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Abstract

Benchmarking and Evaluating ABM Parallel-Programming Features in Social, Behavioral
and Economic Sciences

Craig Shih

Chair of the Supervisory Committee:
Professor Munehiro Fukuda

Computing & Software Systems

Agent-based models (ABMs) have been highlighted in social, behavioral, economical, and

environmental applications that require a modeling approach to handle these complex situations.

To solve more practical problems such as nationwide epidemics, these applications need a

large number of agents to simulate. Although parallel and distributed simulation frameworks

have slowly started to address these computational needs, non-computing scientists are still

hesitant to use these parallel and distributed frameworks. This paper strives to identify

reasons behind these hesitations through programmability and performance analysis. ABM

applications were surveyed and modeled as seven benchmark tests and implemented on UW

Bothell’s MASS library and RepastHPC, Oakridge National Library’s RepastHPC.
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Chapter 1

INTRODUCTION

To assist in the growing need to solve large scale simulations, parallel computing frameworks

that would increase both computation speed and space are required. Yet non-computing

users are still using simulation platforms for sequential execution.

If the tools are too cumbersome or difficult to use, then scientists will shy away from

using them. It is desirable that these evaluations can shed light into what can be done to

improve usability so that more would be willing to use the most up to date tools.

1.1 Motivation

ABM views simulation as an emergent collective group behavior of many agents, each with

individual autonomy of computation and mobility over a simulation space. It is powerful to

serve on these applications that cannot always be modeled with formulaic equations. Social,

Behavioral, and Economic Sciences (SBE) is this type of application domain that observes

human behavior and how humans and social, behavior, and economic forces affect each other.

However, a lot of the current ABM platforms are not able to handle the amount of large

scale information that is needed to perform the desired SBE simulations. As a result, parallel

and distributed ABM platforms were researched. These platforms include RepastHPC

and FLAME, but both platforms struggle with programmability. These struggles led to

the hesitation of use from non-computing scientists. UW Bothell’s MASS library [5] was

developed to resolve these issues.

Since FLAME doesn’t support agent mobility, it was decided to perform our evaluations

on the two most available parallel and distributed ABM platforms: RepastHPC [7] and UW
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Bothell’s MASS library [5]. The former was developed by Oakridge National Library and

the latter being our own library. Performing evaluation will shed light to advantages and

disadvantages of MASS compared to RepastHPC. Analysis of these reasons will be conducted

through the viewpoints of programmability and performance.

1.2 Problem Definition and Goal

This project is to expand on our C++ based sequential benchmarks [42] by developing

parallel benchmark applications for each category under RepastHPC and MASS so that

programmability and performance can be analyzed and compared between the two frameworks.



3

Chapter 2

BACKGROUND

To predict human behavior and social economic trends, comes the study of SBE. With

this area of expertise receiving greater attention in the observation of group behavior comes

a necessity to dive deeper into the study of these sciences. Benchmark tests will be used to

provide analysis for various areas of study within SBE. Before these tests are covered, the

following sections will give background on SBE and then proceed to cover what ABM is.

Finally, simulators that non-computing scientists use will be discussed in the final section.

2.1 Social Behavioral and Economic Sciences (SBE)

SBE delves into human behavior and how social, behavioral, and economic forces affect the

lives of humans as well as how humans in turn affect these forces. These concepts can span

from low level ideas such as living cells to human society. It can also range from neurons

within a brain grid to neighborhoods where people live as well as spanning to cover ideas

such as space and time. [20]

These ideals are important and can impact areas such as discovering where we as humans

came from, to stabilizing and improving national defense, and to protecting humans from

cyber crimes. Through these ideas and principles, greater knowledge of human patterns from

an individual stand point to society’s stand point can be gained.

2.2 Agent Based Modeling (ABM)

The goal of studying SBE has led to the use of agent based modeling. Since SBE has models

that are complex and benefit from an object oriented approach, scientists have gone towards

the way of ABM which is found to be tightly coupled with SBE. ABM is an approach to
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modeling that utilizes autonomous, interacting agents that can be used to cover applications

such as agent behavior in the stock market, consumer markets, all the way to predicting

epidemics [13] such as tuberculosis. It can also assist businesses in decision-making as well

as help researchers study diseases and brain functions. By using ABM, one is able to compute

large-scale simulations that would not have been possible.

2.3 Simulators

Having gained the knowledge that non-computing scientists use ABM platforms to simulate

ABM applications, research was done on which platforms were used. NetLogo [41], MASON

[4], Repast, and Ascape [1] are examples of platforms that are currently used that stress

programmability which includes extending the simulation space from 2D to 3D as well as

allowing inter-agent communication.

