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Many real-world applications such as social or biological networks can be modeled as graphs. 

With the increasing size of graphs, graph databases also become a popular research area. Graph 

databases usually require maintaining the original structure of the graph over distributed disks or 

preferably over distributed memory to function. Compare to those popular data-streaming tools 

that need to disassemble the graph into texts before processing, it’s reasonable to introduce agent-

based graph computing in which we deploy agents to graphs without modifying the original shape. 

In this research, we introduce using Multi-Agent Spatial Simulations Library (MASS) for graph 

computing. Currently, most agent-based modeling (ABM) libraries including MASS focus on 

parallelization of ABM simulation programs. However, database systems need to accept, handle, 

and protect many queries from different users simultaneously, while MASS hasn’t provided users 

with this capability. Therefore, this project aims at implementing a high-performance multi-user 

distributed shared graph and trying to add this feature to the MASS library. We have conducted 



 

research on many popular data streaming tools and distributed cache. By addressing the challenges 

they have on programming graph applications, we proposed and implemented a high-performance 

distributed shared graph structure within the MASS library. Through the performance and 

programmability comparison between MASS and Hazelcast (which has a distributed HashMap 

data structure, thus enables distributed graph construction), we demonstrated that MASS 

GraphPlaces has better speed when processing graph queries and at the same time offers better 

parallel performance when programming graph applications such as Triangle Counting.
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Chapter 1. INTRODUCTION  

Multi-Agent Spatial Simulation (MASS) is an agent-based parallel programming library over a 

cluster of computing nodes. It provides an intuitive programming framework for big data 

processing that can simulate many real-world problems including bioinformatics, social networks, 

climate analysis and geographic information system. As shown in Figure 1.1, MASS processes 

communicate with each other through TCP connections to perform agent-based modeling (ABM) 

simulations.  

 

Figure 1.1. MASS library model [1]. 

 

MASS mainly contains two classes: Agents and Places. The former represents a collection 

of mobile objects in a simulation, each named agent. The latter represents a multi-dimensional 

array space of entities, each named place. Agents can migrate between places, regardless of the 

specific node or thread they are associated with. When an agent resides in a place, it can make 

function calls based on the data saved in that place. 



 

While the base class Places is a distributed array, MASS also supports other data structures 

that extends from the base class including Binary Tree, Quadtree and Graph. These various data 

structures can meet the various computing needs from the users. 

Most big-data computing handles text data with data-streaming tools such as MapReduce 

[2], Spark [3], and Storm [4]. However, for distributed data structures such as distributed graph, 

these data-streaming tools need to disassemble the data into texts that cannot remain in their 

original shape over distributed memory before processing the data. On the other hand, many graph 

applications including graph databases such as Neo4j [5] requires maintaining the original 

structure of the graph over distributed memory to function. Therefore, it’s reasonable to introduce 

agent-based graph computing in which we deploy agents to graphs without modifying the original 

shape of the data structure [6]. 

Currently, agent-based modeling (ABM) libraries including MASS focus on parallelization 

of ABM simulation programs. However, database systems need to accept, handle, and protect 

many queries from different users, and ABM libraries do not have this capability. Therefore, in 

order to apply ABM libraries to database systems, in particular to graph database, the underlying 

graph must be accessible and modifiable by multiple users simultaneously. Given the above 

motivation, this project aims at investigating multi-user distributed shared graph (DSG) and trying 

to add this new feature to the MASS library. 

This project aims to implement a high-performance distributed shared graph and build the 

implementation into MASS library, the goals include: 

1. This project starts with surveys on platforms that facilitate shared space: Unix Shared Memory, 

Hazelcast [7], Redis [8] and Oracle Coherence [9]. Particularly, we want to check whether 

they can be used to create a distributed shared graph. 



 

2. Based on the survey and prototyping, we will propose and implement a high-performance 

multi-user distributed shared graph. 

3. The implementation of DSG will replace the original graph data structure in MASS called 

GraphPlaces and further facilitate relevant methods. 

4. After the development of new MASS GraphPlaces, we will complete verification and 

performance measurement. 

Chapter 2. BACKGROUND 

This chapter mainly focuses on graph computing using MASS library, and describes the previous 

work finished by our lab members. 

2.1 GRAPHS IN MASS 

MASS has already supported a graph data structure called GraphPlaces that extends from the 

Places class. GraphPlaces store graphs in adjacency list format, which means for each vertex we 

store its corresponding attributes and its neighbors as a list. As shown in Figure 2.1, when a graph 

is inserted into a GraphPlaces it will be distributed in the cluster by storing information of vertices 

in different computing nodes.  

 

Figure 2.1. Distributed graph visual representation. 



 

The vertices in GraphPlaces are represented by VertexPlace objects, and VertexPlace 

extends from the MASS Place class. As I mentioned, it stores the list of outgoing edges and the 

information about itself. 

When constructing the graph, users can utilize the public built-in functions provided by 

GraphPlaces to load the graph from our supported graph formats including HIPPIE (Human 

Integrated Protein to Protein Interaction Reference), MATSim (Multi-Agent Transport 

Simulation), UW-Bothell proprietary DSL, and SAR. Users can also manually construct the graph 

by adding vertices or edges by calling addVertex() and addEdge() method. 

After a graph is constructed, if the user wants to remove any vertices or edges they can just 

call removeVertex() and removeEdge(). Besides, getVertex() can be used for accessing the 

information of each vertex. Since VertexPlace extends from MASS Place class, agents can also 

reside in or migrate between VertexPlaces. When agents reside in a VertexPlace, it can make 

function calls based on the information of the corresponding vertex. As for agent migration, they 

can migrate over an outer edge from one VertexPlace to another. 

