cores in total. If we want to use the number of cores as a square number (n* n), this 

project would only be able to test single node (4 cores) and 4 node (16 cores) in cluster.  

  

Figure 19. Matrix Multiplication’s Performance Comparison  

on Hadoop, Spark, and MASS 

As discussed in Section 3.2.3, algorithms of Connected Components and Matrix 

Multiplication are selected to be able to benefit from “data discovery”. These two algorithms 

involve structured data (graph for Connected Components and 2D-array for Matrix Multiplication). 
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As described in Sections 4.3.3 and 4.4.3，both algorithms use multiple agents to parallelize the 

problem-solving process.  

Considering these similarities, the performance of these two algorithms are discussed together. 

As indicated Figures 18 and 19, when these two algorithms are tested in fewer nodes (1 node, 2 

nodes), the execution time of MASS is much higher than the other two frameworks. The reason is 

that when the total amount of data to be processed remains the same, the fewer nodes are used in 

the cluster, the more agents populated on each node, and the larger overhead caused by the agent 

object creation. That is to say, when fewer nodes are used in the cluster, the overhead of MASS 

cause by agent creation is larger. 

However, with increasing nodes in the cluster, the performance of MASS improved 

dramatically. As indicated in Figures 18 and 19, the velocity of performance improved from both 

algorithms on MASS is much greater than the other two algorithms. Especially for Matrix 

Multiplication, when the cluster increases the number of nodes from one to four, the performance 

of MASS improves 6.5 times. If we can add more nodes to the cluster for testing, the performance 

of MASS might even exceed Spark. 

5.3 Summary 

Section 5 discussed the programmability and performance of each algorithm on three frameworks 

above. In the rest of this session, we will summarize the observation about performance and 

programmability across all frameworks and applications. 
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Firstly, when we compare the performance, Spark performs the best, followed by MASS, and 

MapReduce performs the worst. As we discussed the reasons in Section 5.1.1, Spark and MASS 

processes data in random access memory (RAM). Hadoop persists data back to the disk after a 

map or reduce action. Therefore, from both theoretical and practical perspectives, Spark and 

MASS outperform Hadoop MapReduce. On the other hand, this also makes Spark and MASS 

limited in memory. 

As for Spark, its RDD applies in-memory processing computation when data set can fit into 

memory. However, as stated in the Spark Programming Guide，“When data does not fit in memory, 

Spark will spill these tables to disk, incurring the additional overhead of disk I/O and increased 

garbage collection.” [57] Although this project did not test data bigger than memory, theoretically 

speaking, if the data is too big to fit into memory, Spark will suffer major performance 

degradations. 

MASS has a similar issue of memory. Taking Top K as an example, when distributing data, MASS 

parallel IO first reads the entire input file into memory at once, and then process partition data 

according to the offset of each place. If the input data file is larger than RAM size, MASS is not 

able to process. As mentioned in Section 5.1.1, the design of MASS parallel IO leads to high cost. 

Secondly, there are different overhead of each framework. From the performance of Top K, 

Connected Components, and Matrix Multiplication, we could find that with increasing nodes in 

the cluster, the velocity of performance improvement from MapReduce and Spark is not as steep 

as MASS. This is probably because the design of MapReduce and Spark has more overhead 

coming from iterative computations that need to pass over the same data many times. For data- 
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streaming-based applications of Top K and Markov Chain, bottle neck is I/O, because data should 

be read from and send back to the main program. For structured-data-applications of Connected 

Components and Matrix Multiplication, the communication between different nodes would causes 

overheads. These applications maintain structured data which has a close relationship and more 

updates between data. When more node is being used in the cluster, the communication cost 

increases. 

If the number of nodes in the cluster is small, MASS tends to have more overhead. As 

discussed in Section 5.1.3.3, this is probably caused by the needs to initialize too many places and 

agents on each core. 

Considering the performance and programmability comprehensively, this project found that 

MASS achieve a proper balance as MASS has better performance with increasing nodes in the 

cluster. In addition, MASS has more intuitive programming, and also has less boilerplate ratio, 

compared MapReduce and Spark. The balance of programmability and performance of MASS 

might appeal to engineers dealing with structured data analysis.  

6. Conclusion 

This project strives to extend the initial achievement in agent-based data analysis by exploring 

more data science applications that would be the better fit to agent-based parallelization. This 

project presents the algorithm designs and implementation process for four applications of Top K, 

Markov Chain, Connected Components, and Matrix Multiplication on MapReduce, Spark, and 

MASS. This project further compares the programmability and execution performance of four 
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applications on three frameworks. Comprehensively speaking, MASS demonstrated the good 

balance between programmability and execution performance for structured data analysis.  

Based on the previous work on MASS and this project, future work could be taken in the areas 

of Computational optimization, Graph algorithm, and Matrix operation library. In addition, we 

could develop some agent-based modeling package in above for other researcher to extend the 

study on the MASS.  

 There are also few limitations of this project. This project only chose four data analysis 

algorithms. Should this project have more algorithms, there would be more and stronger evidences 

for the findings of this study. In addition, some findings of this study, such as the programmability, 

could have more quantitative and qualitative evidence. Another limitation is the experience with 

MapReduce, Spark, and MASS. Since the researcher still have rudimentary understanding of the 

low-level implementation of these frameworks, the configuration and implementation of 

algorithms could be optimized and the comparison would be more accurate. 
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Appendix 1. Screenshot of Input of Top K 

 

Appendix 2. Screenshot of Output of Top K 
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Appendix 3. Screenshot of Input of Markov Chain  

 
Appendix 4. Screenshot of Output of Markov Chain  
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Appendix 5. Input of Connected Components Application 
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