Although these mentioned frameworks are available to ABM scientists, there have been

growing issues with scaling up their model size. These issues have resulted in scientists

looking at parallel computing frameworks that would increase both computation speed and

space. Issues arose from the mentioned frameworks since parallelization is normally limited

to multi-threading thats built in their language.

As such, the following are several parallel and distributed ABM systems that address

computational needs in both speed and space over a cluster of computing nodes. RepastHPC

[7] is an MPI-supported C++ system where Context is an execution environment that

populates agents over a given Projection instance such as a shared grid and space. It is

focused on agent migration over distributed 2D/3D space and provides agents with a view

of remote computing nodes’ boundary space known as ghost space. Ghost spaces, which are

adjacent boundaries of remote spaces that are visible to local agents, prevents agents from

moving to where other agents reside; however unless agents can read each other’s logic, or

their migration is serialized, parallel simulation cannot perfectly avoid agent collision at the

same spot.

FLAME [23] is another parallel platform which is written in C. However, for object-oriented
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programming purposes, agents and environment variables are declared in XML, similar to

C++ header files. FLAME does not instantiate any actual space in memory. Instead agents

are capable of broadcasting their messages among one another through message boards, each

launched at a different MPI rank. FLAME is considered as a collection of communicating,

state-transiting agents statically mapped over MPI ranks. From this viewpoint, FLAME

would burden ABM designers with application-level manipulation of agents that need to

migrate over a space.

Other conventional parallel multi-agent systems include PDES-MAS [29], MCE3J [22] as

well as mobile-agent systems such as D’Agents [2], JADE [3], and Pandora [6]. However,

these are coarse-grained cognitive agents to assist human decisions which make them not

suitable for mega-scale fine-grained agents.

Noticing that the widely used parallel and distributed frameworks all have problems

created motivation to examine common issues in parallelizing ABMs to improve user-level

quality of life in regards to programmability and performance. By performing evaluation

using RepastHPC and MASS, this project focuses on shedding light to advantages and

disadvantages of MASS compared to RepastHPC by developing benchmark tests.
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Chapter 3

BENCHMARK TEST SET DESIGN

ABM applications were sampled and then organized into seven benchmark tests that

are able to encompass all surveyed domains. Section 3.1 covers design strategy in which the

domains are overviewed, followed by section 3.2, the benchmark test section which elaborates

on how the seven benchmark tests were formed from the ABM applications. Lastly, sections

3.3 and 3.4 provide explanations on all benchmark tests are given in detail.

3.1 Design Strategy

The following are ABM applications in each scientific discipline to give a generalized sampling

of all areas within ABM.

• Social Science

1. Social Network Modeling : simulates activities among on-line communities [8, 18].

This can be modeled as a network of agents, each exchanging information along

links with its neighbors

• Behavioral Science

1. Flows : observes the dynamics of indoor and outdoor pedestrian crowd and metropolitan

emergency evacuation [30,32]. These simulations use cellular automata or observe

agent movement over a 2D grid.

2. Organizations : forecasts team productivity for certain operations. For instance,

Virtual Design Team (VDT) models a hierarchical software developer team that

moves from one to another product phase [28].
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• Economic Science

1. Markets : includes bank bail-in/out [27] and Internet service provider (ISP) markets

[10], both observing interactions among clusters of agents. The former distinguishes

three clusters: firms, banks, and households, whereas the latter creates different

ISP markets where customer agents move from one to another.

2. Diffusions : quite close to social network modeling where a product adoption is

modeled as a word-of-mouth diffusion on social networks [10].

• Biological/Ecological Sciences

1. Cell-level simulation: simulates the growth of synapses [26], identifies control

mechanism of granuloma formation by TB bacteria, macrophages and T-cells [37],

and cell-level blood flow throughout the microvessel network [40].

2. Ecosystems : simulates an emergent collective group behavior of (artificial) lives.

Examples include Wa-Tor: an ecological war between sharks and fish [16] and

Sugarscape: an artificial society [17] which are both based on agent migration

over a 2D space. Conways Game of Life [21], a well-known cellular automata

game could also be considered as an artificial life.

3. Epidemic simulation: predicts a pandemic of a given disease such as dengue fever

[25] and influenza [13]. They move agents from one community to another.

• Urban Planning

1. Transport simulation: predicts traffic flows under a given condition. The major

simulators are TRANSIMS [9] and MATSim, each based on cellular automata and

a queuing network, respectively.