2.2 PREVIOUS WORK 

The research done by J. Gilroy, S. Paronyan and J. Acoltzi focused on implementing distributed 

graph-computing support in MASS library [10]. They implemented the first version of 

GraphPlaces class coupled with the Cytoscape [11] graph visualization software. By comparing 

the graph construction performance with MapReduce and Spark, they concluded that the MASS 

GraphPlaces can be used to incrementally construct a graph in memory efficiently. 

Further work by Y. Hong addressed the challenge of parallelizing the graph construction 

process [6]. Since graph construction for large graphs is time consuming, she introduced and 

implemented the pipelining approach in which the graph construction overhead is hidden with 



 

graph computation. This new technique further speeds up graph computation using MASS 

GraphPlaces, and their results showed that the new pipelined implementation increased the 

performance by 7.7 times when running the Triangle Counting and Connected Components 

application on large graphs. She also mentioned in the future work section that more work should 

be done on measuring MASS graph computing performance with large graphs as well as try to 

interface MASS GraphPlaces to major graph databases. 

C. Tsui implemented several agent-based graph applications using MASS GraphPlaces 

[12]. She completed the parallel implementation of three graph applications Graph Bridge, 

Minimum Spanning Tree, and Strongly Connected Components using MASS GraphPlaces and 

Spark. By the performance comparison and programmability analysis of the two frameworks, she 

concluded that when testing with large graphs MASS GraphPlaces has lower execution time than 

Spark while at the same time offers better programmability. In the future work section, she 

mentioned that further work needs to be done to compare MASS GraphPlaces with more libraries. 

Lastly, V. Mohan and A. Potturi implemented three other graph applications using MASS 

GraphPlaces, including Bread-First Search, Triangle Counting, and Range Search [13]. They 

upgraded the agents in MASS library and automated agent propagation, forking, and flocking over 

GraphPlaces. By comparing with Repast Simphony [14], an open-source agent-based modeling 

platform, they demonstrated that their automated agent migration methods not only accelerated the 

execution but also improved programmability. 

By comparing with data streaming tools and other agent-based libraries, we proved that 

MASS could achieve good performance and programmability when used for graph computing. 

However, previous students also mentioned that further comparisons need to be done to compare 

MASS GraphPlaces with more libraries. Since GraphPlaces store graphs using the adjacency list 



 

format, we think a comparison with distributed key-value cache frameworks is necessary because 

vertices can be represented as a key-value pair of <Vertex ID, Neighbors List>. They also 

mentioned we need to try to interface MASS GraphPlaces to major graph databases. However, 

currently MASS doesn’t support multi-user feature so as a result it cannot be used together with 

graph databases. These motivations from previous students motivates this project, so my goal is to 

implement the multi-user feature in MASS GraphPlaces and compare the performance with other 

distributed cache frameworks. 

Chapter 3. RELATED WORK 

This chapter covers the literature on data streaming tools and distributed cache frameworks and 

further discusses their challenges on implementing graph applications. 

3.1 DATA STREAMING 

MapReduce is a programming model and an associated implementation for processing and 

generating large datasets that is amenable to a broad variety of real-world tasks [15]. MapReduce 

mainly includes two phases: map and reduce. The map function transforms lines of text input into 

key-value pairs, then the reduce function processes all pairs associated with the same key and 

produce the final output. All the map and reduce functions are executed in parallel. However, 

MapReduce writes intermediate output to disk between each stage, as a result the disk I/O 

operations negatively affect the overall execution speed. 

Spark addresses the problem of disk I/O operations and provides an in-memory parallel 

programming framework. It is an open-source computing framework that unifies streaming, batch, 

and interactive big data workloads to unlock new applications [16]. The most well-known concept 

in Spark is RDD (Resilient Distributed Datasets) which is the immutable collection of elements 



 

that distributed over the cluster. However, MapReduce and Spark have one common disadvantage 

when processing graphs: they need to disassemble the data into texts before processing so as a 

result the graphs cannot remain in their original shape over the distributed disk or memory. 

There are also data streaming frameworks designed for graph processing. Pregel is a graph 

processing architecture developed at Google. In Pregel architecture, programs are expressed as a 

sequence of iterations, in each of which a vertex can receive messages sent in the previous iteration, 

send messages to other vertices, and modify its own state and that of its outgoing edges or mutate 

graph topology [17]. Apache Giraph [18] is another graph processing system built for high 

scalability that originates as the open-source counterpart to Pregel. Giraph adds several features 

beyond the basic Pregel model, including master computation, sharded aggregators, edge-oriented 

input, out-of-core computation, and more. 

GraphX [19] is an embedded graph processing framework built on top of Spark which also 

implements the Pregel API. It offers a platform to implement graph applications by supporting 

graph related RDDs such as GraphRDD, VertexRDD, and EdgeRDD. However, because of the 

nature of Spark’s data partition and shuffle operations, the performance of Spark GraphX is worse 

than MASS GraphPlaces for graph construction [10]. Also, for graph applications such as Graph 

Bridge and Strongly Connected Components MASS also provides better performance and 

programmability [12]. 

3.2 DISTRIBUTED CACHE 

Since we want to implement a distributed shared graph storage by representing the graphs in 

adjacency list format, it’s necessary to investigate on the distributed cache frameworks. 

Memcached is a high-performance, distributed caching system [20]. It is a well-known, 

simple, in-memory caching solution mostly used to speed up dynamic Web applications by 



 

alleviating database load. Facebook leverages Memcached as a building block to construct and 

scale a distributed key-value store that supports the world’s largest social network [21]. However, 

Memcached only supports the key-value pair data type, and because of their design philosophy of 

avoiding disks as much as possible they do not have built-in support for saving data back to disks 

for backup. 

Oracle Coherence [22] is an in-memory data grid enables fast access to key-value data. 

Coherence ensures scalability and performance in enterprise applications by providing clustered 

low-latency data storage, polyglot grid computing, and asynchronous event streaming. Coherence 

also provides multiple cache types including distributed cache, replicated cache, near cache, and 

more to support different needs of developers. However, the primary data type in Coherence is 

key-value pair, which means for most cases Coherence can only be used as a hash table. 

