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The Multi-Agent Spatial Simulation (MASS) library is a library that implements

an agent-based programming paradigm in Java, C++, and CUDA. This library has

been used to great effect in the parallelization of a variety of simulations and data

analysis programs. Building on this foundation, the Agent-Based Data Science and

Machine Learning project is an exploration into the advantages of using MASS

Java to parallelize computationally complex clustering, classification, and graph

algorithms.

This project presents the algorithm designs for agent-based versions of K Means

Clustering, K Nearest Neighbor Classification, Triangle Counting in Graphs, and

the Traveling Salesman Problem. In addition to the designs of the algorithms, we

present an analysis of programmability and performance comparing MASS Java to

the widely used MapReduce and Spark paradigms. We also explore the contribu-

tions of previous graduate researchers and position the project as a launching point

for expanding the use-cases for MASS.
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1 Introduction

The Agent-Based Data Science and Machine Learning project aims to prove the hypoth-

esis that agent-based parallelism can be used to improve the performance and ease the

programmability of some complex data science and machine learning applications.

1.1 Motivation

The motivation for this project lies in the spatial nature of machine learning algorithms.

Descriptions of these algorithms often involve operations on objects in a plane or other

space. This spatial quality is often lost when the concepts are implemented in code.

Additionally, many of the algorithms involved in machine learning are complex and often

require parallel programming to run efficiently. The Multi-Agent Spatial Simulation

(MASS) library offers an ability to work with spatial representations of data in a parallel

format. These qualities make an intriguing case for research into the possible benefits of

using MASS for machine learning tasks.

1.2 Goals

Throughout its progression, the Agent-Based Data Science and Machine Learning project

has had three main goals:

1. Design Agent-based Algorithms: The primary goal at the outset of the project

was to design agent-based algorithms for K Means Clustering and K Nearest Neigh-

bor Classification.

2. Performance Analysis: The secondary goal was to measure the performance

of the K Means Clustering and K Nearest Neighbor algorithms compared to their

sequential counterparts. If it was possible, these algorithms would be tested against

MapReduce and Spark, two competitor paradigms.

3. Programmability Analysis: Examine the programmability of the two algorithms

compared to other MapReduce and Spark.
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All three of these goals were met and exceeded. The final version of the project saw

the design and implementation of four algorithms K Means, KNN, Triangle Counting,

and Traveling Salesman. Additionally, performance and programmability was compared

between MASS, MapReduce, and Spark. A potential fourth goal would be to test the

accuracy of the machine learning algorithms to see if the models created by MASS were

more accurate than those from MapReduce and Spark. However, this was not considered

a goal for the project since the approaches used to design the algorithms were already

deemed accurate in other research [1, 2, 3]. This is covered more in Section 6.1.

MapReduce and Spark were chosen for this project over other available frameworks

due to their use in industry and the variety of applications that can be created with

each [4, 5, 6]. Another framework we could have used for this project is Apache Storm [7].

However, due to this framework’s strict adherence to the data streaming paradigm, it

would not have made a good comparison in either algorithm design or performance.

1.3 Audience

This project is aimed towards researchers in data intensive scientific fields who are cur-

rently attempting to process a lot of data on a single machine with either a program they

wrote or statistical software and who have an intermediate knowledge of computer sci-

ence. It is the goal of this project to enable researchers to access more computing power

without having to go through an entire computer science degree or spending valuable

grant money on hiring a software engineer.

Additionally, this project is meant for future researchers at UW Bothell to expand the

existing catalog of work on MASS. It has led to a successful publication at the Practical

Applications of Agents and Multi-Agent Systems (PAAMS) 2018 Demonstration and will

contribute to more publishable works in the near future [8]. It is a goal to be able to use

MASS and its features to help students and professors in other areas of the university.

This paper will present an overview of background information in Section 2, im-

plementations of algorithms in Section 3, programmability and performance analysis in

Sections 4 and 5, and conclusions in Section 6.
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2 Background

This section will provide background information on the three parallelization techniques

covered in the paper as well as the concept of biological optimizations.

2.1 MASS

The MASS library, which we have developed at University of Washington Bothell, pro-

vides the efficiency of agent-based parallelization while abstracting the parallel environ-

ment for the agent-based model [9]. It provides a middle layer that only requires the

user to contribute code relevant to their project without having to manage the details of

parallelization.

MASS is made up of two different component objects: Agents and Places. Agents

are serializable, migratable objects that are mapped to processes. Places, on the other

hand, are objects that are represented by an N-dimensional matrix which are mapped to

threads.

A unique feature of MASS is the customizability of the behavior of its components. A

frequently referenced concept in this paper is the concept of static agents versus dynamic

agents. Static agents perform computations and store information, but do not create

more agents or migrate. In contrast, dynamic agents can migrate from place to place

and can spawn children from themselves to increase the agent population. MASS also

allows the user to customize the behavior of places by setting which other places a place

can communicate to as well as the amount of agents it can have and the type of data

it holds. Currently, places can communicate with each other in either Von Neumann or

Moore neighborhood format [9]. They can also communicate with any agents currently

residing on them. This high level of customization allows for MASS to address problems

in a variety of formats.
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2.2 MapReduce

MapReduce is a framework for operating on distributed files stored in a cluster running

the Hadoop File System (HDFS). Like MASS, it provides a middleware that abstracts

the parallelism allowing developers to work on task-specific code [6]. The MapReduce

paradigm consists of three components.

1. Mapper: The component responsible for parsing and manipulating data from the

file.

2. Reducer This component takes the output from the Mapper component and com-

bines it into a new format to be written to HDFS.

3. Job: The component that executes the parallel code. It sets up file paths, global

variables, and file formatting which allow the Mapper and Reducer objects to per-

form functions on the cluster. Paths and global variables can be referenced by

Context objects which are passed to Mappers and Reducers behind the scenes.

Execution of a MapReduce program can be broken down into three stages [6]:

1. Map is the stage where a mapper object is created for each line in a file.

2. Shuffle is the stage where the output from the Map stage is organized by key before

it is passed to the Reducer objects. This stage is hidden from the user.

3. Reduce is the stage where a reducer object is created for each unique key from the

shuffle stage. This stage will feed its output to a results file known as a part file.

