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Performance and Programmability of Native code in the MASS Libraries

|. Introduction

Multi-agent simulations are computerized systems composed of one or more interacting intelligent
agents used to model mega-scale social or biological agents and their behavior.[1] Given the
large number of agents and scale of these simulations an important key to success is their
ability to run within an acceptable amount of time which is generally facilitated by parallel
computing.[2] An example which has been developed by the Distributed Systems Laboratory
(DSL) at the University of Washington Bothell is the MASS (Multi-Agent Spatial Simulation)
Library for C++, Java and Cuda.

The different implementations of the MASS Library make use of the features and benefits of
each language used in its development. However, maintaining multiple versions of the library
can be inefficient, e.g. keeping the features in sync across the three implementations.
Additionally, previous performance assessments have shown the MASS Java library to be
slower than the C++ version.

In addition to developing an understanding of agent based computing and the applications of
the MASS Library the purpose and goal of my research during the Winter 2020 quarter was to
assess the performance profile and limitations in the current implementation of MASS Java and
to evaluate options to improve performance using native code. Specifically, this research
considers the impact on code maintenance and execution performance of two architectural
designs for the MASS library as illustrated in Figure 1. The first is to directly translate the MASS
Java library to native C++ code. The second is to delegate from the MASS Java and Mass C++
library to a core C++ library which can handle functions best suited to the language. Due to the
scale of large simulations an improvement in execution performance would lead to decreased
simulation times while improved maintainability would facilitate faster development time and
reduce the development time needed for new features.
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Figure 1. Two possible architectural designs for the integration of native code into the MASS Library.

The remainder of the paper is organized as follows: Section Il discusses the MASS
programming paradigm and the Sugarscape application which is used for testing; Sections I,
IV and V discuss the testing methodologies, results and analysis of MASS Java; Sections VI
and VII discuss Java technologies for the use of native code while limitations and further steps
follow in Section VIII.

. MASS Programming and the Sugarscape Application

A MASS application is composed of one or both user implemented Place and Agent classes.
MASS instanties two distributed arrays, Places or Agents, which contain these classes and
handles the details of parallelization and execution across multiple computing nodes in a MASS
cluster. Additional detail can be found in A Parallel Multi-Agent Spatial Simulation Environment
for Cluster Systems. [2]

Applications developed for testing the MASS library include SugarscapeCallAll, the application
we chose for performance testing. Because this application makes use of both the Place and
Agent classes and the associated exchangeAll and ManageAll methods of the Places and
Agents classes this application facilitated testing the largest amount of the library. Sugarscape
has also been implemented in both the Java and C++ version of the library enabling
performance comparisons between the two implementations.


https://www.lucidchart.com/documents/edit/95236eb4-56ca-4683-8c36-464e34b34264/0?callback=close&name=docs&callback_type=back&v=316&s=612
https://www.zotero.org/google-docs/?kRyxFL

Figure 2 shows the core of the SugarscapeCallAll application. Lines 1 - 15 illustrate the creation
of the Places and Agents arrays and the setting of each Place objects neighbors. At line 22 the
program enters the simulation portion of the application (where exchangeAll and manageAll are
both called multiple times). Due to the large amount of time spent in this portion of the
application it is where we focus most of our analysis.

Places land = new Places( 1, Land.class.getName(), null, size, size );
land.callAll( Land.init_ );

// Populate Agents (unit) on the Land array
Agents unit = new Agents( 2, Unit.class.getName(), null, land, nAgents )
// Define the neighbors of each cell
Vector<int[]> neighbors = new Vector<int[]>( );
for( int x = @ - vDist; x <= vDist; x++ ) {
for( int y = © - vDist; y <= vDist; y++ ) {
if( I(x == 0 && y == 0) )
neighbors.add( new int[]{ x, vy } );

land.setAllPlacesNeighbors( neighbors );
Object[] agentsCallAllObjects = new Object[size*size];
long startNano = System.nanoTime
// Start simulation time
for ( int time = 9; time < maxTime; time++ ) {
// Exchange #agents with neighbors
land.exchangeAll( 1, Land.exchange_ );
land.callAll( Land.update_ );
// Move agents to a neighbor with the least population
Object[] callAllResults = (Object[]) unit.callAll(