Terracotta Ehcache [23] is an open source, distributed cache that provides high-

performance, good scalability. Ehcache also introduces high portability by offering a complete 

implementation of the JSR107 JCache [24], which means developers can code directly with the 

JCache API. Terracotta's offheap technology also allows applications to store large datasets in-

memory, outside of the Java heap, enabling high-performance data access for various types of data 

beyond simple key-value pairs. However, Ehcache also does not have built-in support for backup 

of cached data. 

Redis [25] is an in-memory data store used as a cache, vector database, document database, 

streaming engine, and message broker. Redis has built-in replication and different levels of on-

disk persistence. It supports different complex data types, with atomic operations defined on those 

data types. The simplicity, speed, and rich feature set of Redis have made it a popular choice 

among developers and companies. 



 

Hazelcast [26] is another popular distributed cache solution that primarily focus on in-

memory data management and distributed computing. It is a unified real-time data platform 

combining stream processing with a fast data store. Hazelcast also offers a large variety of data 

structures such as Map, JCache, Queue, Set, List, and more. Hazelcast Distributed maps, also 

known as Hazelcast IMaps [27], are key-value pairs that are partitioned across a cluster. Each 

member in a cluster stores an almost equal number of entries, and all maps are backed up by one 

other member to avoid data loss. Since Hazelcast focus more on distributed computing 

performance, it consistently outperforms Redis at scale [28]. 

3.3 CHALLENGES 

Overall, data streaming frameworks are suitable for big data processing and analysis. However, 

when it comes to graph processing, the data streaming tools need to first transform graphs to texts 

before processing which affects overall performance. Previous research has shown that MASS 

GraphPlaces can provide better performance and programmability for graph computing compared 

to Spark GraphX. 

 Therefore, we mainly focused on the distributed cache frameworks which serves as a 

competitor of our distributed shared graph implementation. All of the introduced frameworks are 

in-memory, distributed and concurrent cache which means they can all be used to store graphs in 

adjacency list format. However, not all of them supports automate saving or checkpointing back 

to disk, which means the data stored in cache may have the risk of losing. It is also in doubt that 

whether distributed cache frameworks are suitable for graph computing. While key-value pairs are 

usually independent of each other, vertices in a graph have many edges pointing to each other 

which introduces different access patterns. 



 

 Based on the above survey, we plan to implement a high-performance distributed shared 

graph that addresses the challenges. The graph storage should be in-memory, distributed and can 

be concurrently accessed by multi-user, so that graph applications like graph databases can 

interface with our implementation. We also include the backup feature in which graphs are stored 

back to files for fault tolerance and convenience when we want to repeatedly work on the same 

graph. Furthermore, this implementation will provide basic graph related operations such as 

getVertex(), addVertex(), and addEdge(), while at the same time support agent migration within 

the data structure. Based on the literature review we will compare our implementation with 

Hazelcast in terms of both performance and programmability. 

Chapter 4. AGENT-BASED DISTRIBUTED SHARED GRAPH 

This chapter discusses how we managed to address the challenges mentioned in the previous 

chapter and designed our own implementation of multi-user, in-memory, distributed and coherent 

cache for storing graphs. Furthermore, we used this implementation to refine the graph structure 

in MASS, so we will explain our design of the new GraphPlaces implementation. 

4.1 MULTI-USER DISTRIBUTED SHARED GRAPH 

This subsection focuses on multi-user, in-memory, distributed, and coherent caching features, and 

we named the system as Distributed Shared Graph (DSG). 

4.1.1 Design 

The first challenge of the system design is to distribute the graph on multiple computing node so 

that we can utilize the computing resources to achieve parallel programming. We want each 

computing node to store an even portion of the graph so that we won’t waste the memory space, 



 

which can be achieved by a hash function that takes each vertex’s identifier as an argument and 

returns a computing node number. As for storing a graph, we use HashMaps [32] in every 

computing node with key being the identifier of a vertex and value being the actual vertex object. 

The vertex object should at least include a list of outgoing edges from that vertex so that we store 

the graphs in adjacency list format. Since we don’t want to launch the programs manually on each 

computing node, we need to launch remote worker processes from one master computing node. 

Given this challenge, the solution we came up with is using JSch [29], which is a Java utility for 

establishing remote connections using SSH2. JSch allows users to execute commands in remote 

machines, so in our case we can use it to launch remote processes. After launching remote 

processes, the channels between the master process and the remote processes will be established 

and can be used for communication. However, during the testing phase we found that although 

SSH sessions are held over TCP connections, this connection launched by JSch has lower 

performance than a customized TCP connection. Therefore, for effective communication between 

processes on different computing nodes, we also establish a complete network of TCP connections 

among all computing nodes. 

Our second challenge is to find out a way to allow multiple users running their programs 

on the same cluster to share the same graph. First, we need an identifier for every graph so that 

when different users specified the same identifier, we know that they want to access the same 

graph. This identifier is a string which we name it as “sharedPlaceName”. Initially we tried to use 

shared memory to store graphs, because shared memory is a memory that can be shared among 

multiple processes which is a way of inter-process communication. In this way, the graph is 

distributed and stored in each computing nodes’ shared memory, and all users can access the shared 

memory for the graph data. To be more specific, in Linux the directory “/dev/shm” is an 



 

implementation of the shared memory concept, and it is in the virtual memory which guarantees 

good performance. We create a graph file under this directory of every involving computing node 

so that they can be accessed by multiple users. As for the read and write operations to shared 

memory, they can be achieved by the MappedByteBuffer [30] class in Java programming.  