While this paradigm has its advantages and does make programming easier for the

user, it is very restrictive. In many situations, like the ones in section 3, the desired

algorithm requires the chaining of many jobs together or the creation of objects known

as identity mappers and identity reducers that do not perform any manipulation of the

data except to pass it on to the reduce step or the next job. There are library options

available to help manage job chaining in the form of counters and status indicators [6].

Examples of both of these concepts can be found in section 3.
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2.3 Spark

Spark is an open source project designed to provide a program structure that is compatible

with a wide variety of data sources [5]. The Spark Core code is written in Scala which is

a hybrid of purely functional and purely object oriented languages. In addition to being

available in Scala, Spark and most of its modules are available in Java, Python, and R

and it is compatible with HDFS, Amazon S3, and SQL Databases [5]. This project uses

Spark Java to maintain comparability with MASS Java and MapReduce.

Spark differs from MapReduce and MASS by its use of immutable data [5]. The

building block of Spark is the Resilient Distributed Data structure (RDD). Under the

hood, Spark builds a directed acyclic graph (DAG) to represent program flow. Figure 1

shows a graphical representation of the DAG.

Figure 1: DAG visualization

The DAG is made up of nodes called stages that represent an RDD. Each stage outlines

the execution of transformations and actions to alter the data in the RDD [5]. Spark

operates on the principle of lazy evaluation meaning that a function does not execute until

its data is requested from another function [5]. Following the lazy evaluation principle,

the DAG in Figure 1 would be executed in the order of: stage 3, stage 2, stage 1.

When stage 3 is executed, it calls for information that was processed in stage 2 which

results in the execution of stage 2. This process is repeated from stage 2 to stage 1 as
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well. Spark adds an additional requirement that states that a transformation will only

be performed if an action is called upon it. This can be seen in Figure 1 by following the

arrow through stage 1.

In stage 1, groupByKey is an action function that in turn calls mapValues which is

a transformation. The mapValues transformation needs to know how to map its values

which leads to the call of flatMap. The function flatMap is a higher order function or

lambda expression that dictates the transformation of the data.

This order of execution provides a benefit to the Spark architecture that is not repli-

cated in the other frameworks. When Spark is processing data it only needs to store

what it needs for each stage to complete which reduces the memory used by its processes.

This is referred to as data streaming where data is processed as a stream of information

rather than a block of memory [5].

Another benefit of the DAG is the improved handling of fault tolerance. In the

event that a stage experiences failure, the program retrieves data from the previous stage

and restarts its calculation. This is handled internally by Spark itself in contrast with

MapReduce and MASS where failures are handled by the user [6, 9, 5].

2.4 Biological Optimizations

Biological optimizations are optimizations that use the behavior of animals in the wild to

improve the speed and accuracy of complex problems [10, 11, 12]. These optimizations

were a necessary area of exploration for this project due to the ease at which the individ-

uals in the population can be translated to an agent-based format as well as the backlog

of previous work simulating different biological principles with MASS [13, 14, 15].

While each optimization is different, they all can be characterized by two steps: Ex-

ploration and Exploitation. These steps are [10]:

1. Exploration: The process where agents navigate the data to find a satisfactory

target.

2. Exploitation: The process where agents use the condition they have found to
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attract others to their position.

While there are many biological heuristics that can be used to optimize algorithms,

this research explored the Particle Swarm Optimization(PSO) and Ant Colony Optimiza-

tion (ACO) algorithms [2, 12, 3].

PSO was explored with the hope of using its principles to design a K Means clustering

algorithm [2]. When applied to clustering, PSO first generates sets of clusters for a data

set equal to the number of members in the swarm. Each member of the swarm determines

the most optimal cetroids and communicates the optimal centroids to other members of

the swarm. This allows for an optimal solution to be found quicker than computing and

analyzing one solution at a time as in traditional K Means [2]. Figure 2 shows a high

level depiction of this algorithm.

Figure 2: Image representation of the Particle Swarm Optimization algorithm

ACO was explored in part through the parallel implementation of a sequential Trav-

eling Salesman Problem (TSP) optimization [3]. ACO enhances TSP by having each ant

visit a node and deposit pheremones. Other ants, in turn, will determine the node that

they will visit next based on the amount of pheremones deposited on each node. This

algorithm will result in all ants eventually traveling the path with the heaviest deposit of

pheremones which in turn is the most optimal path available [3].
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3 Algorithms

The following section will cover implementations of K Means Clustering, K Nearest Neigh-

bor Classification, Triangle Counting in Graphs, and the ACO optimized TSP using each

parallel method described in Section 2. Each subsection will describe the implementa-

tions along with their advantages and disadvantages. Section 4 will discuss quantitative

and qualitative analyses of the algorithms in further depth.

The algorithms for K Means, K Nearest Neighbor, and Triangle Counting for Spark

and MapReduce have been derived from and checked for correctness against Mahmoud

Parisian’s work in [4]. Additionally, information about the implementation of counters for

the K Means MapReduce program was gleaned from Thomas Jungblut’s programming

blog [16].

3.1 K Means Clustering

3.1.1 MASS Implementation

The K Means algorithm in MASS uses static agents paired with places to run the K

Means algorithm many times over a dataset in parallel. This mimics the exploration

phase of the PSO clustering method covered in Section 2.4.

The code for the algorithm is divided into three distinct Java classes:

1. Storage: The storage components primarily serve to store and pass information

on the data points to the static agents that perform the calculations.

2. Tool: Tools are the static agent constructs that perform the calculations involved

with the K Means algorithm.

3. Centroid: This object is a wrapper consisting of a vector of centroids for the data

and a map of data points to each centroid.

Clustering is performed following the traditional K Means algorithm with two meth-

ods. These methods are summarized with their parameters below.
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1. kmeans: This method checks the euclidean distance of each data point with k

amount of centroids and assigns the data point to the closest centroid.

2. collect: This method presents clusters to the user based on a definition of a desired

perfect clustering.

The code in Listing 1 represents the critical section of the main function of the al-

gorithm. The main point of interest is line 7. At this line the clustering is performed

using the kmeans function. doAll() is a wrapper function that repeatedly calls the func-

tion callAll() for a set number of iterations. This number of iterations is decided by the

user and assigned to the nIter variable. The benefit of using doAll() over callAll() is

that callAll() must be called from the main program, meaning that each iteration using

callAll() would have to defer back to the main program before executing again. This

deferrence requires a barrier synchronization of all the nodes in the cluster which takes

additional time.