Unit.decideNewPosition_, agentsCallAllObjects );

unit.manageAll( );

long endNano = System.nanoTime();

Figure 2. The core of the MASS Java implementation of SugarscapeCallAll



lll. Measuring MASS Runtime

Total execution time in a MASS Java test application is measured from the starting and ending
system time as illustrated in figure 3. MASS Java testing was performed on the CSSMPI cluster
at UW Bothell with the following hardware specifications: Intel(R) Xeon(R) CPU E5-2698 v3 @
2.30GHz processors with 3 CPU cores and total online memory of 16G.

long startNano = System.nanoTime () ;

long endNano = System.nanoTime () ;
System.out.println("Total execution time: " + (endNano -
startNano) + " nanoseconds");

Figure 3. Measuring runtime in MASS Java.

Mass C++ provides a similar method of measurement implemented in the Timer class (Timer.h
and Timer.cpp) as illustrated in Figure 4. MASS C++ testing was performed on the Hermes
cluster at UW Bothell with the following hardware specifications: Intel(R) Xeon(R) CPU 5150 @
2.66GHz with 4 CPUs and total online memory of 16G.

timer.start();

long elapsed Time = timer.lap();
printf( "\nEnd of simulation. Elapsed time using MASS framework with %i processes and
%i thread :: %1d \n", nProc,numThreads, elapsedTimel);

Figure 4. Measuring runtime in MASS C++

The goal was to understand performance bottlenecks in MASS Java, therefore we tested
different approaches of measuring the performance time of methods in the MASS API. We first
tried tracking the runtime of individual methods similarly to the code in Figure 3 at different
execution points but wrote these as log entries. However, we found a significant impact on
performance as we scaled up the number of execution threads.

We therefore settled on using a Java profiling tool, VisualVM [3]. VisualVM provides the ability
to perform CPU and Memory tracing with an intuitive output with minimal to no performance
impact. Our results are discussed in the next section.


https://www.zotero.org/google-docs/?ARlDg5

V. Runtime Results

A. Runtime of MASS Java

The first step was to confirm possible performance impact by running the Sugarscape
application with and without VisualVM collecting a CPU trace. As illustrated in Table 1 there is
not a noticeable performance difference when running MASS Java while a CPU trace is

collected.

Host

CSSMPI1

CSSMPI1

Threads

Matrix Size |Agents
1000 200000
1000 200000

Iterations

100

100

Time

VMVisual

253,185 ms |No

252,800 ms | Yes

Table 1. Runtime of MASS Java with and without running a VisualVM CPU trace

From here, the results of CPU traces with different cluster configurations are summarized in

table 2. We found a significant time is spent within ExchangeALL, of that time 50% is self time,
50% is in a call to the Place.CallMethod(). Further discussion of these results will be discussed

in section V.

Test | Host

1 CSSMPI1

2 CSSMPI1

Threads

1
Method

exchangeAll
(self time)

exchangeAll
(callMethod)

2
Method

exchangeAll
(self time)

Matrix

100

100

Agents

4

Iterations
1000
Time

599,265 ms

593,346 ms

1000
Time

316,390 ms

Overall Time

1,206,395 ms
% of Total

49.7%

49.2%

663, 490 ms

% of Total
47 7%



exchangeAll 320,386 ms 48.3%
(callMethod)

CSSMPI1 3 100 1000 492,291 ms
Method Time % of Total
exchangeAll 477,923 ms 97 %

(self time)
exchangeAll 105 ms 0 %
(callMethod)

CSSMPI1*2 |3 100 1000 264,849 ms
Method Time % of Total
exchangeAll 249,849 ms 94.5 %
(self time)
exchangeAll 211 ms 0 %

(callMethod)

Table 2. MASS Java Runtimes
B. Runtime of MASS C++

Table 3 is provided as a comparison for the runtime of MASS C++.

