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Performance and Programmability of Native code in the MASS Libraries 

I. Introduction 
 
Multi-agent simulations are computerized systems composed of one or more interacting ​intelligent 
agents​ used to model mega-scale social or biological agents and their behavior.​[1]​  Given the 
large number of agents and scale of these simulations an important key to success is their 
ability to run within an acceptable amount of time which is generally facilitated by parallel 
computing.​[2]​  An example which has been developed by the ​Distributed Systems Laboratory 
(DSL) at the University of Washington Bothell is the MASS (Multi-Agent Spatial Simulation) 
Library for C++, Java and Cuda. 
 
The different implementations of the MASS Library make use of the features and benefits of 
each language used in its development.  However, maintaining multiple versions of the library 
can be inefficient, e.g.  keeping the features in sync across the three implementations. 
Additionally, previous performance assessments have shown the MASS Java library to be 
slower than the C++ version. 
 
In addition to developing an understanding of agent based computing and the applications of 
the MASS Library the purpose and goal of my research during the Winter 2020 quarter was to 
assess the performance profile and limitations in the current implementation of MASS Java and 
to evaluate options to improve performance using native code.  Specifically, this research 
considers the impact on code maintenance and execution performance of two architectural 
designs for the MASS library as illustrated in Figure 1.  The first is to directly translate the MASS 
Java library to native C++ code.  The second is to delegate from the MASS Java and Mass C++ 
library to a core C++ library which can handle functions best suited to the language.  Due to the 
scale of large simulations an improvement in execution performance would lead to decreased 
simulation times while improved maintainability would facilitate faster development time and 
reduce the development time needed for new features. 

https://en.wikipedia.org/wiki/Intelligent_agent
https://en.wikipedia.org/wiki/Intelligent_agent
https://www.zotero.org/google-docs/?sczbOa
https://www.zotero.org/google-docs/?xd8q3A


 
Figure 1.  Two possible architectural designs for the integration of native code into the MASS Library. 

 
The remainder of the paper is organized as follows: Section II discusses the MASS 
programming paradigm and the Sugarscape application which is used for testing; Sections III, 
IV and V discuss the testing methodologies, results and analysis of MASS Java; Sections VI 
and VII discuss Java technologies for the use of native code while limitations and further steps 
follow in Section VIII. 

II. MASS Programming and the Sugarscape Application 
 
A MASS application is composed of one or both user implemented Place and Agent classes. 
MASS instanties two distributed arrays, Places or Agents, which contain these classes and 
handles the details of parallelization and execution across multiple computing nodes in a MASS 
cluster.  Additional detail can be found in A Parallel Multi-Agent Spatial Simulation Environment 
for Cluster Systems. ​[2] 
 
Applications developed for testing the MASS library include SugarscapeCallAll, the application 
we chose for performance testing.  Because this application makes use of both the Place and 
Agent classes and the associated exchangeAll and ManageAll methods of the Places and 
Agents classes this application facilitated testing the largest amount of the library.  Sugarscape 
has also been implemented in both the Java and C++ version of the library enabling 
performance comparisons between the two implementations. 
 

https://www.lucidchart.com/documents/edit/95236eb4-56ca-4683-8c36-464e34b34264/0?callback=close&name=docs&callback_type=back&v=316&s=612
https://www.zotero.org/google-docs/?kRyxFL


Figure 2 shows the core of the SugarscapeCallAll application.  Lines 1 - 15 illustrate the creation 
of the Places and Agents arrays and the setting of each Place objects neighbors.  At line 22 the 
program enters the simulation portion of the application (where exchangeAll and manageAll are 
both called multiple times).  Due to the large amount of time spent in this portion of the 
application it is where we focus most of our analysis. 
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Places land = ​new​ Places( ​1​, Land.class.getName(), ​null​, size, size ); 
land.callAll( Land.init_ ); 

  