1 MASS. i n i t ( ) ;

2 Places s t o rage = new Places (100 , Storage . class . getName ( ) ,

3 dataPoints , s izeX , s izeY ) ;

4 Agents t o o l s = new Agents (100 , Tool . class . getName ( ) ,

5 null , s torage , nAgents ) ;

6 t o o l s . c a l l A l l ( Tool . i n i t ) ;

7 t o o l s . doAll ( Tool . kmeans , n I t e r ) ;

8 Object [ ] f i n a l R e s = ( Object [ ] ) t o o l s . c a l l A l l ( Tool . c o l l e c t ,

9 new Object [ t o o l s . nAgents ( ) ] ) ;

10 MASS. f i n i s h ( ) ;

Listing 1: Critical Section of the K Means MASS program

There are both advantages and disadvantages to this implementation. The advantage

of implementing K Means in this way is the reduction of time spent on multiple runs of

the algorithm. Since how a cluster set is produced is dependent on where the centroids

for the clusters are picked, the algorithm is often run more than once [4]. MASS allows

for numerous runs of the data to be processed in parallel over multiple nodes which is an
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advantage over other implementations. With the addition of doAll(), the advantage of

this implementation is multiplied since the agents can run their algorithm without barrier

synchronization [17].

The disadvantage of this algorithm is that the data being clustered must be small

since each place and agent must have a copy of the full dataset. A massive set of data

would likely crash this algorithm. The remedy for this is to use dynamic agents allowing

data to be partitioned among places as in the other MASS implementations described in

Section 3. However, due to limitations in the migration capabilities of MASS, this is not

yet possible to do [18].

3.1.2 MapReduce Implementation

The MapReduce implementation of K Means uses several advanced constructs from the

library. While there is only one job, the algorithm must run it multiple times. On each

iteration, the job is reinitialized, opens the file containing the current data points with

their centroids, operates on it, and closes the file. The reducer step is responsible for

checking each centroid to see if it has changed between iterations. If there is a change,

a counter stored in the Hadoop configuration is incremented. The algorithm ends when

the counter is zero. The main execution loop is shown in Listing 2.

1 while ( update > 0){

2 conf = new Conf igurat ion ( ) ;

3

4 conf . s e t ( ” c en t r o id . path” , c e n t r o i d s . t oS t r i ng ( ) ) ;

5 conf . s e t ( ” c y c l e s ” , i t e r + ”” ) ;

6

7 job = Job . g e t In s tance ( conf ) ;

8 job . setJobName ( ”KMeans C lu s t e r ing ” + i t e r ) ;

9 job . setJarByClass (KMeans . class ) ;

10 job . setMapperClass (KMeansMap . class ) ;

11 job . setReducerClass ( KMeansReduce . class ) ;

12

10



13 in = new Path ( ” f i l e s / c l u s t e r i n g / depth ” + ( i t e r − 1) + ”/” ) ;

14 out = new Path ( ” f i l e s / c l u s t e r i n g / depth ” + i t e r + ”/” ) ;

15

16 FileInputFormat . addInputPath ( job , in ) ;

17

18 c h e c k F i l e E x i s t s ( f s , out ) ;

19 FileOutputFormat . setOutputPath ( job , out ) ;

20 job . setInputFormatClass ( SequenceFileInputFormat . class ) ;

21 job . setOutputFormatClass ( SequenceFileOutputFormat . class ) ;

22 job . setOutputKeyClass ( CenterVector . class ) ;

23 job . setOutputValueClass ( PointVector . class ) ;

24 job . waitForCompletion ( true ) ;

25 i t e r ++;

26 update = job . getCounters ( ) ;

27 f indCounter ( KMeansReduce . Counter .UPDATED) . getValue ( ) ;

28 }

Listing 2: Critical Section of K Means MapReduce

This algorithm has an advantage over the previously described MASS implementation.

Each point in the dataset is represented by a map object meaning that the majority

of data being processed in the algorithm will be partitioned amongst the nodes in the

cluster. MapReduce’s underlying parallel code ensures that map objects will be efficiently

distributed. The centroids of the clusters are kept in a separate file in HDFS, but are

small in number. Therefore, this is not as taxing on the map objects as containing the

dataset might be on the places in MASS.

There are two major disadvantages to running K Means on MapReduce. The first

disadvantage is that a new job must be instantiated for every iteration. This means

that files must be read from, written to, and deleted along with a reinitialization of the

job itself which as is shown in Listing 2 is not only taxing to the programmer to write,

but involves creation of new objects or accesses to underlying class variables. While the

programmer may be able to use copy and paste to allieviate the pressure from this, HDFS
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must create objects fresh which takes up computation time and slows the program down.

The second disadvantage is that the algorithm only generates one cluster set. As noted

in the previous section, K Means is normally executed many times in order to find an

optimal clustering. Rather than providing a convenient way to do this programmatically,

MapReduce involves using an outside script to coordinate multiple runs of the algorithm.

3.1.3 Spark Implementation

The Spark implementation of K Means involves the use of the built in Spark machine

learning library mllib [19]. The library implementation provides different options to the

user for both the distance measurement and the centroid initialization.

Mllib offers both manhattan and euclidean distance for the measure between data

points and centroids and allows users to initialize centroids at random or pick them using

a method called kmeans parallel which is a parallel version of the kmeans++ method [20,

19]. Once the distance measure and centroid initialization have been set, the algorithm

performs traditional K Means clustering that ends once the centroids have converged.

Listing 3 shows the main function of the Spark K Means program.