2. Land use simulation: simulates agent behaviors over households, businesses, and

land areas. The model is generally combined with transport simulation.
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3.2 Benchmark Tests

Upon looking at the sampling of all areas within ABM, it was found that the above applications

could be categorized into seven separate benchmark tests from the viewpoint of agent

mobility that reside in two categories: Static and dynamic agents.

Figure 3.1: Static Agents

1. Static Agents: have no mobility over a simulation space

(a) Clustered agents : forms one or more groups, each exchanging events with each

other and sharing them among its internal agents (Figure 3.1-(a)). Market simulation

(financial modeling) can be categorized into this model.

(b) Cellular Automata: considers each cell as a static agent that communicates with

its neighbors (Figure 3.1-(b)). This model can be simulated using Conway’s Game

of Life.

(c) Network of Agents : is a more generalized form of cellular automata by replacing

a 2D/3D grid with a network (Figure 3.1-(c)). Social network modeling and

economic diffusions belong to this category.

(d) Agents with Dynamic Communication: stays static but extends its communication

paths to further agents as seen in the growth of synapses (Figure 3.1-(d)). Brain
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Grid falls under this category.

Figure 3.2: Dynamic Agents

1. Dynamic Agents: have navigational autonomy over a space or dynamic creation over

a simulation period

(a) Agent Migration Over Grid : moves agents over a 2D or a 3D space as shown in

Figure 3.2-(a). Most ABM applications in biology and ecology can be categorized

in this model (TB).

(b) Agent Migration Over Network : walks or drives agents over a network (MatSim)

as illustrated in (Figure 3.2-(b)).

(c) Group Creation Over Multi Phases : is a very special case in agent creation that

corresponds to VDT. Figure 3.2-(c) models a developer team’s transition from

one to another product phase.

The goal is to study these seven categories to identify and address the current programming

difficulties in parallel/distributed ABM platforms. Details on the seven benchmark tests are

given in the following sections.
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3.3 Static Agents

• Financial Modeling The Financial Modeling benchmark is a test that covers agents

with static communication. The program’s abstract idea is static, with the implementation

being dynamic having a message passing agent. The benchmark test has clusters of

agents, each agent being a bank or a firm. Our financial modeling benchmark test is an

extremely simplified model that demonstrates how a bank and a firm may communicate

to borrow and lend money.

Each place may contain agents and each agent can either be a firm or a bank. A bank

is an agent that will lend money to any firms that need money. A firm is an entity

that may need money at which point will ask any bank available to lend it money.

Financial Modeling functions in which all banks will first attempt to lend money to

the firms in its respective cluster. If the banks run out of money or no longer has any

firms to lend money to, the banks will then migrate to another cluster and check if

there are any firms that need money lent to them. The number of migrations can be

increased by the user to specify how many migrations the banks should do.

• Game of Life

Conway’s Game of Life benchmark is a test that covers cellular automata. The program

has an orthogonal grid of square cells where each is categorized as dead or alive.

In this program initial setup is done using the rand() function which generates either

a 1 (alive) or 0 (dead). Each cell will abide by the following rules:

1. Any live cell with fewer than two live neighbors dies

2. Any live cell with two or three live neighbors lives

3. Any live cell with more than three live neighbors dies

4. Any dead cell with exactly three live neighbors becomes a live cell.
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The above 4 statements can be summarized by the following algorithm:

1. If the sum of all nine cells is 3, the current cell’s next generation will be life.

2. If the sum of all nine cells is 4, the current cell’s next generation will be its current

health status of life or dead.

3. Every other sum, the current cell’s next generation will be death.

• Social Network

The Social Network benchmark is a test that covers a network of agents. The program

has an orthogonal grid of square cells where each is a person with a random set of

neighbors.

Each person has a vector of its own friends. Degrees of separation is then calculated

by traversing through each neighbor’s vectors up to the number of degrees of freedom.

An assumption is made that there is at least 1 degree of separation.

A vector is used to store all friends up to X degrees of freedom away. The for loop

appends each friend found at each degree of freedom up to the degrees of freedom

specified in main. A counter is incremented so that when the degrees of freedom

specified is reached, a for loop is traversed from count up to the end of the vector to

retrieve all friends within the user specified degrees of freedom.

• Brain grid

The Brain Grid benchmark is a test that covers agents with dynamic communication.

The program has an orthogonal grid of square cells where each is either an active,

inactive, or neutral neuron. Our Brain Grid benchmark test is an extremely simplified

model to see how each cell can grow its communication links to the others, based on

the idea of brain theory and neural networks [39].
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Active neurons grow in all 8 directions (Moore neighborhoods), neutral neurons grow in

the direction it was grown into, and inactive neurons don’t grow, but prohibit growth.