However, when we were testing the performance, we found that the I/O operations to 

shared memory are too slow which leads to the low performance of put and get operations on 

graphs. Therefore, we realized that the graph data needs to be cached in the memory of all the 

processes for effective access. Since we have multiple users in the system who are accessing the 

same graph, caching the graph in each user’s processes causes another problem which is the 

consistency of data among different users. Our solution is to cache the graphs in each user’s 

process memory for quick access and at the same time implement a write-back write-update 

(WBWU) cache protocol among user processes. Write-back means we write back the graph data 

back to shared memory at the termination of a user’s program because we really want to back up 

the data for potential risks and convenience of using the same graph repeatedly. Write-update 

means whenever a user modifies the graph, this update will be broadcasted to all other users so 

that they can update the cache in their processes. This broadcast will only happen in one computing 

node, for example if vertex A is supposed to be stored in computing node 1, then the update of 

vertex A only affects the user processes running on computing node 1 because the graph is evenly 

distributed and there’s no replication. Since this broadcast needs to be reliably and high-

performance, we found a tool called Aeron [31] which offers a low-latency message transport 

system. During our testing we also considered common communication protocols such as TCP 

and UDP, but we came into the conclusion that Aeron is the best for implementing our shared 

feature because of its mechanism shown in Figure 4.1. Aeron uses publication and subscription 



 

mechanisms; publishers can send messages to specific channels and subscribers can subscribe to 

the channel so that they receive those messages. A channel is specified by an IP address, a port, 

and a stream ID, which means even if we only use one IP and one port, we can create multiple 

independent streams by changing the stream ID. As shown in Figure 4.1, all subscribers of a 

channel will receive messages from publishers of the same channel. If there’s a subscriber who 

joined the channel late, then he will only receive the messages sent later than his join time. This 

model is suitable for our shared feature because all the users in the same node will be the subscriber 

and publisher of the same channel, and they can join at any time to get the latest updates from 

other users. Overall, Aeron and shared memory together achieved the WBWU mechanism of our 

system. 

 

Figure 4.1. The Aeron mechanism. 

 

After considering all the challenges, we came up with the overall system design shown in 

Figure 4.2. First, from the master node, we use JSch to launch remote processes in other worker 

nodes. Then we establish a complete network of TCP connections between all computing nodes 

for efficient communication. It should be noted that the JSch and TCP connections between the 

processes of User 2 were omitted from the Figure 4.2 due to concerns regarding the potential 



 

cluttering effect on the overall clarity. We backup our graph in the files stored in the directory 

“/dev/shm”, and we cache the most up-to-date graph data in the process memory. There’s an Aeron 

channel launched in each computing node that supports communication between processes of 

different users. In this way, we designed a multi-user, in-memory, distributed and coherent graph 

storage system. 

 

Figure 4.2. A multi-user distributed shared graph design. 

 

Given the above explanation of the overall system, the following goes into more details 

about the WBWU mechanism among multiple users. The write back of data happens when a user 

terminates his program, and we use the MappedByteBuffer to write the graph data to the shared 

memory on all computing nodes. Since each graph has an identifier, the file name will be the 

combination of the identifier and the corresponding node. For example, one portion of the graph 

with identifier “myGraph” will be stored in computing node 0 as file “/dev/shm/myGraph-0”. If 

next time anyone launched the program with the same identifier and set of computing nodes, the 



 

program will automatically read from the shared memory on each computing node and retrieve the 

graph data. However, since we only write back the data at program termination, it’s possible that 

another user’s processes are running on the same graph and only those processes contain the most 

up-to-date data in their caches. Therefore, we also designed a graph initialization mechanism using 

Aeron as shown in Figure 4.3. When the program of a new user starts, it will first read the shared 

memory, but the initialized flag is set to false. Then, an initialization request will be sent to the 

Aeron channel, and the request will be received by all other users currently working on the same 

graph. They will reply with the most up-to-date data, and the new user process will update its cache 

correspondingly and set the initialized flag to be true. Once the initialized flag is set, later response 

messages from other users will be ignored, which avoids the waste of resources. This procedure 

happens in all related computing nodes. 

 

Figure 4.3. An example of graph initialization. 

 



 

 The write update feature can be explained with the addVertex() example shown in Figure 

4.4. In the example, suppose there are currently 3 users running their program on the same graph 

and User 1 called addVertex(). We can calculate from the hash function about which computing 

node this vertex belongs to. If the result is a remote node we send a message from the master node 

to that remote node, otherwise we just perform operations locally. User 1 first updates its cache 

locally, and at the same time it sends a message to the Aeron channel located in that computing 

node. Aeron guarantees that all subscribers of the channel will receive this message, and the 

message asks User 2 and User 3 to update their caches by adding the new vertex. We also need to 

assure that User 1 will ignore this initiated message for avoiding a repetitive operation. If multiple 

users try to update a vertex with the same ID, then the final data of the vertex depends on the 

message arrival order at the Aeron channel. Since Aeron guarantees First-In First-Out (FIFO), 

each message will be processed one by one so the last message broadcasted will decide the result 

for that vertex. 

 

Figure 4.4. An example of adding a multi-user vertex. 



 

4.1.2 Implementation 

In this section, we would like to present the code snippets of two key classes in our DSG 

implementation. The first class is MProcess, this class represents processes running on remote 

computing nodes and is the most important part of our distributed feature. As shown in Listing 4.1, 

MProcess is a process that runs on remote computing nodes, and it’s always listening to the JSch 

connection between the node and the master node. Once a message is received, MProcess checks 

the message action type. For example, the message type can be “DSG_SET_VERTEX” which 

means after the calculation of hash function the master node decided to add a new vertex in a 

remote node, then the MProcess running there should add the vertex to its cache locally. This 

remote process can be terminated by sending a message with message type “FINISH”. 

Listing 4.1. MProcess implementation code snippet 

 

As for the shared feature, the most important class is called LocalMessageReaderThread. 