1 public stat ic void main ( St r ing [ ] a rgs ){

2 St r ing i n p u t F i l e = args [ 0 ] ;

3 int k = I n t e g e r . pa r s e In t ( args [ 1 ] ) ;

4 int i t e r a t i o n s = I n t e g e r . pa r s e In t ( args [ 2 ] ) ;

5 int runs = args . l ength >= 4? I n t e g e r . pa r s e In t ( args [ 3 ] ) : 1 ;

6 SparkConf conf = new SparkConf ( ) . setAppName ( ”KMeans” ) ;

7 JavaSparkContext context = new JavaSparkContext ( conf ) ;

8 JavaRDD<Str ing> l i n e s = context . t e x t F i l e ( i n p u t F i l e ) ;

9 JavaRDD<Vector> po in t s = l i n e s .map(new ParsePoint ( ) ) ;

10 KMeansModel model = KMeans . t r a i n ( po in t s . rdd ( ) , k ,

11 i t e r a t i o n s , runs , KMeans .RANDOM( ) ) ;

12 context . c l o s e ( ) ;

13 }

Listing 3: Main function of Spark K Means
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A unique feature of the Spark built-in function is the run parameter. This parameter

allows the user to run the K Means algorithm more than once [4]. If the user elects

to provide a value to run, the underlying library repeats the K Means function for the

specified value and returns the best set of clusters for the data. This functionality is

important because it mimics both the MASS implementation described in Section 3.1.1

and in the implementation of PSO described in Section 2.4 [2]. Unlike MASS, the runs in

Spark are not all performed simultaneously. Instead they are performed in groups based

on the division of tasks by the underlying task implementation in Spark. It is hard to

predict whether the runs are executed in a dynamic or static fashion. However, it seems

practical to use dynamic execution since the algorithm is not reliant on steps assigned to

other threads to complete its run.

Additionally, mllib stores its information about the K Means algorithms in a KMeans-

Model class which stores the centroids and memberships as well as additional functions

that compute the cost and other information pertaining to the algorithm.

3.2 K Nearest Neighbor

3.2.1 MASS Implementation

The agent-based K Nearest Neighbor (KNN) program classifies unlabeled data points

based on the k number of labeled neighboring data points to its position. MASS uses

dynamic agents combined with the water strider heuristic to perform a parallel version

of the KNN algorithm.

Figure 3: Image representation of the agent-based K Nearest Neighbor algorithm
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The KNN algorithm works by placing an agent containing an unlabeled data point

at a position in the places grid. Each place contains one or two labeled data points with

each data point grouped by label. At intervals of T, the agent spawns children on places

near it which then deliver the label attached at their place by migrating back to the

origin. As each T increases, the amount of places considered increases. In figure 3 the

desired k number of neighbors is seven. T stops increasing once seven neighbors have

been captured by the ripple. The agent in question in Figure 3 would be classified as

belonging to the orange cluster since its children reported five of seven neighbors to be

orange.

In the KNN program, places are referred to as space and the agents as reporters. After

the space array is created it reads data from a file and disseminates it to the other places

at line 1. Line 2 is the main loop that repeats until all places have been touched by an

agent. Inside this loop, the detect() and propogate() methods disseminate and respond

to the ripple. At line 6, the reporter agents spawn children on the space that has been

touched by the ripple. Each child is created as a new instance of an agent class creating

additional performance overhead. Line 10 exits the loop once enough reporters have been

created to satisfy the given k number of neighbors.

1 space . c a l l A l l ( Space . i n i t ) ;

2 for ( int i = 0 ; i < p l a c e s i z e ; i++ ) {

3 space . c a l l A l l ( Space . d e t e c t ) ;

4 space . c a l l A l l ( Space . propagate ) ;

5 space . exchangeBoundary ( ) ;

6 r e p o r t e r s . c a l l A l l ( Reporter . spawnChild ) ;

7 r e p o r t e r s . manageAll ( ) ;

8 i f ( r e p o r t e r s . nAgents ( ) >=

9 k + p l a c e s i z e * p l a c e s i z e )

10 break ;

11 }

Listing 4: Critical Section of the agent-based K Nearest Neighbor Program
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This algorithm works well for small queries of data as each point must be entered by

the user however, it is not ideal for large quantities of data. Classifying whole sets of

unlabeled data is far more common than a manual request for classification.

Originally, the algorithm attempted to classify large amounts of data. This implemen-

tation was impractical due to the overhead incurred when using dynamic agents. When

MASS agents create children they create brand new agents and initialize them with new

values. Depending on the algorithm, this could mean making a copy of an agent that

takes up a lot of room in memory. In the case of KNN, not only are agents spawning

new children, they are also determining whether they need to be removed or not due to

being in a previous ripple and no longer being needed. Initial performance results for

this algorithm against a sequential program yielded a performance reduction. Therefore,

until agent overhead is examined in depth, this algorithm will be limited to user input.

3.2.2 MapReduce Implementation

KNN in MapReduce consists of one map task and one reduce task. Firstly, the map task

reads in a training file from memory and stores it into a data structure during the setup

phase. The map function takes each point from a testing file and compares it to different

points in the training set using the euclidean distance formula. Once each test point has

been grouped with all close training points, the reducer narrows down the list of training

points to the k nearest points and uses the majority vote to give the test data its label.

This algorithm is advantagous because it can classify a truly large set of data as the

unlabeled data can be stored on HDFS. However, this algorithm suffers from the same

drawback as the MASS K Means algorithm in Section 3.1.1. The training set is read into

each map object and stored entirely within it. This means that the training set has to be

limited in size which in turn may cause problems with the accuracy of the classification

in a situation where the unlabeled data is larger than the training data.
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3.2.3 Spark Implementation

KNN in Spark is similar to the MapReduce implementation with one key difference. The

difference is the grouping of training and testing data based on the cartesian product.

The cartesian product is necessary in Spark since both the training and test data are

represented by RDDs. This representation means that we need a way to combine two

RDDs into one and also group items from one RDD to the other RDD. The cartesian()

function takes an RDD as a parameter and returns a key value pair of items from the

calling RDD paired with items from the parameter RDD. These pairs are then operated

on in a map function that computes the distance between each testing item and its

associated training item and stores possible classifications and shortest distances as values

along with the training key. The resulting RDD is operated on using a groupByKey()

reduction followed by a map that acts as a reducer where each test data is classified based

on a majority vote of all the training data that is closest to it. The resulting RDD is

then saved to a text file.

This implementation is very beneficial when it comes to practical classification prob-

lems. Since both unlabeled and labeled data are stored in RDDs the only limit on data

size is the number of nodes in the cluster. Additionally, storing both in RDDs ensures

that the code that is abstracted away from the user properly partitions both datasets

for optimal processing power. The drawback to this implementation is that all the data

must be numerical as with many implementations of machine learning algorithms [19].