As these connections grow, connections are made between the various neurons to create

a network that loosely simulates a neural network.

3.4 Dynamic Agents

• Tuberculosis

The Tuberculosis benchmark is a test that is a simplified model of tuberculosis infection

that covers agents with dynamic communication. The program has an orthogonal grid

of square cells where each cell is considered either infected bacteria or clean bacteria.

Agents will come through and have a chance to be an infecting agent or cleaning agent.

Agents and bacteria infect or clean radially to its 8 surrounding neighbors. Agents will

also eventually run out of energy and die out after a certain number of moves.

Infected bacteria will infect radially to all 8 neighbors while agents can either infect

or clean in a similar fashion. Agents can either be cleaning or infectious, with both

functions performing at double the rate of bacterias infectious spread. If an agent

comes to a bacteria, it will clean radially to all 8 neighbors or spread to all 8 neighbors,

depending on what type of agent it is. Agents will also move randomly between the

bacteria.

• MatSim

The MatSim benchmark is a test that covers agents with static communication. The

program has an orthogonal grid of square cells where each cell is considered an intersection

on a grid of streets and each agent is a vehicle. Our MatSim benchmark test is an

extremely simplified model of traffic simulation.

Each cell contains agents, which represents a vehicle crossing an intersection. An agent

is a vehicle that will traverse the grid of intersections.
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MatSim’s agents utilizes Dijkstras algorithm to find the shortest paths between the

different cells. Each vehicle has a randomized start point and a randomized end point.

At this point, Dijkstras algorithm will be run on each specific agent where their shortest

path between the two points is found. Traversal of all agents will then occur and

efficiency is measured.

• VDT

The VDT benchmark is a test that is a simplified model that covers agents with

dynamic communication. The program has an orthogonal grid of square cells where

each cell is considered a project. Agents are placed within each cell where they perform

work on the project.

There are three types of people: Project Managers, Sub-Function Leaders, and Sub-Function

Members. Each Sub-Function member has an intelligence level and a resource number.

Each project will have a minimum requirement of total workers, total resources, total

intelligence, and number of work cycles that is needed for the completion of the project.

Projects within the benchmark test has a set order where later projects within the test

need to wait for projects prior to them to complete before they can start up. Each

project will have a random number of sub-function members populated at start. When

the project is up for work, a check will be made to see if enough members are tasked

to the project. If there aren’t, additional members will be tasked to the project so that

the requirements are met at which time the work cycles will then be performed.
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Chapter 4

PARALLELIZATION

Now that the benchmark tests have been discussed in detail, the parallelization frameworks

used to implement these tests will now be discussed as well. MASS and RepastHPC were

chosen as the two parallel frameworks because both facilitate agent mobility and covers the

execution of both static and dynamic agents. With MASS being one of the frameworks to

be analyzed, RepastHPC was also chosen because it is similar to MASS with the goal of of

popularizing parallelization frameworks throughout non-computing scientists.

4.1 MASS Library

The MASS library [5] is available to the public in Java and C++. For the scope of these

benchmark tests, the C++ version was used. MASS has two key classes: Places and Agents.

Places is a multi-dimensional array of elements that can be allocated over a cluster of

multi-core computing nodes. Each place is pointed to by a set of network-independent

array indices and is capable of making a variety of function calls. The following are the

major Place functions.

1. Places Class

(a) public Places(int handle, String className, int boundary, void *argument,

int argSize int dim, int size[]) instantiates a shared array with size and a ghost

space with boundary from className as passing an argument to the className

constructor.

(b) public void* callAll(int functionId, void *arguments, int argSize) calls

the method specified with functionId of all elements as passing arguments[i] to
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element[i], and receives a return value into (void *)[i].

(c) public void exchangeAll(int handle, int function-Id, Vector <int*>*destinations)

calls from each element to a given method of all destination elements, each indexed

with a vector element, and exchanges data among the elements.

(d) public void exchangeBoundary( ) exchanges boundary data with neighboring

nodes as a ghost space.

2. Place Class

(a) private vector<int>size, index maintains the size of the shared array that

each element belongs to as well as the index of each array element.

(b) public Object callMethod(int functionId, void *arguments) is invoked

from Places.callAll() and exchangeAll() so as to call a function specified with its

corresponding functionId.

Agents are a set of execution instances that can reside and move from one place to

another. They can also indirectly interact with other agents through variables local to the

current place they are residing on. The following are the major Agent functions.

1. Agents Class

(a) public Agents(int handle, String className, void *arguments, int argSize,

Places *places, int population) instantiates agents from className, passes

arguments to their constructor, and populates them over a given Places, based on

Agent.map().