Test Host Threads | Matrix Agents Iterations Overall Time
1 CSSMPI1 |3 1000 200000 100 2,380,868 ms
1 Hermes01 3 1000 200000 100 355,332 ms

Table 3. Runtime of MASS C++ Sugarscape

Testing was performed with different amounts of agents in order to determine possible
performance impact, however the increase in time spent in Agents.manageAll was minimal
compared to the time spent in exchangeAll. Additionally, we ran the test applications with
logging disabled in order to ensure that logging output was not impacting the overall runtime or
runtime of specific methods.



V. Analysis and Discussion of Possible Performance Improvements

Line 22 of Figure 2 identified that a simulation starts with O(n) complexity. The exchangeAll
method is O(n)? which makes the entire simulation O(n)*complexity when the exchangeAll
method is called. For these reasons it is not surprising that the majority of time in a MASS
simulation is spent in the exchangeAll method.

Within the exchangeAll method we were able to identify two primary areas where time is spent.
First, the Place array is divided into slices depending on how many hosts and threads are used
in the MASS cluster. Individual threads are responsible for iterating over their slice of the
distributed array and the neighbors of each Place as illustrated in Figure 5, line 6, . The second
is line 31 of Figure 5, where the algorithm makes use of each Place objects’ callMethod in order
to dynamically call methods implemented in the Place object itself.

Due to the slow performance of Java reflection, a design decision was made to implement a
switch statement in the Place object which calls the requested method referenced with an
integer.[2] Because it is possible that improvements in the JVM since the original
implementation were possible we performed additional testing of the direct calling of a method,
the current switch statement implementation and Java Reflection. Results, shown in Table 4,
indicate that Java Reflection is still considerably slower than calling a method directly, however
there is some inconsistency in the direct method call vs a switch statement. This could perhaps
be explained by a JVM optimization and could warrant further exploration.
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if (range[0] >= 0 && range[l] >= 0) {
for (int i = range([0]; 1 <= range[l]; i++) {
Place srcPlace = places[i];
srcPlace.setInMessages (new Object[srcPlace.getNeighbours().size()]);

for (int j = 0; j < srcPlace.getNeighbours().size(); Jj++) {

int[] offset = srcPlace.getNeighbours () .get(]j);
int[] neighborCoord = new int[dstPlaces.size.length];

getGlobalNeighborArrayIndex (srcPlace.getIndex (), offset, dstPlaces.size,
neighborCoord) ;

if (neighborCoord([0] != -1) {

int globallLinearIndex =
MatrixUtilities.getLinearIndex (dstPlaces.size, neighborCoord) ;

if (globallinearIndex >= dstPlaces.lowerBoundary
&& globallinearIndex <= dstPlaces.upperBoundary) {

int destinationLocallinearIndex = globallLinearIndex -
dstPlaces.lowerBoundary;

Place dstPlace =

dstPlaces.places[destinationLocallinearIndex];

Object inMessage = dstPlace.callMethod (functionId,
srcPlace.getOutMessage());

srcPlace.getInMessages () [J] = inMessage;

} else {



VI.

Figure 5. A portion of the exchangeAll Implementation

Test Iterations | Average Time
Direct Method Call 1000 1488
Switch Statement 1000 152 ms
Reflection 1000 53860 ms

Table 3. Runtime of MASS C++ Sugarscape

Overall, these testing results indicate that we should focus our attention on the exchangeAll
method in order to increase the performance of MASS Java simulations. Given the
performance differences between MASS Java and Mass C++ the use of native code for the
implementation of exchangeAll could lead to performance improvements.

Two architectural options for doing this were described in the introduction, the first, wrapping the
C++ library with a Java API or to delegate from the MASS Java to Mass C++ library with JNI or
JNA, both discussed in the next section. The use of either approach illustrated in figure 1 will
impact the complexity and flexibility of library development. Wrapping the C++ library with Java
would, perhaps, be the most straightforward but doing this could limit the use of Java language
features. Further research is required to determine the most optimal method of incorporating
native code in the MASS Java library.