This means that the user will likely spend more time preprocessing their data to fit the

confines of the algorithm.

3.3 Triangle Counting

3.3.1 MASS Implementation

The MASS implementation of Triangle Counting uses places to represent the nodes in

the undirected graph and agents as travelers along the graph. Each agent travels along

the graph migrating to a node with a lower ID than the one it is currently on. Agents
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spawn children when they encounter a node with multiple edges. Agents check if an array

of visited nodes on every third move. If the agent has returned to the same node after

three moves, it has found a triangle.

The advantage of this implementation is that it removes the need to account for

duplicate triangles. However, as in Section 3.2.1, the agent migration creates additional

overhead to consider. This is a small price to pay for the elimination of a whole step in

the algorithm. However, the drawback is in the building of the graph structure. This is

done by generating the graph in memory, by reading a file sequentially into the master

node and distributing it among the places, or by using MASS Parallel File I/O. These

approaches are slower than their MapReduce and Spark counterparts.

3.3.2 MapReduce Implementation

The implementation in MapReduce is split amongst three jobs [4]. The first job reads

a graph in from a text file and outputs each connection in the graph. This output is

different from the original input as it outputs a destination to source connection for each

source to destination connection in the original file. Based on the mapper output, the

reducer outputs two values. The first is a pair of nodes with no connecting node. This

occurs in paths between nodes that do not have a node in common. These paths are

output with a zero signifying there is no connecting node. The second value output is the

nodes that share a path that includes a common node. These values become the possible

triangles in the second job.

The second job takes the output file from the first job and finds all potential triangles

in the graph. The map object in this class is an identity mapper. Identity mappers

are objects that pass their input data into the reduce object without any modification.

Listing 5 shows the detail of this job’s identity mapper. The reducer takes the information

from the mapper and filters out of the zeroes from the previous step’s reducer leaving

only the nodes that share a connecting node. The connecting nodes are output along

with the pair of nodes they connect.

1 public class TriangleMap
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2 extends Mapper<EdgePair , IntWritable , EdgePair , IntWritable>{

3 @Override

4 public void map( EdgePair pair , IntWritab le connector , Context context )

5 throws IOException , Inter ruptedExcept ion {

6 context . wr i t e ( pair , connector ) ;

7 }

8}

Listing 5: Identity Mapper

The third stage takes the triangles output from the previous reducer and sorts them.

Each sorted triangle is output as a key to the reducer step. Since the keys in a reducer

are unique the final stage in the algorithm is an identity reducer meaning that the input

from the mapper is passed directly through to output with no additional processing.

There are two problems with this implementation. The first is the use of identity

mappers and reducers. It must be noted that while the code shown in Listing 5 is

visually short, the programmer is overriding only one of several methods that are called

by the mapper which in turn have several variables and routines associated with them.

This can mean an unecessary consumption of memory and time.

Logically, the algorithm should be able to skip this step seeing as the mapper only

funnels information to the reducer in the next step. However, the paradigm does not

work this way. A reducer cannot exist without the phases before it being completed.

This means that due to the paradigm, additional code has to be written that does very

little for the progress of the overall algorithm.

The second problem with the implementation comes from the formatting of the file.

The structure of the file for both MapReduce and Spark required every pair of nodes to

be on a separate line resulting in the structure shown in Listing 6 [4].This can lead to very

large files which can greatly slow performance. This issue is covered more in Section 5.3.

1 1 2

2 2 3

3 2 4
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4 2 5

5 3 4

6 4 5

Listing 6: File structure

3.3.3 Spark Implementation

The Spark implementation of Triangle Counting mimics the one in 3.3.2 however, instead

of chaining jobs together, Spark uses RDDs to represent each step [4].

The key difference from 3.3.2 is the final step of the program. This step, shown in

Listing 7, is worth highlighting due to the fact that it determines which of the possible

triangles are actually triangles and removes duplicates in on step. The highlight of this

code is line 37. The distinct() function is a form of filter that is applied to the RDD. As

the name implies, it removes duplicates of data found in the RDD. In Section 3.3.2, it

was shown that MapReduce required an entire job to perform this function and that job

contained an identity reducer. Additionally, the implementation in Section 3.3.1 required

that the agent check its itinerary of visited nodes to see if it had already passed the node

in question. While the checking of the itinerary is more efficient and easier to manage

than an extra job, the Spark implementation of a filter is easier on the cognitive load of

the programmer.

1 JavaRDD<Tuple3<Long , Long , Long>> un iqueTr iang l e s =

2 poss ib leGroup . flatMap (

3 new FlatMapFunction<Tuple2<Tuple2<Long , Long>,

4 I t e r a b l e <Long>>, Tuple3<Long , Long , Long>>() {

5 @Override

6 public I t e r a t o r <Tuple3<Long , Long , Long>>

7 c a l l ( Tuple2<Tuple2<Long , Long>, I t e r a b l e <Long>> ang l e s )

8 throws Exception {

9 Tuple2<Long , Long> key = ang l e s . 1 ;

10 I t e r a b l e <Long> connector s = ang l e s . 2 ;
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11

12

13 boolean seenZero = fa l se ;

14 Lis t<Long> connector = new ArrayList <>();

15 for ( Long node : connector s ){

16 i f ( node == 0){

17 seenZero = true ;

18 } else {

19 connector . add ( node ) ;

20 }

21 }

22

23 List<Tuple3<Long , Long , Long>> r e s u l t = new ArrayList <>();

24 i f ( seenZero ){

25 i f ( ! connector . isEmpty ( ) ) {

26 for ( Long node : connector ) {

27 long [ ] Tr iang l e = {key . 1 , key . 2 , node } ;

28 Arrays . s o r t ( Tr iang l e ) ;

29 r e s u l t . add (new Tuple3<>(

30 Tr iang l e [ 0 ] , Tr iang l e [ 1 ] , Tr iang l e [ 2 ] ) ) ;

31 }

32 }

33 }

34

35 return r e s u l t . i t e r a t o r ( ) ;

36 }

37 } ) . d i s t i n c t ( ) ;

Listing 7: Finding Unique Triangles with Spark
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3.4 Traveling Salesman: Ant Colony Optimization

3.4.1 MASS Implementation

The MASS implementation of the Ant Colony Optimized TSP (ATSP) borrows the graph

set up used in the implementation of Triangle Counting from Section 3.3.1. The places

are used to represent the different cities in the graph and agents represent the ants that

travel along different routes. As ants walk along the same route the path of pheremones

that they leave becomes stronger eventually resulting in all of the ants moving along the

same route.