// Populate Agents (unit) on the Land array 

Agents unit = ​new​ Agents( ​2​, Unit.class.getName(), ​null​, land, nAgents ) 
// Define the neighbors of each cell  

Vector<​int​[]> neighbors = ​new​ Vector<​int​[]>( ); 
for​( ​int​ x = ​0​ - vDist; x <= vDist; x++ ) { 
    ​for​( ​int​ y = ​0​ - vDist; y <= vDist; y++ ) { 
        ​if​( !(x == ​0​ && y == ​0​) ) 
 neighbors.add( ​new​ ​int​[]{ x, y } );  

        } 

} 

  

land.setAllPlacesNeighbors( neighbors ); 

  

Object[] agentsCallAllObjects = ​new​ Object[size*size]; 
  

long​ startNano = System.nanoTime 
  

// Start simulation time 

for​ ( ​int​ time = ​0​; time < maxTime; time++ ) { 
    ​// Exchange #agents with neighbors 
    land.exchangeAll( ​1​, Land.exchange_ ); 
  

    land.callAll( Land.update_ ); 

  

    ​// Move agents to a neighbor with the least population 
    Object[] callAllResults = (Object[]) unit.callAll( 

Unit.decideNewPosition_, agentsCallAllObjects ); 

  

    unit.manageAll( );  

} 

  

long​ endNano = System.nanoTime(); 

Figure 2.  The core of the MASS Java implementation of SugarscapeCallAll 



III. Measuring MASS Runtime 
 
Total execution time in a MASS Java test application is measured from the starting and ending 
system time as illustrated in figure 3.  MASS Java testing was performed on the CSSMPI cluster 
at UW Bothell with the following hardware specifications:  Intel(R) Xeon(R) CPU E5-2698 v3 @ 
2.30GHz processors with 3 CPU cores and total online memory of 16G. 
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long​ startNano = System.​nanoTime​(); 
 
// MASS application implementation 

  
long​ endNano = System.​nanoTime​(); 
System.out.​println​(​"Total execution time: "​ + (endNano - 
startNano) + ​" nanoseconds"​); 

Figure 3. Measuring runtime in MASS Java. 
 
Mass C++ provides a similar method of measurement implemented in the Timer class (Timer.h 
and Timer.cpp) as illustrated in Figure 4.  MASS C++ testing was performed on the Hermes 
cluster at UW Bothell with the following hardware specifications: Intel(R) Xeon(R) CPU 5150  @ 
2.66GHz with 4 CPUs and total online memory of  16G. 
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timer.start(); 

  

// MASS application implementation 

  

long​ elapsed Time =  timer.lap(); 
printf( ​"\nEnd of simulation. Elapsed time using MASS framework with %i processes and  
%i thread :: %ld \n"​, nProc,numThreads, elapsedTime1); 

Figure 4.  Measuring runtime in MASS C++ 
 
The goal was to understand performance bottlenecks in MASS Java, therefore we tested 
different approaches of measuring the performance time of methods in the MASS API.  We first 
tried tracking the runtime of individual methods similarly to the code in Figure 3 at different 
execution points but wrote these as log entries.  However, we found a significant impact on 
performance as we scaled up the number of execution threads.  
 
We therefore settled on using a Java profiling tool, VisualVM ​[3]​.  VisualVM provides the ability 
to perform CPU and Memory tracing with an intuitive output with minimal to no performance 
impact.  Our results are discussed in the next section.  

https://www.zotero.org/google-docs/?ARlDg5


IV. Runtime Results 
 
A. Runtime of MASS Java  

 
The first step was to confirm possible performance impact by running the Sugarscape 
application with and without VisualVM collecting a CPU trace.  As illustrated in Table 1 there is 
not a noticeable performance difference when running MASS Java while a CPU trace is 
collected. 
 