Another option for improving performance would be to figure out a way to reduce, eliminate or
improve the efficiency of the calls to the neighbor places. By doing this we could improve the
efficiency of the exchangeAll algorithm to O(n)?.

JNI or JNA

Two options for calling native code from Java are the Java Native Interface (JNI) or Java Native
Access (JNA). JNI has been available since JTSE 1.3 released in 2003 [4]. The steps to use
JNI are:

1. Write a Java Class which loads a native library, declares the available methods.
2. Compile the Java Class and Generate C or C++ Header files.
a. Pre Java 10 this uses javac and javah.
3. Implement the C Program.
4. Compile the C program.
5. Run the Java Program


https://www.zotero.org/google-docs/?VDWpwD

The Java Native Access library is a community-developed library with the goal of providing
“easy access to native shared libraries without writing anything but Java code” which
was first released in 2007.[5] In contrast to JNI, JNA does not require boilerplate or glue code
to be implemented in the native code, making it simpler and more straightforward.

The steps to implement native code with JNA are to:
1. Download the JNA Jar or add the dependency in Maven.

<dependency>
<groupld>net.java.dev.jna</groupld>
<artifactld>jna</artifactld>
<version>5.5.0</version>
</dependency>

2. Create a Java Interface Class which loads the native library and defines the available
native functions in Java.

3. Call the native functions from the Java code.

public class HelloWorld {

public interface CLibrary extends Library {
CLibrary INSTANCE = (CLibrary)
Native.load((Platform.isWindows () ? "msvcrt" : "c"),

ClLibrary.class);

void printf (String format, Object... args);

public static void main (String[] args) {
CLibrary.INSTANCE.printf ("Hello, World\n");
for (int i=0;i < args.length;i++) {
ClLibrary.INSTANCE.printf ("Argument %d: %$s\n", 1,
args[il]);

}



VII.

Figure 6. An example of the use of a native shared library.

Further exploration of either JNI or JNA would be required to make a determination of how to
best incorporate the use of native code.

Limitations and Further Steps

Over the past 10 weeks | was able to achieve my goal of becoming more familiar with the MASS
libraries and spatial simulations in general and to develop an understanding of the current
performance limitations of the library, however there is additional work to be done in order to
understand the opportunities for improving performance in the MASS Java library. Next steps
are to perform a literature and application review to determine best practices and other
scenarios where native code is used to improve the performance of Java applications.
Included, or separate, would be further research in optimizing Java and the JVM for high
performance, distributed applications like the MASS library. There is research which indicates
that, under certain scenarios, Java can perform as effectively as native code.[5] If this truly is
possible it would provide the least complex architecture and the flexibility of continued use of
Java’s current and future features.
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Appendix A - Measuring Performance using VisualVM

There are three ways to use VisualVM to analyze code running in a Java Virtual Machine.
Documentation and download is available from VisualVM.

1. Running VisualVM Locally (or with a terminal and X server)

Run VisualVM in the background. Requires an X server (Handled automatically by
MobaXterm, documentation for using Putty with an X server can be found here).

a. Locally: Run ./visualvm_144/bin visualvm

b. To run through SSH use ./visualvm_144/bin/visualvm & (This will cause VisualVM to run
as a background process and open on the client machine).

|4° VisualVM 1.4.4@cssmpi2 - O X

File Applications VYiew Tools Window Help
= B E S E

Applications X =l Start Page x AMEA[hd]ie

¢ 3 Local

¢ VisualvM

#&f Remote
:'[-l ¥M Coredumps
& Snapshots

w
P » VisualVM 1.4.4
.
VisualVM Home Java SE Technical Documentation
Getting Started with VisualvM I Troubleshooting Java SE
VisualVM Troubleshooting Guide Java SE & Troubleshooting Guide
Getting Started Extending VisualvM I Java SE 7 Troubleshooting Guide

v Show On Startup

c. Run your MASS application:

MASS_Application $ java -jar SugarscapeCallAll-1.0.0-RELEASE .jar


https://visualvm.github.io/
https://visualvm.github.io/
https://superuser.com/questions/299158/how-to-make-putty-do-the-equivalent-of-ssh-x
https://superuser.com/questions/299158/how-to-make-putty-do-the-equivalent-of-ssh-x

The program will appear in the applications list under Local. (When running "locally" the
option to use the Sampler or the Profiler will both be available.)