This algorithm is a prime example of the strengths of MASS. ATSP is reminiscent

of one of the example programs for MASS, Sugarscape [14]. In that program, places

represent sugar and ants move from sugar source to sugar source until all the sugar has

been consumed. One of the difficulties in adapting the sequential version of ATSP to a

parallel implementation is that the algorithm is described in a spatial manner, but pro-

grammatically, the spatially oriented description must be altered to a flat representation.

MASS, being a spatial simulation library, allows for the algorithm to easily be translated

from its description to reality without making the sacrifices MapReduce and Spark make

to bring the algorithm to fruition.

One of the big advantages of the MASS implementation is that it splits the compu-

tational load among places and agents. This allows for objects to take up less space in

memory and not be bogged down by having to perform a bulk of calculations on one

thread or process. As with other implementations using dynamic agents, there is the fac-

tor of agent migration overhead, however this overhead is acceptable as data sets increase

in size.

3.4.2 MapReduce Implementation

MapReduce presents two options for the implementation of ATSP. The first is an im-

plementation where each map task is representative of an ant and each reduce task is

responsible for manipulating the graph to update trails. The second is a batch algorithm

similar to the MASS K Means implementation in Section 3.1.1. In this implementa-
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tion, each map task runs its own ATSP problem and a single reduce task picks the most

efficient route from among all of the map tasks.

Both of these implementations present slightly different challenges. The first imple-

mentation is programmatically far more complex than the second. Each map task needs

to keep track of its position in the graph and check to make sure its not processing the

same node at the same time as another task. While the difficulty is ramped up for pro-

gramming, the advantage is that MapReduce used in this way could potentially process

a very large graph. The second implementation, while easier, does have one drawback.

The drawback is that the graph must be able to be loaded into the memory taken up by

the map tasks. This puts a limit on the size of graph that can be processed. [3] came

with pregenerated files designed to replicate the results of the paper. Therefore, we used

the batch implementation for this project.

Since map tasks are generated per line in a text file, the input for the map object is

a line of text that contains a number. This ensures that for every number in the text

file, a map object is created. Once the map is instantiated it reads user defined variables

such as the number of iterations from the configuration. The graph must be read from

a file in the setup phase of each mapper. Then, each map goes through the sequential

implementation of the ATSP problem and passes its results to the reducer. The reducer

cycles through each map output and outputs the best tour found by the mappers.

3.4.3 Spark Implementation

The Spark implementation mirrors the MapReduce implementation in the previous sec-

tion. However, there are some key advantages to Spark that MapReduce does not have.

Firstly, the ATSP program is wrapped in an ATSPInstance class which is contained within

an RDD. Spark has a parllelize() function which takes a collection and turns it into an

RDD. Therefore, rather than using a text file to generate instances, the user passes a

parameter to the program which initializes an ArrayList of ATSPInstance classes. This

ArrayList is then passed to parallelize and turned into an RDD.

There are two ways to represent the graph in Spark. The first is through a Broadcast
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object and the second is through a global variable. For ATSP we used the global variable.

This is due to having the graph size in advance. Broadcast objects help ensure that

information is only passed once to the worker nodes in the Spark cluster which improves

performance when working with large data. However, the graphs used for the tests in

Section 5 were small enough to where passing them would not have signifcantly affected

performance time.
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4 Programmability Analysis

The following subsections provide an insight into the programmability of each algorithm

described in Section 3. Programmability for each paradigm was evaluated based on the

boilerplate ratio, number of classes written, and how each algorithm represents its data.

4.1 Boilerplate Ratio

Boilerplate Ratio is calculated by taking the number of lines of code dedicated to setting

up the parallel environment and dividing it by the total lines of code in the main function.

Boilerplate refers to code involved in preparing the paradigm for execution. This means

that in MapReduce and Spark the configuration lines are counted and in MASS all lines

that use MASS.* are counted. For all three frameworks, lines that parse command line

arguments are counted as well. To maintain fairness, the place and agent constructor lines

are left out since we cannot see similar lines in MapReduce and Spark due to abstraction.

Table 1 presents the ratios for each algorithm as well as the average ratio and total source

lines of code among all of the main functions for each framework.

Table 1: Boilerplate Ratio

Paradigm K Means KNN Triangles ATSP Average Main SLOC Total

MASS 0.12 0.20 0.16 0.30 0.19 148
Spark 0.10 0.20 0.10 0.37 0.19 130

MapReduce 0.75 0.80 0.81 0.85 0.80 147

The results in Table 1 reveal that Spark and MASS both use less boilerplate code

than MapReduce. The reason this is significant is because all three paradigms aim to

reduce the interaction between the user and the underlying parallel systems. MapReduce

needs extra boilerplate code in order to tell it what files to set up and where to find them.

This means that in addition to knowing how the MapReduce paradigm works, the user

is also expected to know how the underlying HDFS works.

In contrast, both Spark and MASS work to incorporate as much of core java into

their setup as they can. All of the programs mentioned in Section 3 that read from a file

in MASS and Spark either use core java methods and classes such as BufferedReader or
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invoke provided methods. Files are read into RDDs in the majority of Spark applications.

As a result, the RDD class comes with built in methods for text, sequence, and binary files.

The user can instruct Spark to read files from its different supported cluster managers

and file systems by providing the URL for the file as the path [5]. Therefore, an HDFS

text file that contains data for the Triangle Counting program would be read in as follows:

1 JavaRDD<Str ing> l i n e s = context . t e x t F i l e ( ” hdfs : // user / t r i d a t a . txt ” ) ;

The equivalent MapReduce code would require that the user tells MapReduce what kind

of data the file contains as well as what type of file it is. Spark removes this complexity.