Host Threads Matrix Size Agents Iterations Time VMVisual 

CSSMPI1 3 1000 200000 100 253,185 ms No 

CSSMPI1 3 1000 200000 100 252,800 ms Yes 

 
Table 1. Runtime of MASS Java with and without running a VisualVM CPU trace 

 
From here, the results of CPU traces with different cluster configurations are summarized in 
table 2.  We found a significant time is spent within ExchangeALL, of that time 50% is self time, 
50% is in a call to the Place.CallMethod().  Further discussion of these results will be discussed 
in section V. 
 

Test Host Threads Matrix Agents Iterations Overall Time 

1 CSSMPI1 1 100 4 1000 1,206,395 ms 

  Method   Time % of Total 

  exchangeAll 
(self time) 

  599,265 ms 49.7% 

  exchangeAll 
(callMethod) 

  593,346 ms 49.2%  

2 CSSMPI1 2 100 4 1000  663, 490 ms 

  Method   Time % of Total 

  exchangeAll 
(self time) 

  316,390 ms 47.7% 



  exchangeAll 
(callMethod) 

  320,386 ms 48.3% 

 CSSMPI1 3 100 4 1000 492,291 ms 

  Method   Time % of Total 

  exchangeAll 
(self time) 

  477,923 ms 97 % 

  exchangeAll 
(callMethod) 

  105 ms 0 % 

 CSSMPI1 * 2 3 100 4 1000 264,849 ms 

  Method   Time % of Total 

  exchangeAll 
(self time) 

  249,849 ms 94.5 % 

  exchangeAll 
(callMethod) 

  211 ms 0 % 

 
Table 2. MASS Java Runtimes  

 
B. Runtime of MASS C++  
 
Table 3 is provided as a comparison for the runtime of MASS C++. 
 

Test Host Threads Matrix Agents Iterations Overall Time 

1 CSSMPI1 3 1000 200000 100 2,380,868 ms 

1 Hermes01 3 1000 200000 100 355,332 ms 

 
Table 3.  Runtime of MASS C++ Sugarscape 

 
 
Testing was performed with different amounts of agents in order to determine possible 
performance impact, however the increase in time spent in Agents.manageAll was minimal 
compared to the time spent in exchangeAll.  Additionally, we ran the test applications with 
logging disabled in order to ensure that logging output was not impacting the overall runtime or 
runtime of specific methods. 
 
 



 

V. Analysis and Discussion of Possible Performance Improvements 
 
Line 22 of Figure 2 identified that a simulation starts with O(n) complexity.  The exchangeAll 
method is O(n)​2​ which makes the entire simulation O(n)​3​complexity when the exchangeAll 
method is called.  For these reasons it is not surprising that the majority of time in a MASS 
simulation is spent in the exchangeAll method.  
 
Within the exchangeAll method we were able to identify two primary areas where time is spent. 
First, the Place array is divided into slices depending on how many hosts and threads are used 
in the MASS cluster.  Individual threads are responsible for iterating over their slice of the 
distributed array and the neighbors of each Place as illustrated in Figure 5, line 6, .  The second 
is line 31 of Figure 5, where the algorithm makes use of each Place objects’ callMethod in order 
to dynamically call methods implemented in the Place object itself. 
 
Due to the slow performance of Java reflection, a design decision was made to implement a 
switch statement in the Place object which calls the requested method referenced with an 
integer.[2]   Because it is possible that improvements in the JVM since the original 
implementation were possible we performed additional testing of the direct calling of a method, 
the current switch statement implementation and Java Reflection.  Results, shown in Table 4, 
indicate that Java Reflection is still considerably slower than calling a method directly, however 
there is some inconsistency in the direct method call vs a switch statement. This could perhaps 
be explained by a JVM optimization and could warrant further exploration. 
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if​ (range[​0​] >= ​0​ && range[​1​] >= ​0​) { 
for​ (​int​ i = range[​0​]; i <= range[​1​]; i++) { 

 Place srcPlace = places[i]; 

 srcPlace.​setInMessages​(​new​ Object[srcPlace.​getNeighbours​().​size​()]); 
  

 for​ (​int​ j = ​0​; j < srcPlace.​getNeighbours​().​size​(); j++) { 
  

                ​int​[] offset = srcPlace.​getNeighbours​().​get​(j); 
                ​int​[] neighborCoord = ​new int​[dstPlaces.size.length]; 
  

                ​getGlobalNeighborArrayIndex​(srcPlace.​getIndex​(), offset, dstPlaces.size, 
neighborCoord); 

  
                ... 