(8" VisualVM 1.4.4@cssmpil

Eile Applications Yiew Tools Window Help
B idE® @

Applications X |
[ @] Local
¥ visualvm
& SugarscapeCallall-1.0.0-RELEASE. jar (pid 20067)
& Remote
[% ¥M Coredumps
Snapshots

Bl " g & SugarscapeCallAll-l.0.0-RELEASE jar (pid 19488] x| [«]»][=][g]

I/B Overview i @ Monitor T [=] Threads | u@z Sampler [/ @ Profiler ‘
SugarscapeCallAll-1.0.0-RELEASE.jar (pid 19488)

Overview Saved data  [¥] Details

PID: 18488

Host: localhost

Main class: SugarscapeCallall-1.0.0-RELEASE. jar
Arguments: 1 10 4

JV¥M: Open)DK 64-Bit Server WM (25.201-b09, mixed mode)

Java: version 1.6.0_201, vendor Cracle Corporation

Java Home: /usr/libjjum/java-1.8.0-openjdk-1.8.0.201.b09-2. el7_6.x86_64/jre
JVM Flags: <none=>

Heap dump on OOME: disabled

Saved data X || JvM arguments | Sys

Thread Dumps: 0
Heap Dumps: 0
Profiler Snapshots: 0

d. On either the "Sampler" or "Profiler" tab select the "CPU" or "Memory" button to start a

capture.

Differences between Sampler and Profiler can be found here:
https://blog.idrsolutions.com/2014/04/profiling-vs-sampling-java-visualvm/



https://blog.idrsolutions.com/2014/04/profiling-vs-sampling-java-visualvm/
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CPU samples | Thread CPU time
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o E edu.uw.bothell.css dsl.MASS Places. exchangeall () 64,113 ms 64,113 ms
¢ % eduuw bothell. css dsl. MASS SugarScapeMassCallall SugarScapeMassCallall pressAnyKeyToContinue 1 5.797 ms 5.797 ms
(D java.io.BufferedinputStream. read (1 5,797 ms 5,797 ms
(D self time 0.0 ms 0.0 ms
o %9 edu uw bothell css dsl MASS Agents manageall () 1,183 ms 1183 ms (1
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o~ % edu.uw. bothell. css dsl. MASS Places. callall [ 297 ms 297 ms
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e. Use the "Threads" tab for a visual of the status of the running threads.

f.  To Stop VisualVM running:
jobs (lists the background processes)
fg %job_id (brings the job_id to the foreground then ctrl-z (verify) or ctrl-c will kill it)
Or:
kill %job_id (terminates)

Note: If you want to capture the full run of your application it can be helpful to have your
application pause while VisualVM connects and refreshes the available views.




private static void pressAnyKeyToContinue ()
{

System.out.println("Press Enter key to
continue...");

try

{
System.in.read() ;
}

catch (Exception e)

{}

2. Remotely using JSTATD
The limitation of this method is that you cannot do sampling or profiling.

The following policy file will allow the jstatd server to run without security exceptions. This
policy is less liberal than granting all permissions to all codebases, but is more liberal than
a policy that grants the minimal permissions to run the jstatd server.

grant codebase "file:${java.home}/../lib/tools.jar" ({
permission java.security.AllPermission;

bi

To use this policy, copy the above text into a file called jstatd.all.policy and run the jstatd
server as follows:

jstatd -J-Djava.security.policy=jstatd.all.policy

Additional information can be found here:
https://docs.oracle.com/javase/7/docs/technotes/tools/share/jstatd.html

