
MASS C++ Enhancement: Porting Parallel
I/O and Graph from MASS Java to MASS
C++
Prepared by: Elias Alabssie faculty advisor: Professor Fukuda, Munehiro

MASS Library Overview
MASS is a parallel-computing library for multi-agent and spatial simulation over a cluster of
computing nodes. Agents and Places are the building blocks for MASS library. Places hold user
defined Place object in a multi-dimensional grid with machine independent indices. Agents are
execution instances that can reside inside places, migrate to other places either locally or on a
remote machine in the simulation space. The scalability aspect of MASS is achieved by sharing
the workload among the cluster nodes. MASS distributes and parallelizes the workload using
native sharing algorithm unless otherwise the user specifies a different algorithm.

	
	
	
Figure	1.		Agents,	Places,	cluster	nodes	(Processes)	and	parallelizing	of	places.	[2]	

	

Project Goals
MASS	provides	implementation	in	three	computer	languages:	Java,	C++	and	CUDA.	The	
MASS	Java	library	has	more	features	and	functionalities	than	the	MASS	C++	library.		To	
narrow	this	gap,	I	was	assigned	to	port	the	MASS	Java	Parallel	IO	and	the	graph	features	
from	the	MASS	Java	library	into	MASSC++	library.		

Higher Level Class Design
Much	of	the	design	and	the	implementations	are	similar	to	the	MASS	Java	library	
implementations.	Generally,	I	used	the	same	names	for	classes	and	their	APIs	in	an	attempt	
to	save	a	MASS	C++	library	user	from	learning	new	APIs	when	they	moved	from	MASS	Java	
to	MASS	C++.		However,	I	made	changes	to	the	class	designs	when	I	found	advantages	to	do	
so.		In	addition,	I’ve	changed	some	of	the	method	names	to	make	it	more	intuitive	for	the	
library	users	and	other	developer	who	will	maintain	the	library	in	future	works.		
	
One	of	the	design	changes	I’ve	made	is,	I’ve	implemented	a	separate	class	that	reads	
different	input	files	(MATsim,	HIPPIE,	CSV,	etc.)	to	get	the	vertices	from	input	files.	In	MASS	
java,	this	functionality	is	embedded	into	‘PlacesBase’	and	‘VertexPlace’	classes	which	I	
believe	is	a	redundancy.	This	feature	of	a	separate	class	implementation	for	parsing	files	
helps	to	modify	the	file	parsing	logic	without	changing	other	implementations.	Additional	
input	file	format	parsing	can	be	added	to	this	class	without	modifying	subsequent	classes	
which	uses	the	file	parsing	service.		
	
The	other	major	difference	between	MASS	Java	and	MASS	C++	is	the	way	the	master	node	
propagates	the	map	of	‘vertices’	and	their	Id	(map<string	vertex,	int>)	to	the	remote	
computing	nodes	after	reading	vertices	and	their	relative	position	in	the	input	file.	MASS	
Java	uses	a	‘HazelCast”	library	which	automatically	propagates	any	data	structures	from	
the	master	node	into	every	other	node	in	the	cluster.		
	
I	abandoned	this	library	for	MASS	C++	because	it	requires	running	the	Cluster	Manager	
component,	which	is	a	java	application.	A	C++	application	can	access	data	structures	from	
HazelCast	cluster	only	as	a	client.	Which	intern	means	the	MASS	C++	library	user	have	to	
have	JVM	installed	and	the	HazelCast	cluster	manager	program	running	before	running	the	
MASS	C++.	Requiring	JVM	installed	doesn’t	seem	too	much	to	ask	now	a	days,	however	
requiring	HazelCast	cluster	manager	to	run	is	a	bit	of	inconvenient.	
	
Due	to	this	inconvenience	of	using	HazelCast,	the	MASS	C++	library	uses	the	existing	
messaging	infrastructure	to	propagate	vertices	from	the	master	node	to	the	remote	
computing	peers.			The	map	of	vertices	along	with	their	global	Ids	are	serialized	and	the	
remote	peers	will	deserialize	the	message	and	build	the	map	of	<vertices,	global	Id>	objects	
back.		
On	top	of	this,	there	are	other	smaller	classes	in	MASS	Java	that	I	decided	to	squeezed	them	
into	other	classes.		
	