  

                ​if​ (neighborCoord[​0​] != -​1​) { 
  
 int​ globalLinearIndex = 
MatrixUtilities.​getLinearIndex​(dstPlaces.size, neighborCoord); 
  

                        ... 

  

                        ​if​ (globalLinearIndex >= dstPlaces.lowerBoundary 
 && globalLinearIndex <= dstPlaces.upperBoundary) { 

  

                                ​int​ destinationLocalLinearIndex = globalLinearIndex - 
dstPlaces.lowerBoundary; 

                                Place dstPlace = 

dstPlaces.places[destinationLocalLinearIndex]; 

  
                                ... 

  

                                Object inMessage = dstPlace.​callMethod​(functionId, 
srcPlace.​getOutMessage​()); 
  

                                srcPlace.​getInMessages​()[j] = inMessage; 
  
                        } ​else​ { 
  

 ... 

  
                        } 

                } 

        }  

} 



Figure 5.  A portion of the exchangeAll Implementation 
 
 

Test Iterations Average Time 

Direct Method Call 1000 1488 

Switch Statement 1000 152 ms 

Reflection 1000 53860 ms 

 
Table 3.  Runtime of MASS C++ Sugarscape 

 
Overall, these testing results indicate that we should focus our attention on the exchangeAll 
method in order to increase the performance of MASS Java simulations.  Given the 
performance differences between MASS Java and Mass C++ the use of native code for the 
implementation of exchangeAll could lead to performance improvements.  
 
Two architectural options for doing this were described in the introduction, the first, wrapping the 
C++ library with a Java API or to delegate from the MASS Java to Mass C++ library with JNI or 
JNA, both discussed in the next section.  The use of either approach illustrated in figure 1 will 
impact the complexity and flexibility of library development.  Wrapping the C++ library with Java 
would, perhaps, be the most straightforward but doing this could limit the use of Java language 
features.  Further research is required to determine the most optimal method of incorporating 
native code in the MASS Java library. 
 
Another option for improving performance would be to figure out a way to reduce, eliminate or 
improve the efficiency of the calls to the neighbor places.  By doing this we could improve the 
efficiency of the exchangeAll algorithm to O(n)​2​.  

VI. JNI or JNA 
 
Two options for calling native code from Java are the Java Native Interface (JNI) or Java Native 
Access (JNA).  JNI has been available since JTSE 1.3 released in 2003 ​[4]​.  The steps to use 
JNI are: 
 

1. Write a Java Class which loads a native library, declares the available methods. 
2. Compile the Java Class and Generate C or C++ Header files. 

a. Pre Java 10 this uses javac and javah. 
3. Implement the C Program. 
4. Compile the C program. 
5. Run the Java Program 

 

https://www.zotero.org/google-docs/?VDWpwD


 
The Java Native Access library is a community-developed library with the goal of providing 
“​easy access to native shared libraries without writing anything but Java code” which 
was first released in 2007.​[5]  In contrast to JNI, JNA does not require boilerplate or glue code 
to be implemented in the native code, making it simpler and more straightforward. 
 
The steps to implement native code with JNA are to: 
 

1.  Download the JNA Jar or add the dependency in Maven. 
 
<dependency> 

<groupId>net.java.dev.jna</groupId> 
<artifactId>jna</artifactId> 
<version>5.5.0</version> 

</dependency> 
 

2. Create a Java Interface Class which loads the native library and defines the available 
native functions in Java. 
 

3. Call the native functions from the Java code. 
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/** Simple example of JNA interface mapping and usage. */ 

public class​ HelloWorld { 
  
    ​// This is the standard, stable way of mapping, which supports 
extensive 

    ​// customization and mapping of Java to native types. 
  