3. Using JMX
1. Start your application with the following arguments:

java -Dcom.sun.management.jmxremote.port=3333
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.authenticate=false -jar
SugarscapeCallAll-1.0.0-RELEASE .jar


https://docs.oracle.com/javase/7/docs/technotes/tools/share/jstatd.html

2. Right click “remote” and connect to the remote server and port specified in the above
command.

Add this to MASS.init. This will launch the remote process with JMX enabled and all you
to connect to the remote nodes.

commandBuilder.append("-Xmx9g -Dcom.sun.management.jmxremote.port=3333

-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.authenticate=false ");

Appendix B - Test Results

Test 1:

sartPage X | @ [snapshot] SugarscapeCallAll 1 Thread_1_Host 100_2.14.2020.np3
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655,567 ms (o

@ java.utl Vectrsize

5,58 ms

@ java.ubl Vectorget 4,003 ms

@ M edu.uw.bothell.css.dsl MASS MThr eabarrierThreads 4514 ms

(@ java Jang.SystemmanaTime native | 498 ms

89 edu.uwbothellcss. 65 MASS Agents3asmanagenll 2,002ms

# W edu.uw.bothell.css.dsl.MASS. PlacesBaseallAll: 1,69 ms
® javalang.ohjectwait 1430 ms (02

B cuuw.bothel.css, oL ASS M Threadbarrier Threads 199 ms

@ self time 0.0ms



Test 3:

SugarscapeCallAll-1.0.0-RELEASE jar (pid 24268)

Threads ] Threads visuaiization

Live threads: 12

Dicmon theads:

Timeline

x

Show All Threads = | Tirmeline

Selected Nerme 220 P 225 ht 236 P10 Funning Sleening Wat Porh Monitor Total
[ Watach Ustener ] 485661 ms  (100% Oms  (0%) o Oms (0% Oms (0% 495861 ms
] Ofnazer oms  (om Oms (0% 495861 oms o oms (%) 495,361 ms
L] BMX server connection timeout 23 MBI MIERRIE S RRL IR R I e 111671 ms (225%) Oms (0% 383920 Oms (0% Oms (0% 495361 ms
@ Eman 474,573 ms (3578 oms (oW 18,230 Oms (%) 3.053ms (06w 495,361 ms
] O Rcference Handler oms 10w Ome (oW 495,861 oms 0w Ome (oW 495,361 me
O = oms (0w Ome  iow) o 495,861 ma (200% Ome (oW 495,861 ms
O ERTer accepto 455,661 ms  (200% oms oW o oms (0w oms 495,061 ms
[ ORMITCP Connection(1)-172 25 20 MGG 104,396 ms (5345 Oms  (oW) o 60,282 me (25 5%} Ome (0% 164,628 me
] WRMITCP Gonnection(2)-172 26 495,861 ms (100% oms (0% ¢ oms o Oms  (0%) 495.8961 ms
[ B signal bispatcher 485,661 ms  (100% oms (0w o oms o Oms (%) 495,861 ms
| Thread-2 463,670 ms (95 5% Oms  (o%) 15,084 ms (214 Oms (o) S082ms (%) 485,817 ms
B Thread3 456,723 ms (3445 Oms (0w 25105ms (524 Oms (% L883ms (04% 483817 ms
TR tion(3)-172 25 20¢ 464.705 ms (35,55 Oms (0w Oms (W) 1026ms (07w Oms (0w 465,731 me
Test 4:
C [snapshot] SugarscapeCallAll_3_Thread_2_Host_100_2.14.2020.nps
Profiler Snapshot
WE- G| ve: 8 B R B | rooresavon: metoss » )
name Toul Time TowlTime (cu) v
= & main B 250298 ms (00 220,59 ms (100%) A
W edu.ovebothell.cos.dsLM AL in () BN 26e20ms (00w 229,549ms (0%
= M eduuvebothellcss.dsLMASS Placesxchangenll) W 250,767 ms (545
] 435 PlacesBsexchangeAl 1 249,849 ms 545
(D selftme - 222,383 ms (84.1%) 222,283 M8
@ W edu.uw.bothell.css.GsLMASS. M ThreadsarrierThreads) | 15,466 ms (55%) 0.0ms
(D java.leng. Threadjoin () 8245 ms (3.1%) 0.0 ms
@ java.utivectorsize() 1,898 ms (0.7%) 787 ms
@ java.utilvectorget () 1000 ms (0.42%) a10ms
@ j3va.ang.SystemoanoTime| native] ) S17ms (0.2%) 517 ms
M eduuwDthel 55 ceLH AL athod ) 2ims ©a%) 2ims
- ¥ eduuw.bothell.css.dsl ) urms u7ms
B edu.uw.bothel.css.ds| MASS MASarrier Allslaves ) 686 ms. 0.0ms
B edu.uw.bothel.css.06| MASS. MASSBas setCores() 112 ms 12ms
B 8 java.ubl VectorforEach) 108 ms 108ms
@ self ume 0.0ms o.0ms
8 edu.uwbothell.css.dsLMASS. Agentmanageall ) 6,909 ms (25%) 1,708ms
B sduuwbothellcss. dsLMASS DlacarallAll) 2,206 ms (05%) 565 ms
B M edu.uwbothell.css.dsLMASS. Agentallall () 1360 ms (0.5%) 228 ms
8 eduuwbothell.css.dsl MASS MASSnit () 1,306 ms (0:5%) 400ms (02
8 cduuwbothell.css. g I ) o6 ms (0.3%) 26 ms
& W edu.uw.bothel.css.dsLMASS. MASSBasac clinit () 300ms (©.1%) 300 ms
M eduuwbothell.css. dsLMASS. Agent<inits () wams ooms
B edu.umebothell.css.dsl.MASS Placescinit () 103ms  ©%) 103 ms.
B 8§ edu.uwbothellcss. 65N ASS MASSsetLoggingLevel() 8.4 ms
O seif time 97.7 ms.
- (5 Connect thread cssmpi2.uwh.edu sessiv 262,403 s
23 Thread 2