(b) public void* callAll(int functionId, void *arguments, int argSize, int

retSize) This is the same as Places.callAll().

(c) public void manageAll() updates each agent’s status, based on its latest calls

of migrate(), spawn(), and kill(). These methods are invoked within callAll().
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2. Agent Class

(a) migrate(int[] index...) allows a calling Agent to migrate or propagate itself to

one or more Places specified with index upon Agents.manageAll().

(b) spawn(int nChildren, Object arguments) spawns children as passing arguments

to them.

(c) kill() terminates a calling Agent.

(d) public Object callMethod(int functionId, Object argument) is the same

as Place.callMethod().

(e) public int map(int maxAgents, vector<int>size, vector<int>index)

returns the of agents to be populated at the place specified with index of a shared

array with size. Note: maxAgents indicates total of agents to be populated over

the array. It can be overloaded by a user.

Parallelization with MASS is done through a set of multi-threaded communicating processes

that are forked over a cluster of multi-core computing nodes with libssh2 in C++ which

are connected to each other through TCP sockets. Multi-threads control parallel method

invocation and information exchange between Places and Agents.

4.2 RepastHPC

RepastHPC is an agent-based modeling and simulation framework that is implemented

in C++ utilizing MPI to provide high-performance parallel and distributed simulations.

There are Agents and Contexts in RepastHPC with agents being implemented as C++

classes, each with a unique repast::AgentId as well as maintaining its state represented

by the variables in the corresponding classes with its behavior being described by the

functions in those classes. Contexts are used to all the population of agents. When

an agent is created, it is added to a Context with addAgent(). removeAgent() will

remove the agent from the Context. Contexts can also move agents over a shared space



17

using move() and balance(). RepastHPC also describes simulation spaces using what

they call Projections. Some projections include SharedNetwork, SharedDiscreteSpace,

SharedContinuousSpace, DiffusionLayerND, and ValueLayerND. Each of these model

a different type of simulation space: a 2D/3D shared discrete space, a shared contiguous

space, an N-dimensional layer of diffusing values over a space, and an N-dimensional array

of values accessed by agents. These spaces also provide agents with Moore2DGridQuery and

RepastEdgeContentManager classes to allow them to find neighboring agents. RepastHPC

also utilizes a dynamic discrete-event scheduler with conservative synchronization. Events

are scheduled to occur at a specific tick which is also used to determine order.
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Chapter 5

ANALYSIS

Upon the completion of the implementation of the seven benchmark tests, programmability

and performance analysis have been done on the tests that were coded in MASS C++

and RepastHPC. Both programmability and performance sections are broken up into the

seven benchmark tests, each subcategory comparing the differences between MASS and

RepastHPC.

5.1 Programmability

Programmability comparisons between MASS C++ and RepastHPC are discussed from both

the quantitative and qualitative viewpoints. For the quantitative discussions, we will use

Figure 5.1 to summarize lines of code (LoC) in MASS C++ and RepastHPC.

Figure 5.1: Lines of code in MASS C++ and RepastHPC

5.1.1 Financial Modeling

MASS C++’s implementation of Financial Modeling utilizes its Places class as its way

of simulating a cluster. The Agents class is used to represent the two different types of
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entities: Banks and Firms which reside in the clusters. Because there is no agent-to-agent

communication within MASS, the Place that respective agents reside on is used as a way to

query each agent’s money and operations are then performed on each agent.

With RepastHPC’s implementation of this benchmark test, agents are used as the way

to simulate both firm and bank entities. Spatial projection is then used as a way to

simulate clusters within this benchmark test. Although RepastHPC’s spatial projection

only supports passive space for agents to store, retrieve, and share data, the ability of

RepastHPC to have agent-to-agent communication mitigates the issue and allows firms and

banks to communicate with each other in each of the clusters.

The benchmark tests for Financial Modeling results in fewer total lines of code for MASS

with RepastHPC having fewer lines of code for agent logic. This supports RepastHPC’s

disadvantage of requiring additional lines for initial setup. However, with MASS being

able to utilize communication through its Place class and RepastHPC being able to utilize

agent-to-agent communication, the difference between MASS and RepastHPC’s agent code

is less pronounced in this case.

5.1.2 Game Of Life

MASS C++’s Game of Life implementation utilizes its Places class as the way of simulating

each life in this benchmark test. With Places being able to behave as a static collection of

elements that can perform computation, using Place objects as the way to simulate each life

was the most logical choice. Neighboring Places’ information were exchanged as its way to

perform the checks needed for this test.