Apart	from	the	differences	discussed	above,	there	is	higher	congruencies	between	MASS	
java	and	MASS	C++	libraries.		Here	under	is	the	partial	UML	diagram	for	MASS	C++	library	
classes.		
	
	

	
	
Figure	2.	UML	diagram	of	partial	MASS	C++	library	classes	
	
	

Class Implementation Details
	
1. Porting	Parallel	I/O	
Parallel	IO	is	a	concurrent	request	from	multiple	processes	of	a	parallel	program	for	data	
stored	in	a	file	[1].		I/O	performance,	rather	than	CPU	performance,	is	the	key	limiting	
factor	in	the	performance	of	a	computer.	Specially	in	a	distributed	system,	as	multiple	CPUs	
are	working	together,	the	IO	overhead	becomes	the	additive	IO	bottleneck	of	the	individual	
computing	nodes.			

	
One	solution	to	mitigate	this	IO	bottleneck	is	enabling	processes	to	access	a	file	parallelly	
(hence	the	name	parallel	IO).		Since	MASS	is	meant	to	solve	big	data	computation	parallelly,	
having	parallel	I/O	feature	enhances	the	overall	computation	performance						
	
MASS	C++	implements	the	parallel	I/O	feature	in	the	‘File’	class	and	in	the	‘Place’	class.		
The	File	class	is	an	abstract	class	that	defines	interfaces	for	opening,	deleting,	and	closing	
files.	In	addition,	the	class	implements	the	algorithm	of	slicing	the	total	file	size	across	
computing	nodes	in	the	cluster	and	among	Places	on	the	local	machine.				

	
Here,	the	same	slicing	algorithm	used	as	in	MASS	Java.		First,	the	total	file	size	is	shared	for	
number	of	computing	nodes.	The	share	of	each	node’s	file	size	will	be	further	sliced	for	the	
number	of	Place	objects	living	on	that	node.	
	
	
#	slices	=	total	file	size/#	cluster	nodes	…………………………………………….……………………	[1]	
#	slice	for	each	Place	=	#slices/#Places	on	local	node	…………………………………………….	[2]	
	
	
For	example,	for	a	cluster	of	four	nodes	and	1000	bytes	file	size,	and	100	Places	on	each	
node,	the	slicing	algorithm	works	like	this,	
	
#slice	for	each	node	=	1000	bytes/4	=	2500	bytes	………………….	[formula	1	above]	
#slices	for	each	place	=	2500	bytes/100	=	25	bytes.		………………	[formula	2	above]	
	
Therefore,	according	to	the	above	slicing	algorithm,	each	place	is	responsible	reading	25	
bytes	worth	of	data	on	each	computing	node.	If	the	number	of	bytes	is	not	evenly	divisible	
by	the	number	of	nodes,	the	node	with	a	higher	rank	will	take	all	the	remainders	in	
addition	to	its	share.		
	
If	the	file	size	is	less	than	the	number	of	nodes	(unlikely	scenario),	only	the	master	node	
has	access	to	the	file.		All	other	nodes	can	not	access	the	file	via	parallel	I/O	APIs.	The	
programmer	should	use	other	C++	fstream	methods	to	access	the	file.	On	the	other	hand,	if	
the	number	of	Places	for	a	particular	node	is	greater	than	the	slice	of	N	bytes	file	(another	
unlikely	scenario),	only	the	first	‘N’	place	can	access	the	file.		
	
For	example,	if	a	node	has	100	places	and	get	25	bytes	file,	only	the	first	25	places	can	
access	the	file.	The	file	is	locked	for	the	rest	of	the	places.		Again,	the	programmer	has	to	use	
other	C++	fstream	routines	to	access	this	file	from	unauthorized	‘place’.	I	chose	not	to	use	
synchronization	enforcement	in	these	scenarios	to	avoid	performance	penalties.			Denying	
access	seems	more	performant.		
	