o) 233,010ms
S M eduuwboth

css.ds M ASS M Threadan |

3

261,497 ms (00%%) 233,010 ms
& Y edu.uwbothell.css.dsLMASS PlacestasexchangeAll ) M0695ms (2% 231,071 ms (39:2%)
[ edu.uw bothellcss. d6LMASS. M Thr eacharrierThreads ) 13,811 ms (53%) 0oms (%)

® javatang.objectwait() 0.0ms  (0%)
i W edu.uwbothel.css.ds.MASS. AgenisBasmanageAll () 1,511 ms (06%)
B3 edu.uwbothell.css.dsl.MASS PlacesBaseallnll() 2 ms
& 84 edu.uw bothell.css.dsLMASS. AgentsBaseallAll () 0.0ms

@ self time coms

= & Thread 4 - 232,164 ms (100%)
M edu.uve bothell.css.dsLMASS MThreadtun ) - 232,164 ms (100%)
= ¥ eduuw.bothell.css. sl MASS PlacesBasexchangeAll ) - 230,097 ms (59.1%)

@ seif e - 24,926 ms (56.5%)
@ cdu.uw.bothellcss.s| MASS. M Thi cabarrierThreads) ooms %)
cthel. 35t1ms (

© ave.utl Vectrsize () 660 ms

© jave.ubi Vectorget ) soime

@ java ang.systemmanoTime[native] () 517 ms

v bothell.css.dl. ) 85ms

B B s bothelLcss. 5L MASS M Thr cacharrierThreads) | 100 ms
(® javalang.objectwait() 5,469 ms (21%) 00ms (%)
B W eduuwbothell.css.dsl MASS. AgenisBasmanagedll () 1,511 ms (0.5%) 1511 ms (0%
B9 edu.uwbothell.cos, SeLMASS PlaceseaseallAll() BLms ©1%) B/ms %)

& sdu.uwbothellcss.dsLMASS. AgensBaseallall () 125ms 33Bms o v