This class represents a thread that is actively listening on the Aeron channel subscription. As 

introduced in the previous section 4.1.1, Aeron is used when initializing the graph and updating 

1. while (alive) { 
2.         Message m = receiveMessage(); 
 
3.         switch (m.getAction()) { 
4.                 case ACK: 
5.                         sendAck(); 
6.                         break; 
 
7.                 case FINISH: 
8.                         sendAck(); 
9.                         alive = false; 
 
10.                 case DSG_GET_VERTEX: 
11.                         Vertex v = getSharedGraph().getVertex(m.getVertexID()); 
12.                         sendAck(v); 
 
13.                 case DSG_SET_VERTEX: 
14.                         getSharedGraph().updateVertex(m.getVertexID(), m.getVertex()); 
15.                         sendAck(); 
16.         } 
17. } 



 

the shared graph. This thread has a similar structure as MProcess. The only difference is that it 

listens on an Aeron channel and Aeron uses a message handler as shown in Listing 4.2 to deal with 

received messages. It should be noted that the difference between the function updateVertex() and 

updateVertexLocally() is that updateVertex() additionally sends a message to the Aeron channel 

to notify other users. This message has a type of “DSG_SET_VERTEX_LOCALLY” and will be 

received by the LocalMessageReaderThread of other processes running in the same computing 

node. As for message type “DSG_INIT_REQUEST”, a message of this type will be received from 

other users who just launch their programs. The current users can send their cache that contains 

the most up-to-date data back to the new user with the message type “DSG_INIT_RESPONSE”. 

Once the new user receives the message, it calls setAdjMap() to update its cache and then the new 

user also has the new data. 

Listing 4.2. LocalMessageReaderThread implementation code snippet 

1. FragmentHandler handler = (buffer, offset, length, header) -> { 
2.       // get the message object 
3.       byte[] byteArray = new byte[length]; 
4.       Buffer.getBytes(offset, byteArray); 
5.       Message m = (Message) SerializationUtils.deserialize(byteArray); 
 
6.       if (!m.getUserName().equals(getUserName())) { 
7.             // this message is from others, deal with it 
8.             if (m.getAction() == DSG_SET_VERTEX_LOCAL) { 
9.                   getSharedGraph().updateVertexLocally(m.getVertexID(), m.getVertex()); 
10.             } 
11.             else if (m.getAction() == DSG_INIT_REQUEST) { 
12.                   getSharedGraph().helpOtherUsersInit(m.getUserName()); 
13.             } 
14.             else if (m.getAction() == DSG_INIT_RESPONSE && 

m.getReceiver().equals(getUserName()) && !initialized) { 
15.                   initialized = true; 
16.                   getSharedGraph().setAdjMap(m.getAdjMap()); 
17.             } 
18.       } 
19. }; 



 

4.2 AGENT-BASED GRAPH IN MASS - GRAPHPLACES 

This section focuses on the differences between GraphPlaces and the Distributed Shared Graph 

implementation in design and implementation. We will explain how agents can traverse the 

GraphPlaces and help coding graph algorithms. 

4.2.1 Design 

The design of new MASS GraphPlaces is very similar to the Distributed Shared Graph (DSG) 

introduced in section 4.1. However, graph databases use vertex label and properties which means 

the identifier for a vertex can be of any type, this is different from the original design in DSG 

where vertices are identified with integers. Our solution is to let the identifier for a vertex be of 

data type Object in java, so that we can accept all kinds of identifiers. Also, we utilize the class 

VertexPlace which extends from the MASS Place class to represent a vertex object that can hold 

more information. However, we still want to remain the integer IDs for vertices due to the agent 

migration patterns in MASS. Therefore, we need to design a mapping mechanism from Object IDs 

to integer IDs, and we would like to use a distributed HashMap [32] together with Vectors [33] to 

address this problem. As shown in Figure 4.5, there should be a distributed HashMap that maps 

Object IDs to integer IDs and this HashMap can be accessed and modified by all computing nodes. 

The integer IDs are sequential and are assigned by the program manually when the vertices are 

added. As for the hash function of deciding where to store a vertex, we can simply use the below 

formula:  

𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑁𝑜𝑑𝑒 𝐼𝐷 = 𝑀𝑜𝑑(𝑉𝑒𝑟𝑡𝑒𝑥 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝐼𝐷, # 𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑁𝑜𝑑𝑒) . 

After reaching the corresponding computing node to store the vertex, we need to further decide 

the index of storing that VertexPlace object in the Vector, and this can be achieved by the formula:  



 

𝐼𝑛𝑑𝑒𝑥 𝑖𝑛 𝑉𝑒𝑐𝑡𝑜𝑟 = ⌊
𝑉𝑒𝑟𝑡𝑒𝑥 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝐼𝐷

# 𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑁𝑜𝑑𝑒
⌋ . 

In this way, we have both Object IDs and integer IDs for all vertices in a graph. 

 

Figure 4.5. Graph representation by distributed map and vector. 

Another difference between MASS GraphPlaces and DSG is that GraphPlaces extends 

from Places so GraphPlaces also needs to support agent migration. In MASS, agents can traverse 

from one place to another regardless of the computing node or thread they are associated with, and 

in graphs this corresponds to travelling from one vertex to another. Therefore, our solution is to let 

each VertexPlace represent a vertex. A VertexPlaces stores identifier and all attributes related to 

the vertex, as well as all the neighbors of the vertex in adjacency list format. Agents reside in a 

VertexPlace can migrate to other VertexPlaces along the edges between them. As shown in Figure 

4.5, in the agent-based Triangle Counting application we can utilize this agent migration to achieve 

parallel programming. Initially we spawn agents in every VertexPlace and let them traverse the 

graph along the edges. Since we don’t want to count the same triangle twice, we restrict the agents 

to only travel along an edge with destination vertex integer ID lower than current vertex. If there’s 

no outgoing edges that fulfill the requirement then the agent will kill itself. However, if an agent 

has successfully migrated along the edges twice, in accordance with the rule, then it can try to find 



 

if its original vertex is a neighbor of its current vertex. If the original vertex is within reach, then 

we found a triangle and we should increment the result by 1. In this way, we enabled the agents to 

migrate in GraphPlaces by traveling from one VertexPlace to another long the edges. 