    ​public interface​ CLibrary ​extends​ Library { 
        CLibrary INSTANCE = (CLibrary) 

 Native.​load​((Platform.​isWindows​() ? ​"msvcrt"​ : ​"c"​), 
 CLibrary.​class​); 
  
        ​void ​printf​(String format, Object... args); 
    } 

  
    ​public static void ​main​(String[] args) { 
        CLibrary.INSTANCE.​printf​(​"Hello, World​\n​"​); 
        ​for​ (​int​ i=​0​;i < args.length;i++) { 
 CLibrary.INSTANCE.​printf​(​"Argument %d: %s​\n​"​, i, 
args[i]); 

        } 

    } 



  } 

Figure 6. An example of the use of a native shared library. 
 
Further exploration of either JNI or JNA would be required to make a determination of how to 
best incorporate the use of native code. 

VII. Limitations and Further Steps 
 
Over the past 10 weeks I was able to achieve my goal of becoming more familiar with the MASS 
libraries and spatial simulations in general and to develop an understanding of the current 
performance limitations of the library, however there is additional work to be done in order to 
understand the opportunities for improving performance in the MASS Java library.  Next steps 
are to perform a literature and application review to determine best practices and other 
scenarios where native code is used to improve the performance of Java applications. 
Included, or separate, would be further research in optimizing Java and the JVM for high 
performance, distributed applications like the MASS library.  There is research which indicates 
that, under certain scenarios, Java can perform as effectively as native code.​[5]​  If this truly is 
possible it would provide the least complex architecture and the flexibility of continued use of 
Java’s current and future features. 
 
References 

 
[1] “Multi-agent system,” ​Wikipedia​. 27-Feb-2020. 
[2] T. Chuang and M. Fukuda, “A Parallel Multi-Agent Spatial Simulation Environment for 

Cluster Systems,” in ​2013 IEEE 16th International Conference on Computational Science 
and Engineering​, Sydney, Australia, 2013, pp. 143–150, doi: 10.1109/CSE.2013.32. 

[3] “VisualVM: Documentation.” [Online]. Available: 
https://visualvm.github.io/documentation.html. [Accessed: 09-Mar-2020]. 

[4] “JNI APIs and Developer Guides.” [Online]. Available: 
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/index.html. [Accessed: 
09-Mar-2020]. 

[5] J. Nazario Irizarry, “Mixing Java and C for High Performance Computing,” The MITRE 
technical report, 2013, MTR130458. 

  

https://www.zotero.org/google-docs/?8si4wh
https://www.zotero.org/google-docs/?qtRvN8
https://www.zotero.org/google-docs/?qtRvN8
https://www.zotero.org/google-docs/?qtRvN8
https://www.zotero.org/google-docs/?qtRvN8
https://www.zotero.org/google-docs/?qtRvN8
https://www.zotero.org/google-docs/?qtRvN8
https://www.zotero.org/google-docs/?qtRvN8
https://www.zotero.org/google-docs/?qtRvN8
https://www.zotero.org/google-docs/?qtRvN8
https://www.zotero.org/google-docs/?qtRvN8
https://www.zotero.org/google-docs/?qtRvN8
https://www.zotero.org/google-docs/?qtRvN8
https://www.zotero.org/google-docs/?qtRvN8
https://www.zotero.org/google-docs/?qtRvN8
https://www.zotero.org/google-docs/?qtRvN8
https://www.zotero.org/google-docs/?qtRvN8
https://www.zotero.org/google-docs/?qtRvN8
https://www.zotero.org/google-docs/?qtRvN8


Appendix A - Measuring Performance using VisualVM 
 
There are three ways to use VisualVM to analyze code running in a Java Virtual Machine. 
Documentation and download is available from​ ​VisualVM​. 
  