A	concrete	class	for	parallel	I/O	should	inherit	the	abstract	class	‘File’	to	benefit	from	these	
implementations.	Currently,	the	‘TxtFile’	class	is	implemented	that	works	for	a	text	file	
types.		
	

Porting Graph Features
Porting	the	graph	features	from	MASS	Java	was	the	bulk	of	this	project.	It	took	me	a	
significant	amount	of	time	and	effort.		
	
1.1 Parsing	files	and	Building	Map	of	Vertices		
To	build	the	graph,	first	the	vertices	has	to	be	extracted	form	the	input	file.	The	input	file	
can	be	of	different	type.	There	are	different	file	parsing	implementations	inside	the	

‘FileParser’	class	depending	on	the	file	type.		The	file	type	should	be	passed	as	an	instance	
of	‘FILE_TYPE_ENUMS’.	Then	the	class	will	call	the	appropriate	parsing	routine	depending	
on	the	Enum	type	to	read	the	vertices	from.		
	
	
	
Figure	3.	enum	of	file	types.		
	
1.1.1 File	Types	
As	mentioned	above,	there	are	different	file	types	to	read	vertices	from.	The	enum	above	
lists	five	file	types.	If	additional	file	types	needed,	add	the	file	type	in	the	enum	and	
implement	the	parsing	algorithm.	Every	other	logic	will	work	fine	without	modification	(no	
need	of	modification	inside	the	‘Places_base’	and	‘VertexPlace’	classes).		
	
2.1.1.1	HIPPIE:	HIPPIE	(Human	Integrated	Protein	Protein	Interaction	rEference)	is	a	file	
type	that	contains	the	weight	of	protein	-protein	interaction.	A	core	component	of	HIPPIE	is	
the	confidence	scoring	of	interactions	based	on	the	amount	and	reliability	of	evidence	
supporting	the	interaction.	This	score	is	calculated	as	a	weighted	sum	of	the	number	of	
studies	in	which	an	interaction	was	detected,	the	number	and	quality	of	experimental	
techniques	used	to	measure	an	interaction	and	the	number	of	non-human	organisms	in	
which	an	interaction	was	reproduced	[4].	
	
HIPPIE	is	a	tab	separated	file	type.	In	this	file	type,	individual	proteins	are	vertices	and	the	
interaction	weight	between	proteins	is	the	weight	of	the	edge	that	links	the	interaction.			
	
	
	
	
	
	
	
	
	

	
	
	
	
Figure	4.	Sample	HIPPIE	file	format	[4].		
	
In	figure	4,	the	yellow	colored	part	at	the	beginning	of	each	line	are	the	primary	proteins	
and	the	red	colored	once	are	also	proteins	that	interact	with	the	primary	protein.		The	blue	
colored	number	are	Ids	for	the	proteins.		The	orange	colored	double	number	is	the	weight	
of	the	interaction.		The	rest	of	data	is	a	meta	data	that	the	MASS	C++	graph	use	case	is	not	
interested	in.		Each	part	except	parts	after	the	interaction	weight,	is	separated	by	a	tab.			

enum	FILE_TYPE_ENUMS	{CSV,	HIPPIE,	MATSim,	TXT,	FILEGEN};	
	

……	 ….	 	 ….	 	 	 …	 ..	 …..	
SNX12_HUMAN	 29934		 FYN_HUMAN	 	 2534	 0.63	 experiments:peptide	

array;pmids:17474147;sources:IntAct,MINT	
ELK3_HUMAN	 2004	 GRB2_HUMAN	 2885	 0.63	 experiments:peptide	

array;pmids:17474147;sources:IntAct,I2D	
GRB2_HUMAN	 2885	 PRIC3_HUMAN	 4007	 0.63	 experiments:peptide	

array;pmids:17474147;sources:IntAct,I2D	
GRB2_HUMAN	 2885	 SP1_HUMAN	 6667	 0.63	 experiments:peptide	

array;pmids:17474147;sources:IntAct	
SNX12_HUMAN	 29934		 ELK3_HUMAN	 2004	 0.60		 experiments:peptide	

array;pmids:17474147;sources:IntAct	 	 	
	

	
In	the	above	HIPPIE	sample	file,	GRB2_HUMAN	(Id	=	2885)	has	two	neighbors,	
SP1_HUMAN	(Id	=	6667)	and	PRIC3_HUMAN	(Id	=4007)	with	weight	of	0.63	for	both	
interactions.		
	