 

Figure 4.6. Agent traversal in Triangle Counting. 

4.2.2 Implementation 

The implementation of MASS GraphPlaces is very similar to DSG. We also utilize the classes 

MProcess and LocalMessageReaderThread shown in section 4.1.2, but we added more message 

action types due to the more supported public function. DSG only supports the two basic functions 

addVertex() and getVertex(), but as shown in Figure 4.7 MASS GraphPlaces has many public API 

for users to easily code graph applications. Users can use function loadDSLFile() and 

loadSARFile() to directly load graphs from corresponding format of graph files. Users can also 

manually modify the graph by adding or removing vertices and edges. Besides getting a single 

vertex information by getVertex(), MASS GraphPlaces also supports getGraph() which returns a 

complete graph model with all information. As for callAll() and exchangeAll(), these are methods 

that overrides the methods in base class Places. By calling these methods users can invoke a 

specific user-defined function in all VertexPlaces stored in the GraphPlaces. 



 

 

Figure 4.7. Methods in MASS GraphPlaces. 

With these many public functions provided, users can use MASS GraphPlaces to code 

graph applications easily. Triangle Counting is an application that counts the number of triangles 

formed in a graph. We choose this application because it can be programmed using nearly the same 

algorithm in MASS and Hazelcast. We also considered other applications such as Connected 

Components, but since MASS use agent-based approach the complexity of the algorithm is in 

general different between MASS and Hazelcast. In the previous section, we showed Figure 4.6 

which demonstrates the idea of agent-based Triangle Counting. As shown in Listing 4.3, we first 

initialize MASS and GraphPlaces with name “myGraph”. If this graph named “myGraph” has 

been loaded before then line 5 of loading graph file can be deleted, and this is because that previous 

loaded graphs are already stored in shared memory with the graph name as an identifier. Then we 

can use getGraph() to get the information of the whole graph. After instantiating agents at all 

vertices, we can start to do the computation. Since a triangle has 3 edges, for the first two steps we 

let agents travel along an edge to a lower ID vertex, and for the final step we let it travel back to 



 

the source vertex. Since we kill the agents that has nowhere to migrate in each iteration, the number 

of agents alive at the end of simulation will be the number of triangles in the graph. 

Listing 4.3. Triangle Counting MASS application abstract code. 

Chapter 5. EVALUATION 

This chapter first evaluates the performance of our distributed shared graph implementation, then 

evaluates the programmability and performance of the new MASS GraphPlaces. The results are 

compared to the Hazelcast implementation from another student in our lab, Michael Robinson-

Elmslie.  

5.1 ENVIRONMENT SETUP 

The applications were executed on the CSSMPI cluster and HERMES cluster at the University of 

Washington Bothell. During our tests we used up to 20 computing nodes, and the detailed 

information about those 20 machines can be found in Table 5.1. 

1.         MASS.init(); 
2.         // initialize GraphPlaces with name “myGraph” 
3.         GraphPlaces network = new GraphPlaces(“myGraph”); 
4.         // load graph from a DSL format graph file 
5.         network.loadDSLFile(filePath); 
6.         // get list of vertices information 
7.         List<Vertex> vertices = network.getGraph().getVertices(); 
8.         int numberOfVertices = vertices.size(); 
9.         // instantiate an agent at each vertex 
10.         Agents crawlers = new Agents(network, numberOfVertices); 
11.         // start triangle counting 
12.         for (int i = 0; i < 3; i++) { 
13.                 if (i < 2) { 
14.                         // the first two steps, travel along edge to lower id vertex 
15.                         crawlers.callAll(propagateDown_, i); 
16.                 } else { 
17.                         // the final step, travel back to original vertex 
18.                         crawlers.callAll(migrateSource_, i); 
19.                 } 
20.                 // spawn, kill, migrate agents 
21.                 crawlers.manageAll(); 
22.         } 
23.         // number of triangles equals to number of agents alive at end of simulation 
24.         print(“number of triangles = ” + crawlers.nAgents()); 
25.         MASS.finish(); 



 

Table 5.1. CSSMPI and HERMES cluster environment. 

# Computing 

Nodes 

# Logical 

CPU Cores 

CPU Model Memory 

12 4 Intel Xeon Gold 6130 @ 2.10 GHz 16GB 

3 4 Intel Xeon 5150 @ 2.66 GHz 16GB 

4 8 Intel Xeon E5410 @ 2.33 GHz 16GB 

1 4 Intel Xeon 5220R @ 2.20 GHz 16GB 

 

5.2 BASIC GRAPH OPERATIONS PERFORMANCE COMPARISON 

In this section we evaluate the performance of basic graph operations getVertex() and addVertex(). 

The two operations correspond to accessing the data of a vertex or adding a new vertex. We 

compared our Distributed Shared Graph implementation with Hazelcast for the two operations. 

For the Hazelcast implementation of graph storage, we utilized the Hazelcast Distributed Map to 

store the graph in adjacency list format. To be more specific, for each vertex we store it into a 

Hazelcast Imap as a key value pair of <vertex ID, vertex object>. The getVertex() and addVertex() 

methods are implemented using the get() and put() methods of IMap. For the performance 

measurement, we run our benchmark programs at the master node and count the total time of 

iterating through all vertex IDs in the graph to perform two operations. 

Figure 5.1 and 5.2 show the performance comparison of DSG and Hazelcast on getVertex() 

operation. We can see that no matter what size the graph is, in both single node and 4-node scenario 

DSG performs better than Hazelcast. This may be due to the fault tolerance mechanism of 

Hazelcast. By default, all entries of Hazelcast IMap are backed up by one other member in the 

cluster to avoid data loss. This introduces high availability but at the same time reduces the 



 

performance. On the other hand, DSG only back up data to the shared memory at program 

termination, and this ensures the high performance of getVertex(). 