RepastHPC’s implementation of Game of Life utilizes agents dispersed across a spatial

projection as its way of simulating each life in this benchmark test. With RepastHPC

only supporting passive space for agents to store, retrieve, and share data, agents were

used as the way to simulate each life’s interactions with one another. Using RepastHPC’s

Moore2DGridQuery, checks for each life’s state was able to be completed.

Looking at the lines of code for both MASS and RepastHPC’s implementation of Game
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of Life, one can see MASS has less total lines of code written. However, RepastHPC has

fewer lines of agent code written. Figure 5.1 shows the lines of code (LoC) breakdown.

5.1.3 Social Network

The Places class is used once again as its way of representing each person in MASS’ implementation

of this benchmark test. Because of the lack of agent-to-agent communication under MASS,

it was most logical to write this benchmark test utilizing MASS’ Places class. Each place

object had every other place object within the benchmark test as a neighbor so that it would

be possible to traverse each other person’s list of friends. RepastHPC’s implementation of

Social Network utilizes agents to simulate each person in this benchmark test. Because of

its ability to have direct agent-to-agent communication, there is no need to have a spatial

projection within this benchmark test.

MASS’ implementation of Social Network has fewer total LoC, but, it has a significant

amount more when it comes to agent LoC. With Social Network, RepastHPC’s ability for

agent-to-agent communication resulted in the logic for Social Network being able to be

written in half the LoC compared to MASS.

5.1.4 Braingrid

MASS C++’s implementation of Brain Grid utilizes its Places class as its way of simulating

the three different neurons in this benchmark test. Since MASS cannot create a network

of agents, direct communication is not supported. That coupled with the fact that Places

in MASS are able to behave as a static collection of elements that can actively perform

computation, led us to using Place objects as the way to simulate Brain Grid’s neuron

interactions. Each of the eight surrounding neighboring Place’s information were exchanged

as its way to perform the checks needed for this test under MASS.

RepastHPC’s implementation of Brain Grid utilizes agents dispersed across a spatial

projection as its way of simulating the three different neurons. Since RepastHPC supports

only passive space for agents to store, retrieve, and share data, agents were used as the way



21

to simulate Brain Grid’s neuron interactions. RepastHPC also allows the user to query the

space around an agent by utilizing its Moore2DGridQuery which exactly satisfies what is

needed to be done under our Brain Grid benchmark test. As such, that was utilized to

perform the spatial checks needed for this test.

Programmability for the logic of MASS and RepastHPC using lines of code as a quantitative

measurement shows that although MASS has a total of less lines of code written, RepastHPC

actually has fewer lines of code written for its agent portion. This is because RepastHPC

requires substantially more lines for the setup of MPI-parallel and message packing/unpacking

code. This can be seen on Figure 5.1. Another programmability feature for both MASS and

RepastHPC in this benchmark test was the decision to simulate growing communication

channels of each place/agent in MASS and agent-to-agent in RepastHPC by just relaying

data from one place/agent to another place/agent for MASS and RepastHPC respectively.

The reason for this programmability decision is because I felt it would more closely represent

our design model of how a brain grid functions.

5.1.5 Tuberculosis

Tuberculosis’ MASS C++ implementation uses its Places class as its way of simulating

bacteria in this benchmark test. The Agents class is then used to simulate the two different

types of agents: cleaning and infecting. With the Place class being the main bacteria, MASS’

ability to have Places perform computation is utilized to determine the status of each bacteria

in the benchmark test.

Because RepastHPC’s spatial projection supports only passive space for agents to store,

retrieve, and share data, three types of agents are utilized to simulate the Tuberculosis

benchmark test in RepastHPC: bacteria, cleaning, and infecting agents. RepastHPC then

utilizes its agent-to-agent communication ability as well as the built in Moore2DGridQuery

to perform its necessary checks in this benchmark test.

Being that there is no need for direct agent-to-agent communication in Tuberculosis, and

MASS’ ability to have Places perform computation and RepastHPC’s spatial projection’s
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inability, this benchmark test resulted in less total lines of code as well as fewer agent

lines of code in MASS compared to RepastHPC. Although there are fewer lines of code in

RepastHPC for environment/space, these numbers still show that there is a higher number

of required lines for setup in RepastHPC. However, since logic for the benchmark test could

be shifted into Places in MASS, this allowed MASS to have fewer lines of code compared to

RepastHPC in its agent code.

5.1.6 MatSim

MatSim’s MASS C++ implementation utilizes its Places class as its way of representing

the benchmark test’s version of streets and its Agents class as its way of representing the

vehicles that traverse the streets. Because MASS’ Places are able to perform computation,

the shortest path algorithm used was able to be computed on through the Place class.