Parsing	the	sample	file	above,	results	the	following	graph.		
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	 Figure	5.	Graph	Built	from	Parsing	the	HIPPIE	Sample	File.		

	
the	graph	type	for	HIPPIE	file	type	is	a	weighted	and	undirected	graph.		
	
To	parse	the	HIPPIE	file	type,	call	the	open	method	of	the	static	FileParser	class	with	the	
HIPPIE	enum.		
	
	
	
Figure	6.	calling	the	open	method	of	FileParser	class.		
	
The	method	opens	up	the	file,	read	the	primary	vertices	into	the	map	passed	in	as	an	
argument.	The	content	of	the	map	is	<string,	int>.		The	string	part	is	the	name	of	the	protein	
and	the	int	part	is	their	relative	position	in	the	file.	The	first	protein	is	given	an	int	value	of	
0(zero),	the	second	one	gets	1	etc.	This	integer	value	will	play	a	role	during	slicing	the	
number	of	vertices	across	cluster	computing	nodes.		
	

SNX12_
HUMAN	

SP1_	
HUMAN	

FYN_	
HUMAN	

ELK3_	
HUMAN	

GRB2_	
HUMAN	

PRIC3_	
HUMAN	

0.60	

0.63	

0.63	
0.63	

0.63	

FileParser::open	(string	filepath,	FILE_TYPE_ENUMS::HIPPIE,	unorderd_map	<string,	int>*	map)	

Once	the	vertices	are	populated	into	the	map	along	with	their	position	based	Id,	
FileParser::neighbor_init	method	will	populate	each	vertex’s	neighbors	along	with	the	
weight	of	the	connection.		
	
	
	
	
	
Upon	calling	this	method	with	the	appropriate	arguments,	the	class	will	call	the	right	
internal	method	to	populate	neighbors	for	each	vertex.	Here	‘VertexIntId’	is	the	value	of	the	
map	for	the	vertex	key,	in	map<vertex,	int>,	which	is	the	position-based	Id	of	the	vertices.		
	
	
2.1.1.2	MATSim:		MATSim	is	an	xml	file	for	representing	data	for	simulation	of	public	
transport.	The	simulation	data	contains	networks	with	links	available	to	public	transport	
vehicles,	a	file	describing	the	available	public	transport	vehicles,	a	file	containing	the	public	
transport	schedule,	and	some	specific	settings	in	the	configuration.		Each	link	has	a	list	of	
available	transport	modes.	If	no	modes	are	specified,	the	simulation	assumes	that	only	
"car"	is	allowed	on	such	links	[5].		
	
Here	is	a	same	data	for	MATSim	file	type.			
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	Figure	6.	Sample	MATSim	traffic	simulation	data	file	[5].	
	
In	MATSim	file	type,	all	the	vertices	are	inside	<nodes>	element	of	the	xml	structure.	The	
associated	neighbor	and	the	cost	of	the	link	is	given	inside	the	<links>	element.		
	

<network>	
	 <nodes>	
	 	 <node	id="1"	x="2000"	y="1000"	/>	
	 	 <node	id="2"	x="4000"	y="1500"	/>	
	 	 <node	id="3"	x="3000"	y="3000"	/>	
	 </nodes>	
	 <links	capperiod="01:00:00">	

<link	id="1"	from="1"	to="2"	length="3000.0"	capacity="1800"	freespeed="13.88"		
																																																																							permlanes="1"	modes="car"	/>	
<link	id="2"	from="2"	to="1"	length="3000.0"	capacity="1800"	freespeed="13.88"		

permlanes="1"	modes="car"	/>	
	 	 <link	id="3"	from="2"	to="3"	length="5000.0"	capacity="3500"	freespeed="22.22"	

	permlanes="2"	modes="car"	/>	
	 	 <link	id="4"	from="3"	to="2"	length="5000.0"	capacity="1800"	freespeed="22.22"		

permlanes="1"	modes="car"	/>	
	 </links>	
</network>	

neighbor_init(unordered	map<string,	int>	*	,	string	filepath,	FILE_TYPE_ENUMS	type	,int		
VertexIntId,	vector<string>	&neighbors,	vector<	double>	&weight,	string&)	

Parsing	the	above	MATSim	sample	file	results	the	following	graph.		
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
Figure	7.	graph	from	sample	MATSim	file.		