 

Figure 5.1. 3000 vertices graph getVertex() performance comparison. 

 

 

Figure 5.2. 5000 vertices graph getVertex() performance comparison. 

 

As for addVertex() operation, the performance comparison results are shown in Figure 

5.3 and 5.4. We can see that when using a single computing node, Hazelcast performs 

addVertex() quicker than DSG. However, when using 4 computing nodes, the execution time 



 

significantly dropped for DSG and it becomes quicker than Hazelcast. This result can also be 

explained by the fault tolerance mechanism of Hazelcast. When there’s only one computing 

node, Hazelcast does not create backup data. On the other hand, if multiple computing nodes are 

used, each insertion creates replicas of the entry and stored in different computing nodes, and 

this introduces extra overhead. 

 

Figure 5.3. 3000 vertices graph addVertex() performance comparison. 

 

 

Figure 5.4. 5000 vertices graph addVertex() performance comparison. 

 



 

 Overall, as a distributed in-memory shared graph storage system, DSG performs the basic 

put and get operations faster than Hazelcast in multi-node scenario. We also introduced other graph 

queries in both DSG and Hazelcast implementation. The graph queries include getting neighbors 

of a vertex, getting parents of a vertex, getting grandparents of a vertex, getting vertex with 

minimum number of edges and getting highest degree vertex. The detailed performance 

comparison can be found in Appendix A Table 1, and from the data we can conclude that in general 

DSG performs better than Hazelcast in executing graph queries. 

5.3 GRAPH APPLICATION PROGRAMMING COMPARISON 

In this section we compare MASS GraphPlaces with Hazelcast by running the Triangle Counting 

application. We compare the performance from graph construction time and application execution 

time, and also compare the programmability of MASS GraphPlaces with Hazelcast. 

5.3.1 Triangle Counting Algorithm 

Given an undirected graph 𝐺 = (𝑉, 𝐸), the triangle counting problem asks for the number of 

triangles in this graph. MASS GraphPlaces used the agent-based mechanism to solve this problem 

as previously discussed in section 4.2.2. On the other hand, since Hazelcast does not support agent-

based computing, we implement the Triangle Counting application with the algorithm shown in 

Listing 5.1. The idea is similar to an agent traversing a triangle path in a graph, but in Hazelcast 

we can only calculate using the graph data. For each vertex, we mark it as the start point and iterate 

through its neighbor list. Then for each neighbor vertex, we iterate through its neighbor list again 

and try to find out neighbors that adjacent to the start point. Since we are using an undirected graph, 

each unique triangle will be counted 6 times, so we need to divide the result by 6 to get the number 

of unique triangles in the graph. 



 

Listing 5.1. Triangle Counting algorithm used by Hazelcast implementation. 

 

5.3.2 Benchmark Settings 

For our experiment, we used the same graphs for MASS GraphPlaces and Hazelcast. The detailed 

graph data can be found in Table 5.2. During our experiments, we used from 1 computing node up 

to 8 computing nodes, and we also verified that the programs provide the correct result. All the 

timing data is in milliseconds and represents the average time of three runs. 

 

Table 5.2. Graph data used for Triangle Counting application. 

Number of Vertices Number of Edges Number of Triangles 

1000 93480 165138 

3000 293804 192146 

10000 989990 200053 

 

5.3.3 Performance Comparison 

Before running the application, MASS and Hazelcast both need to load the graph into the 

distributed cache, and we call this step graph construction. Figure 5.5, 5.6, and 5.7 shows the graph 

construction performance comparison between MASS and Hazelcast. From the figures we can see 

that no matter what size the graph is and how many computing nodes are used, MASS performs 

better than Hazelcast. This is because that the new MASS GraphPlaces directly adopts the structure 

1.         numTriangles = 0 
2.         for v = 1 … n do 
3.                 for each neighbor u of v do 
4.                         for each neighbor w of u do 
5.                                 if vw forms an edge then 
6.                                         numTriangles = numTriangles + 1 
7.         return numTriangles / 6. 



 

of DSG and as a result the addVertex() method is of high-performance. While MASS and 

Hazelcast both use addVertex() function to construct a graph, MASS performs better because the 

addVertex() function performs quicker. 

 

Figure 5.5. 1000 vertices graph construction performance comparison. 

 

 

Figure 5.6. 3000 vertices graph construction performance comparison. 

 



 

 

Figure 5.7. 10000 vertices graph construction performance comparison. 

 

When it comes to the execution of Triangle Counting, from Figure 5.8, 5.9 and 5.10 we 

can see that MASS is nearly twice as fast as Hazelcast when we are using multiple computing 

nodes. For single node execution, MASS has similar performance to Hazelcast. The problem is 

that MASS spawns too many agents which takes up more memory space than Hazelcast. This can 

be proved by the fact that MASS run out of memory when using a single node to execute Triangle 

Counting on the size 10000 graph. However, from the data we can also see that the performance 

of MASS improved greatly when adding more computing nodes, while the parallel performance 

of Hazelcast is not linear. This can be explained by the difference in system design between MASS 

GraphPlaces and Hazelcast. While GraphPlaces used shared memory for backup to ensure the high 

performance during computation, Hazelcast focuses more on the availability of data so as a result 

the overall parallel performance is sacrificed. 



 

 

Figure 5.8. 1000 vertices Triangle Counting performance comparison. 

 

 

Figure 5.9. 3000 vertices Triangle Counting performance comparison. 

 



 

 

Figure 5.10. 10000 vertices Triangle Counting performance comparison. 

 

5.3.4 Programmability Analysis 

We also performed a quantitative programmability analysis of the two Triangle Counting 

applications implemented using different frameworks. As detailed in Table 5.3, the Lines of Code 

(LoC) and lines of boilerplate code in Hazelcast is higher than MASS, because of the need for 

code defining the graph related operations. This introduces a bigger percentage of boilerplate code 

in the Hazelcast Implementation. On the other hand, the cyclomatic complexity of MASS is larger 

than Hazelcast. This is because that in MASS applications users need to make decisions on the 

appropriate agent migration methods as well as other graph related built-in functions. 