1. Running VisualVM Locally (or with a terminal and X server) 
 

Run VisualVM in the background.  Requires an X server (Handled automatically by 
MobaXterm, documentation for using Putty with an X server can be found​ ​here​). 
 

a. Locally: Run ./visualvm_144/bin visualvm 
 

b. To run through SSH use ./visualvm_144/bin/visualvm & (This will cause VisualVM to run 
as a background process and open on the client machine). 

  

 
  

c.  Run your MASS application: 
  

MASS_Application $ java -jar SugarscapeCallAll-1.0.0-RELEASE.jar 

https://visualvm.github.io/
https://visualvm.github.io/
https://superuser.com/questions/299158/how-to-make-putty-do-the-equivalent-of-ssh-x
https://superuser.com/questions/299158/how-to-make-putty-do-the-equivalent-of-ssh-x


  
The program will appear in the applications list under Local.  (When running "locally" the 
option to use the Sampler or the Profiler will both be available.) 

 

 
  
  

d. On either the "Sampler" or "Profiler" tab select the "CPU" or "Memory" button to start a 
capture. 

  
Differences between Sampler and Profiler can be found here: 

https://blog.idrsolutions.com/2014/04/profiling-vs-sampling-java-visualvm/ 
  

https://blog.idrsolutions.com/2014/04/profiling-vs-sampling-java-visualvm/


 

 
  

e. Use the "Threads" tab for a visual of the status of the running threads. 
  
  

f. To Stop VisualVM running: 
  

jobs (lists the background processes) 
  

fg %job_id (brings the job_id to the foreground then ctrl-z (verify) or ctrl-c will kill it) 
  

Or: 
  

kill %job_id (terminates) 
  

  
Note: If you want to capture the full run of your application it can be helpful to have your 
application pause while VisualVM connects and refreshes the available views. 

  
  



    1 

    2 

    3 

    4 

    5 

    6 

    7 

    8 

    9 

   10 

          ​private static void ​pressAnyKeyToContinue​() 
          { 

 System.out.​println​(​"Press Enter key to 
continue..."​); 
 try 

 { 

 System.in.​read​(); 
 }  

 catch​(Exception e) 
 {}  

          } 

  
  
  

2.  Remotely using JSTATD 
  

The limitation of this method is that you cannot do sampling or profiling. 
  
The following policy file will allow the jstatd server to run without security exceptions. This 
policy is less liberal than granting all permissions to all codebases, but is more liberal than 
a policy that grants the minimal permissions to run the jstatd server. 
  
grant codebase "file:${java.home}/../lib/tools.jar" { 

    permission java.security.AllPermission; 

}; 

  

To use this policy, copy the above text into a file called jstatd.all.policy and run the jstatd 
server as follows: 
  
jstatd -J-Djava.security.policy=jstatd.all.policy 

 

Additional information can be found here:  
https://docs.oracle.com/javase/7/docs/technotes/tools/share/jstatd.html 

  
3.  Using JMX 

  
1.  Start your application with the following arguments: 

  
java -Dcom.sun.management.jmxremote.port=3333 
-Dcom.sun.management.jmxremote.ssl=false 
-Dcom.sun.management.jmxremote.authenticate=false -jar 
SugarscapeCallAll-1.0.0-RELEASE.jar 
 

https://docs.oracle.com/javase/7/docs/technotes/tools/share/jstatd.html


2.  Right click “remote” and connect to the remote server and port specified in the above 
command. 

  
Add this to MASS.init.  ​This will launch the remote process with JMX enabled and all you 
to connect to the remote nodes. 
  
commandBuilder.append("-Xmx9g -Dcom.sun.management.jmxremote.port=3333 
-Dcom.sun.management.jmxremote.ssl=false 
-Dcom.sun.management.jmxremote.authenticate=false "); 

 

Appendix B - Test Results 
 
Test 1: 
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Test 3:  
 

 
 
Test 4: 
 

 