MASS has a lower ratio than Spark in every program except for KNN. What makes

KNN unique is that it has 10 command line arguments. KNN is also the only program to

accept user input which requires additional setup and code. The reason that MASS has

a lower ratio than either Spark or MapReduce is due to the way the parallel environment

is set up. MASS.init(), the method responsible for kicking off the parallel environment,

used to take in command line arguments, but now reads all of its setup data from an

external nodes.xml file. This file is universal to all MASS java applications and can be

reused several times for different programs. Therefore, the only additional boilerplate

required besides application specific command line arguments is setting the number of

threads to use on each computing node.

4.2 Classes

Data considered for Table 2 included mappers, reducers, places, agents, and RDDs. Util-

ity classes such as the Centroid class from Section 3.1.1 are counted as well. The decision

to count RDDs as classes came from the observation that in many cases each RDD cor-

responded to a map and reduce pair.

Table 2: Class Count
Paradigm K Means KNN Triangles ATSP

MASS 4 5 5 3
Spark 3 6 6 4

MapReduce 5 4 8 3
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Given this data, the results in Table 2 are quite interesting. Despite the efficiency

in the reduction of boilerplate, the three paradigms stay consistent with the amount of

classes that need to be implemented. Judging from Table 2, the most egregious offender

in terms of classes is the Triangle Counting program. While the MASS implementation

of this algorithm clearly edges out MapReduce in the number of classes it requires, it is

important to note that the classes counted for MapReduce do include an identity mapper

and an identity reducer. Both of which are not difficult to implement.

At the other end of the spectrum, ATSP has the least additional classes associated

with it. This is because it fits perfectly into all three paradigms. MASS can take advan-

tage of its spatial nature using a place class to represent the graph nodes and an agent

class to represent the ants. Similarly, MapReduce and Spark only need a way to read the

file, process it, and output it. Spark only has four classes due to the ATSPInstance class

which is a wrapper for the algorithm so that it can be called as an element in an RDD.

4.3 Data Representation

Data representation refers to how the paradigm internally represents the input data it

uses in each algorithm. When data is represented flatly, it is represented as a list of items

similar to the input file it came from. Conversely, when data is represented spatially, it

is represented as it would be in a visualization or diagram.

Table 3: Data Representation

Paradigm K Means KNN Triangles ATSP

MASS Flat Spatial Spatial Spatial
Spark Flat Flat Flat Flat

MapReduce Flat Flat Flat Flat

While Table 3 does not show much variation between the representation of different

algorithms, it represents an important advantage of MASS over MapReduce and Spark.

This advantage is the ability to easily live in both states of data representation.

Unlike Spark or MapReduce, MASS can be both spatial and flat due to the existence

of places. Since places themselves are represented as an N-dimensional matrix, they can

be used in a variety of contexts. For instance, in both Triangle Counting and ATSP, the
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places are used to represent nodes in a graph, while in KNN they are used to represent

data points on a plane. Even more still, in K Means they don’t represent anything and

simply exist to store data between calculations of the algorithm.

This flexibility is achieved through the access the user has to each parallel component’s

behavior. While MapReduce and Spark do effectively abstract almost the entire parallel

environment and can be used to do a lot of parallel tasks efficiently with little knowledge

of parallel programming, MASS proves that there can be more benefit than detriment to

leaving component behavior up to the user.

As stated in Section 2.1, MASS allows for a high degree of customization of its com-

ponents allowing for it to encompass both flat and spatial data representations. While

proponents of MapReduce and Spark might argue that this level of customization in-

creases the difficulty of working with MASS, Table 3 shows that this difficulty is offset

by greater flexibility in algorithm design.
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5 Performance Results

The following performance results were evaluated on the University of Washington, Both-

ell’s general purpose linux cluster. The Linux cluster contains 16 Dell Optiplex 710 desk-

tops, each with an Intel i7-3770 Quad-Core CPU at 3.40 GHz and 16 GB RAM. MASS

and Spark were evaluated on clusters consisting of 1, 2, 4, and 8 nodes. MapReduce

programs were only evaluated on a single node. An explanation of this phenomenon can

be found in Section 6.2. In order to be presented in a graph, results had to complete

within 10 minutes. Anything that took longer is addressed in writing and not in graphical

format.

5.1 KMeans Performance

Performance for K Means was evaluated with 1,000 two dimensional points with a max

X and Y coordinate of 30. For MASS and Spark, the frameworks where the algorithm

could be run more than once, the number of agents and runs was set at 5,000.

Figure 4: Performance difference between MASS, Spark, and MapReduce

In the Figure 4 we can see the single node performance of the K Means algorithm

across the three paradigms. The observation made here is that MapReduce vastly out-
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performs MASS and Spark. This is due to the design of the algorithm. Unlike MASS and

Spark, MapReduce’s algorithm only runs once. Therefore, to be on par with the other

frameworks, the performance of 2542 milliseconds should be multiplied by 5,000. This

results in 12,710,000 millseconds or 3.5 hours.

Figure 5: Performance difference between MASS and Spark

As can be seen in Figure 5, MASS outperforms Spark on every cluster setup. This

showcases the advantage of being able to run all 5,000 runs without synchronization and

without reverting to the driver until completion.

5.2 KNN Performance

KNN performance was judged using a grid of 4,000 x 4,000 data points. This grid was

represented by places in MASS and a file in Spark and MapReduce.

MapReduce proved too slow to compare as it surpassed the limit of 10 minutes.

However, Figure 6 shows the difference between MASS and Spark.

As can be seen in Figure 6, Spark proved to be much slower than MASS clocking in at

a minute of execution time at the slowest and 42 seconds at the fastest. This is likely due

to two factors: (1) The training file size and (2) only classifying one point. If Spark and

MASS were asked to classify more than 1 data point, the results would likely be reversed
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Figure 6: KNN Performance with MASS and Spark

as Spark does not have to account for the agent overhead as MASS does.

The training file size is also likely the case for MapReduce running slowly. The primary

difference betweeen the MapReduce and Spark implementations is that in Spark, the

training set is represented with an RDD which only stores information in memory that it

is currently using. MapReduce, on the otherhand, attempts to store all 16,000,000 data

points in a single ArrayList before moving to the classification of the point.

5.3 Triangle Counting Performance

Triangle Counting performance was measured using a graph consisting of 3,000 nodes.

With this test case, both the MapReduce and Spark programs took longer than an hour

to run on any node configuration. The probable cause is that the algorithms followed

were not meant for use beyond proof of concept. The main issue for both algorithms

occured in the graph reading stage.