RepastHPC’s implementation of MatSim utilizes agents to simulate its vehicles and its spatial

projection as the way to simulate the streets traversed by the vehicles. With RepastHPC

only supporting passive space for agents to store, retrieve and share data, the shortest path

algorithm was computed on the agents themselves.

The lines of code required to write MatSim with MASS and RepastHPC show that

MASS required fewer total lines of code as well as fewer lines of code for its agent logic.

Furthermore, MASS has the advantage of being able to have the shortest path algorithm

computed through its Places class as well as being able to mimic a general road network with

places, each maintaining an adjacency list. Because RepastHPC’s spatial projection can’t

do this, it relies on each agent to obtain an overall adjacency matrix in the beginning before

moving through its roads.

5.1.7 VDT

VDT’s MASS C++ implementation uses its Places class as its way of simulating each project.

The agents class is then used to simulate the leader and worker agents. With the Place class

being able to perform calculation, each project’s requirements are performed on each place
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with each leader and worker agent performing the required work within their respective

places.

With RepastHPC’s implementation of VDT, three types of agents were utilized to simulate

the VDT benchmark test: project, leader, and worker agents. RepastHPC then utilizes its

agent-to-agent communication ability to perform its necessary checks in this benchmark test.

Since this benchmark test requires the ability to create additional worker agents if the project

requires more resources, The max amount of agents that may be needed for all projects to

be performed is calculated prior to the execution of the test and created at startup.

In regards to this benchmark test, MASS has the advantage of being able to spawn agents

as needed whereas RepastHPC has the disadvantage of needing to provide all total number

of agents at the beginning.

Figure 5.2: Spatial Management
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Figure 5.3: Agent Management

Figure 5.4: Entire Simulation Management

5.1.8 Overall Programmability Comparison

Having gone through all seven benchmark tests, advantages and disadvantages for agent and

spatial management under MASS and RepastHPC can be compared for all seven tests. In
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general, it can be said that in regards to spatial management, RepastHPC provides both

multi-dimensional spaces and any graph topologies as a simulation space, whereas MASS

must manage to emulate graphs using its Places array structure. However, RepastHPC only

supports passive space for agents to store, retrieve and share data when Places in MASS can

behave as a static collection of elements that can actively perform computation. Figure 5.2

shows these pros and cons.

For agent management, RepastHPC requires the user to facilitate run-time agent creation

and termination while being able to populate agents over an entire space from a bird’s

eye view. MASS allows different classes of agents to behave on the same Places, whereas

RepastHPC allows different Contexts to share the same ValueLayerND space. Since MASS

can’t create a network of agents, direct communication is not supported, where RepastHPC

does support this. Figure 5.3 shows these pros and cons.

To compare MASS and RepastHPC as a whole, MASS focuses on hiding the underlying

parallel platforms from ABM applications much more than facilitating user-friendly event

scheduling and data collection. RepastHPC exposes users to the underlying parallel platforms.

As such, the user must understand MPI and how to handle agent/data packing, transfer,

and unpacking. The user must also maintain agent lists in Context and examine agents,

which makes it difficult to parallelize. Figure 5.4 shows these pros and cons.

5.2 Performance

Along with programmability evaluation, performance evaluation of the seven benchmark

tests for MASS and RepastHPC were also conducted using the University of Washington,

Bothell’s shared Linux cluster: 16 Dell Optiplex 710 desktops, each with an Intel i7-3770

Quad-Core CPU at 3.40 GHz and 16 GB RAM. Figure 5.5 and 5.6 shows the results for the

seven test cases. Their spatial sizes were adjusted between 100 x 100 and 1000 x 1000 and

the number of agents were adjusted to between 200 and 162000. This was so that all tests

would complete below 35 seconds for their single node execution. Discussion of performance

numbers is broken up into two sections, static agents for the four static benchmark tests and
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dynamic agents for the three dynamic benchmark tests.

5.2.1 Static Agents

Figure 5.5: ABM Execution Performance (Static Agents)

The execution performance of Brain Grid shows that MASS outperformed RepastHPC

under all computing nodes. However, under both RepastHPC and MASS, there was negligible

performance increase with 4+ nodes. This is because its computation completed quickly with

the current random initialization of neurons. For future benchmark testing, we need to test

various initializations of neurons and to observe their effect onto performance measures.
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Game of Life on the other hand showed a pretty linear performance increase as the number

of nodes increased. This was due to more space made available with multiple nodes.