 

Table 5.3. Quantitative programmability analysis 

 LoC Boilerplate Code Boilerplate Percentage Cyclomatic Complexity 

MASS 175 13 7.43% 3.875 

Hazelcast 372 49 13.17% 2.8 

 



 

Chapter 6. CONCLUSION 

This chapter concludes the whole paper by summarizing the contents and give future directions. 

6.1 SUMMARY 

This project is motivated by the limitation of data streaming frameworks and the popularity of 

graph databases. After carefully examining existing systems, we addressed the challenges of 

existing distributed cache frameworks and proposed a multi-user distributed shared graph 

implementation. We built the new MASS GraphPlaces based on our implementation and achieved 

our goal of enabling multiple users to share a same graph. This project also compares the 

performance and programmability of the new MASS GraphPlaces with Hazelcast by running 

various graph queries and the Triangle Counting application with up to 20 computing nodes. 

The execution results of the graph queries demonstrate the high-performance of our 

proposed distributed in-memory shared graph storage system. Our designed data structure is also 

suitable for agents to migrate. We compared the new MASS GraphPlaces with Hazelcast by 

running the Triangle Counting application, and we came into the conclusion that the revised MASS 

GraphPlaces has good programmability and performance when programming graph applications. 

Furthermore, the results also show the significant CPU-scalability of MASS as a parallel 

programming framework. 

6.2 LIMITATIONS & FUTURE WORK 

This project also has some limitations. First, from the execution performance we can see that if 

only one computing node is used to run applications built in MASS GraphPlaces, then the good 

performance is not guaranteed. Second, although the current hash function used to determine the 



 

distribution of vertices can distribute the graph evenly, it does not take the vertex locality into 

consideration. This may introduce extra communication between processes when executing graph 

applications using multiple computing nodes. Lastly, if a graph is too big and as a result too many 

agents are spawned during the simulation, our program may run out of memory. 

Based on the above limitations, we propose the followings for future work: 

1. Further improve the performance of GraphPlaces by implementing a better hash function to 

distribute the vertices of a graph. We need to consider the edges between the vertices to address 

locality.  

2. Currently only GraphPlaces can be shared by multiple users, but GraphPlaces actually extends 

from Places. Future work should be done to enable the shared feature in the base Places class. 

Since currently MASS Places is a distributed array, it can be changed to a distributed Vector, 

and any changes on this Vector needs to be shared among multiple users. Then the next step is 

to rework on GraphPlaces to delete the original Vector<VertexPlace> and store data in the new 

Vector<Place>. 

3. More graph applications should be developed to further test the performance of MASS 

GraphPlaces. Since currently we only have Triangle Counting programmed in both MASS and 

Hazelcast, we can only use it for benchmark. Further work needs to be done to develop more 

graph applications using MASS and Hazelcast to make a comprehensive comparison.  

4. After optimizing GraphPlaces and Places, more work needs to be done to optimize agents in 

MASS. Since agents are the computational units in agent-based modeling libraries, the 

performance of agents largely affects the performance of MASS.  
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APPENDIX A 

Table 1. Extra graph queries performance comparison. 

Avg Time (milliseconds) # Computing Nodes DSG Hazelcast 

Get Neighbors 1 0.02 0.23 

 4 1.03 0.94 

 8 0.71 1.09 

Get Parents 1 9.83 31.53 

 4 6.39 29.65 

 8 5.48 16.41 

Get GrandParents 1 78.2 118.14 

 4 28.49 101.73 

 8 19.15 57.71 

Get Min Edges 1 2.84 24.9 

 4 2.03 22.96 

 8 1.82 11.01 

Get Highest Degree 1 5.7 54.05 

 4 3.88 49.47 

 8 3.42 24.6 

 

 

 

 

 



 

APPENDIX B 

DSG is located in the mass_java_core repository under the branch “chrisma/develop”. There is a 

README file that provides instructions on how to compile and run the code. 

 

The new MASS GraphPlaces is located in the mass_java_core repository under the branch 

“chris/newGraphPlaces”. The new version is fully compatible with previous versions so all 

previous built applications should work with the new version. 

To use the shared feature, since the new MASS detects multiple users by the username specified 

in the file “nodes.xml”, the username attribute needs to be added for all nodes including the master 

node. Listing 1 shows an example. Different users who want to share the same GraphPlaces need 

to have the “same” nodes.xml file. This means they need to start their programs from the same 

master node and use the same worker computing nodes. For example, User A and User B should 

all start their program on cssmpi1h with cssmpi2h-12h being remote nodes. 

Listing 1. Example nodes.xml. 

One should create a GraphPlaces object by specifying a shared place name using the constructor: 

public GraphPlaces(int handle, String className, String sharedPlaceName); 

 

<nodes> 
 <node> 
  <master>true</master> 
  <hostname>cssmpi1h.uwb.edu</hostname> 
 <masshome>/home/NETID/yuanma/mass_java_appl/Graphs/TriangleCounting/
</masshome> 
  <username>yuanma</username> 
  <port>33333</port> 
 </node> 
 <node> 
  <hostname>cssmpi2h.uwb.edu</hostname> 
 <masshome>/home/NETID/yuanma/mass_java_appl/Graphs/TriangleCounting/
</masshome> 
  <username>yuanma</username> 
  <privatekey>~/.ssh/id_rsa</privatekey> 
  <port>33333</port> 
 </node> 
</nodes> 



 

It should also be noted that all users need to specify the same sharedPlaceName to share the same 

GraphPlaces. After that, all modifications on the graph (e.g. add/remove vertices/edges) will be 

shared among multiple users. 