For a graph of 3,000 nodes a file structure like the one in Section 3.3.2 means that

for each of the 3,000 nodes, each connection would be on a separate line. Although

the user has no direct visibility into the creation of map objects and RDD instances, it

is known that map tasks are spawned for each line in a file and Spark instances work
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similarly [5, 6]. This means that a large number of map tasks and instances are created

that are all demanding resources at once. A better file structure would have the each

node and a list of all the connections on one line so that map tasks and instances would

be less numerous.

Since the algorithms from MapReduce and Spark did not work out, the performance

will instead show the difference between the regular MASS and MASS with doAll().

Figure 7: Performance difference using doAll

Figure 7 shows a significant performance improvement between using doAll() and

callAll(). This is due to the way doAll() is structured. doAll() calls both callAll() to

perform a function on the data in the agents and manageAll(), which is responsible for

processing agent migration, spawning, and termination [17]. So, the Triangle Counting

program and other dynamic agent alogrithms get twice the benefit from doAll() that K

Means does. The agents in question migrate and process data completely avoiding the

synchronization that occurs when control is passed back to the main program.
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5.4 ATSP Performance

ATSP performance was measured over 17 and 48 cities. The number of ants that traversed

the graph was equal to 80% of the number of cities meaning each run had 13 and 38 ants

respectively [3]. The MASS program took abnormally long in comparision with the

previously mentioned programs. Due to the long time, it was determined that one and

two node execution were sufficient for comparison as increasing the nodes would have

likely violated the 10 minute time limit.

Figure 8: Performance with 17 cities

Figures 8 and 9 show the comparison between MapReduce, Spark, and MASS on

one and two nodes. The broad difference in performance between MASS and the other

frameworks is attributable the size of the data relative to the overhead incurred by moving

agents.

We can see in Figure 9 that although the change appears slight on the graph, the

three frameworks move closer together in performance numbers. In addition, combined

with the evidence presented in Section 5.3, we can see that when the number of nodes

in a graph is large, MASS outperforms both Spark and MapReduce. These results prove

the supposition in Section 3.4.1 that MASS’s agent overhead becomes acceptable as data

32



Figure 9: Performance with 48 cities

size increases.
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6 Conclusion

The project was successful in proving that MASS is a good paradigm for machine learning

and data science. In programmability, MASS was overall more efficient than MapReduce

and Spark. Performance also proved that MASS implmentations performed significantly

better than their MapReduce and Spark counterparts for K Means, K Nearest Neighbor,

and Triangle Counting. While the results are a net positive, the research conducted to

reach them has shown that there is still room for impovement to be made. Additionally,

this research has suffered from some limitations that warant revisitation.

6.1 Future Work

Future work based on this project can take a variety of forms. As this project has drawn

on past works in MASS, so can future projects draw on it in the following areas:

1. Machine Learning algorithm exploration: While K Means and KNN are two

of the most common machine learning algorithms, there are numerous others to

explore. Some examples are Gradient Descent and Naive-Baynes classification.

Both of these algorithms have pitfalls that may allow for agents to be beneficial.

2. Collision Free Migration exploration: While not explicitly discussed, early

versions of K Means attempted to use dynamic agents. The limiting force that

led to the abandonment of dynamic agents was the lack of flexible collision free

migration patterns in the MASS library. Research in this area may yield more

efficient implementations of K Means.

3. Agent Overhead: As shown in the performance results of the algorithms that

use dynamic agents, overhead is costly on the performance of the library. This is

due to the size of agents inside MASS Java. Currently, agents are 1MB of memory

each [17]. Future research in size reduction would make dynamic agents more

palatable to a wider array of algorithms.
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4. Agent Communication: One of the early approaches to an implementation of

K Means on MASS involved agents traversing places and acting as centroids. This

version was impossible to implement due to a lack of agent to agent communication.

Research in this area would make such an algorithm possible and could open up

possibilities other than the algorithm described in Section 3.1.1.

6.2 Limitations

6.2.1 MapReduce

One of the pitfalls of the information presented is the lack of sufficient MapReduce data.

HDFS experiences several issues due to the specific cluster setup that UW Bothell uses.

The primary issue is the blocking of connectivity between nodes in the cluster. HDFS

requires the use of YARN to connect and delegate resources on a cluster as of MapReduce

2.x. While YARN is a practical option in an industry or home cluster, the lack of

memory available to the research account used in this project restricted the capability

of YARN to properly distribute resources to the cluster. Therefore, it is likely that the

performance results listed above are exclusively for a single node. In the future, research

on MapReduce performance against MASS will best be measured on a cluster where the

account being used can properly allocate resources. In addition, this project revealed

that MapReduce may not be worth considering for future comparisons of MASS. Despite

the configuration issues, this research has sufficiently presented evidence for an argument

against MapReduce being used for further comparisions.

A major piece of evidence behind this argument is that in both programmability and

performance for three of the four algorithms, MapReduce underperforms both MASS

and Spark. The amount of boilerplate and classes alone prove that programmability-

wise, MapReduce is more time consuming and difficult to use. Additionally, issues with

comparability particularly in Section 5.1 led to having to extrapolate and guess at equiv-

alent performance which does not equate to sound, provable research.

The other piece of evidence is the comparability in model, goal, and target audi-

ence between Spark and MASS. Both of these paradigms attempt, in different ways, to
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alieviate the overhead of having to work with parallel computing in order to appeal to

non-computer scientists [5].

6.2.2 Other Limitations

Another pitfall of this experiment are the algorithms that made up the test programs

in MapReduce and Spark. It became apparent particularly in the instance of Triangle

Counting that these algorithms may not be designed to be used in production since

neither the MapReduce or Spark programs could handle a graph with more than 500

nodes. This also may be the cause of the file generators created to make test files. As

MASS can run with most configurations due to its emphasis on spacial simulation rather

than data streaming or data parsing, researching a mathematically correct formula for

generating a realistic 1000+ node graph was not considered.

The final limitation in with the validity of K Means between MASS and Spark. No

comparison was made on the accuracy of the cluster set reached by the algorithms. This

was based on an assumption that accurate data would definitely be found in 5,000 runs

of an algorithm. Future research can be done on the optimal number of runs to produce

an accurate cluster set.
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