Social Network had much faster execution under RepastHPC compared to MASS due to

RepastHPC’s agentNetwork class that supports a graph of static agents (agent-to-agent

communication). Lastly, Financial Modeling gathered agents in groups and therefore showed

less spatial parallelism. As such, the increase between 2-8 nodes were more negligible. For

better performance, agents must be handled with multi-threading.

5.2.2 Dynamic Agents

Figure 5.6: ABM Execution Performance (Dynamic Agents)
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MatSim showed its scalability with its linear increase from 1 to 8. This is because

the current implementation randomly populates agents whose destinations to move are also

randomly chosen, so that the number of agents per each computing node is well balanced. For

more realistic benchmark tests, we will generate a more restricted road network and have

more vehicle agents drive to an identical destination, which simulates traffic congestions.

The performance of Tuburculosis showed a slowdown from 2 to 8 nodes. This resulted from

unbalanced load over 4+ computing nodes as a result from agents tending to come together.

This indicates the need of dynamic load balancing. With VDT, under RepastHPC, the max

amount of agents that may be needed for all projects to be performed is calculated prior

to the execution of the test and created at startup. Whereas with MASS, it is dynamically

created when needed. Since the benchmark test is fairly accurate in the number of total

agents needed, performance between MASS and RepastHPC did not differ much because

of total agent creation numbers. With the way the benchmark tests are designed with its

resource, intelligence, and number of workers needed for each project being fairly consistent,

an estimate of total number of agents is able to be made accurately. However, if resource,

intelligence, and number of workers were to be completely randomized, then there is a chance

that the total number of agents needed can have an inaccurate estimate. Furthermore, if

all three categories were to be completely randomized, additional agents would need to

be created on RepastHPC to account for the inaccurate estimation, which would result

in a decrease in performance. One thing to note is that performance results did exhibit

super-linear performance increases. This is a result of the creation of many agents. As nodes

increase, more memory is made available so that the memory bottleneck would be negated in

larger scale simulations. For future benchmark testing, we need to add some restrictions on

allocation, de-allocation, and move of resource, intelligence, and works, which will simulate

more practical development phase transitions and observe more viable performance measures.
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5.2.3 Overall Performance Comparison

Looking at the seven benchmark performance values, it can be seen that RepastHPC performs

slower than MASS (with the exception of Social Network). This is because of its MPI-based

implementation and user-level agent serialization compared to MASS directly using sockets

and automates all its serialization. To summarize, even though a cluster system allows more

computing resources in CPUs and memory which allows simulation space and agents to scale,

parallel simulators need to balance initial and dynamic distribution of space and agents over

cluster nodes which should utilize CPU cores more efficiently.
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Chapter 6

FUTURE WORK

The benchmark tests evaluated for programmability and performance under MASS and

RepastHPC can be considered just the first steps for benchmarking ABM applications

utilizing parallel and distributed frameworks. We will continue to explore other applications

related to SBE. Although, our research discovered and organized our research domains

of social science, behavioral science, economic science, biological/ecological sciences and

urban planning into seven categories, additional categories can be made for more in-depth

benchmarking.

Our results can also be extended and compared with FLAME. Finally, utilizing the

programmability and performance evaluation of MASS and RepastHPC, I feel that agent-to-agent

communication can be implemented in MASS due to the benefits that RepastHPC had

with its agent-to-agent communication capabilities. An idea for the implementation of

agent-to-agent communication in MASS can be based off the idea of creating a context for

all agents and to allow these agents to have communication abilities with the other agents

within the same complex. By doing so, it can allow simulations such as social network to be

implemented in MASS with greater ease and efficiency similar to RepastHPC’s application.
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Chapter 7

CONCLUSION

ABM applications in Social, Behavioral, and Ecological sciences were surveyed and

categorized into seven benchmark tests from the viewpoint of agent mobility. Analysis were

performed under MASS and RepastHPC for their agent and spatial descriptivity as well as

performance overheads incurred by their implementation. Based on our agent descriptivity

analysis, we propose that parallel ABM frameworks should hide parallel-computing constructs

from non-computing users as RepastHPC setup can be cumbersome and difficult to understand.

Improvement of agent mobility should also be done as they can mimic human, animal, and

moving objects. Performance numbers demonstrated substantial improvements with two

cluster nodes; however not always with 4+ nodes. To better scale further computation, ABM

frameworks should efficiently handle agents with CPU cores and to distribute a simulation

space and agents uniformly over a cluster system, thus balancing computation and communication

over nodes.

Finally, it was noted that FLAME is another parallel platform and thus should have

programmability and performance evaluations run on these seven benchmark tests. As said

in the Future Work section, fellow student Pouria Ghadimi is already in the process of

completing this so those numbers should be put in comparison to the numbers found in this

evaluation.
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