
Chris Bowzer

Spring 2016 term report for testing of MASS vs MPI using AWS environment

Overview of Testing

Goal
The goal of testing for this quarter was to test Wave2D and SugarScape’s C++ MASS versions against the

C++ MPI versions using AWS cloud services. Specifically, this is intended to be a continuation of Zac

Brownell and Abdulhadi Ali Alghamdi’s work. During their tests, while they found that MASS was much

easier to learn than MPI, it did suffer from worse performance. Those tests were performed using the

Java version of both MASS and MPI. As the machines on which the testing was performed was the

shared linux lab of the University of Washington, Bothell, the results of those tests are being reexamined

here.

Environment
All tests were run on Amazon’s AWS cloud using EC2 m4.xlarge instances with 4 virtual processors, 16

GB of virtual RAM running Ubuntu with the package managed MPI C++ and MASS C++.

Wave2D
Wave2D is a program that simulates the dispersion of waves throughout a two dimensional space. This

dispersion starts in the center and moves outward using Schrodinger’s wave formula for a set amount of

time. This program is of specific note because it displays MASS’s usage without agents. As a purely

place (MASS’s way of representing execution environments on top of mprocess) based program this

simulation does not utilize MASS’s agent capabilities. This really shows one of MASS’s strongest points,

its flexibility. Utilizing MASS’s inter-place communication is very similar to traditional MPI based

parallelization, but has simple programmability.

SugarScape
Sugarscape is a program that simulates ants placed randomly in a large space and moving towards a goal

of sugar. These ants extend MASS’s agent base and serialize themselves to move between places on

different processors during migrate all calls.

Performance Analysis

Wave2D
For the Wave2D simulation, all tests were run with a simulation time of 500 and with four threads of

parallelization per processor being used for both MPI and MASS. Each test was run 5 times and the

results were averaged (though all results had very tight groupings). The results showed that while MASS

was always beat by MPI in time, as the simulation size grew very large, that difference grew less

significant.

The results are shown here for in both chart and graphical format:

Wave2D MPI with time = 500, 4 threads per process

 Simulation Size

 25 50 100 250 500 1000

nProc

1 14223 28834 89107 552361 2040872 8432741

4 62285 68046 101575 262573 662802 2354110

8 80056 84969 110442 211779 435944 1347044

16 1131082 1138242 1168357 1239655 1385757 1916792

Wave2D MASS with time = 500, 4 threads per process

 Simulation Size

 25 50 100 250 500 1000

nProc

1 299241 983535 3756263 23256143 91219919 359073093

4 1386268 1563919 2249537 7035212 24226356 93285133

8 3444404 3520384 3944578 6455393 15246082 48951139

16 7712524 7392583 7729047 9260380 13537858 30721575

-1000000

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

0 2 4 6 8 10 12 14 16 18

Ti
m

e
(u

se
c)

nProc

Wave2D MPI by simSize

25 50 100 250 500 1000

As can be seen, MASS is significantly slower, though this difference in performance decreases as the

amount of parallelization increases.

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

0 2 4 6 8 10 12 14 16 18

Ti
m

e
(u

se
c)

nProc

Wave2D MASS by simSize

25 50 100 250 500 1000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 4 8 16

MPI performance as a % of MASS Performance for SimSize =
1000, by nProc

SugarScape
For SugarScape, since it emphasizes the use of agents I tested by keeping the time and simulation size

the same, and increasing the number of agents. This test did have questionable results however. MASS

was so thoroughly out performed that I believe there may be some type of discrepancy in the MPI

version of the program that I was utilizing. Based on this I hope in the future to recreate the current

MASS version of SugarScape using MPI to retest this.

SugarScape MPI (time = 50, size = 600)
 number of agents

nProc 100 200 300 400 500

1 484844 487034 496217 500077 494296

4 119818 123831 129225 129443 126328

SugarScape MASS (time = 50, size = 600)
 number of agents

nProc 100 200 300 400 500

1 41049380 41265241 41147369 40827021 40471190

4 10909489 10906633 11008506 11089900 10981525

Conclusion
In conclusion, I believe that the tests from Wave2D performance are the most accurate, and show that if

something is to operate on a truly large sample size of data with a high amount of parallelization the

0

2000000

4000000

6000000

8000000

10000000

12000000

0 100 200 300 400 500 600

Ti
m

e
(u

se
c)

number of Agents

SugarScape Performance (time = 50, size = 600)

MPI 1

MPI 4

MASS 4

benefits of MASS’s ease of use might be of more use to people who are unfamiliar with the MPI

framework and who are trying to decide which library to use.