	
As	indicated	in	figure	7,	the	graph	resulted	from	parsing	MATSim	files	is	directed	and	
weighted.	This	makes	a	logical	sense	since	most	roads	are	two	way.	The	link	weight	
between	two	vertices	might	be	different	even	though	the	graph	above	doesn’t	show	this	
behavior.	The	weight	is	not	necessarily	the	same	between	two	nodes	in	both	directions.		
The	cost	of	A	to	B	might	be	for	example	5000	and	the	cost	from	B	to	A	might	be	2000.		
	
	
Because	C++	don’t	have	a	native	xml	parser	library,	I	used	a	third-party	library	called	
pugixml.	I	chose	this	library	for	its	high	performance	among	other	available	choices.		
More	information	can	be	found	about	pugixml	and	how	to	use	it	at	[6].		
	
Like	the	HIPPIE	file	type,	calling	the	FileParser::neighbor_init(),	with	the	right	arguments	
will	populate	the	neighbors	for	each	vertex.		
	
	
1.2 Implementing	new	classes	for	graph	features	
In	addition	to	the	file	parser	class	discussed	above,	there	are	other	new	classes	added	to	
support	the	graph	feature	of	MASS	C++	library.	The	UML	diagram	in	figure	2	shows	how	
these	classes	interact	each	other	and	with	the	existing	MASS	C++	classes.			
	
1.2.1 VertexPlace:	this	class	is	an	abstract	class	that	inherits	from	the	Place	class.	

User	defined	classes	which	wants	to	benefitted	from	MASS	C++	graph	features	

1	

2	

3	

3000.0	

3000.0	

5000.0	

5000.0	

must	inherit	from	this	class.	In	addition	to	inheriting	it,	they	should	also	define	
the	following	methods.	
	
	
	

		
	
	
	
	
	
	
	
	
	
	
	

Figure	8.	Method	that	should	be	defined	by	child	classes	of	VertexPlace	class.		
	
In	figure	8,	“UserDifinedCLass”	is	a	child	class	that	inherits	from	VertexPlace.	For	instance,	
if	a	class	called	MyGraph	inherits	from	VertexPlace,	in	place	of	UserDefinedClass,	the	
programmer	must	put	MyGraph.			
	
On	top	of	this,	the	user	must	implement	the	pure	virtual	method	called	callMetgod.	
	void	*callMethod(int	functionId,	void	*argument)	=	0;	
	
other	public	methods	of	VertexPlace	class	
	
Method	name		 Return	type		 Argument	and	what	the	function	does		
VertexPlace	 Constructor		 • String	Filepath:	the	file	path		

• FILE_TYPE_ENUMS:	one	of	the	file	type	
enums		

• Int	globalIndex:	global	Id	of	the	vertex	
• void*:	an	argument	for	the	user	defined	class			
• unordered_map<string,	int>	*:	map	pointer		

VertexPlace	 Constructor		 • globalIndex:	Id	of	the	vertex	as	int		
• void*:	argument	for	user	defined	class	

VertexPlace	 Constructor		 void*:	argument	for	user	defined	class	
VertexPlace	 Constructor	 • string	vertexName:	the	name	of	vertex		

• vector	<string>	&neighbors:	self-
explanatory			

• vector<double>	&weights:	self-explanatory		
	

addNeighbor	 void		 Adds	a	neighbor	to	the	existing	neighbors	
• string	neighborName:	name	of	the	neighbor		

extern	"C"	Place	*instantiate_from_file(string	filename,	FILE_TYPE_ENUMS	type,		
																																												int	global,	void	*arg,	unordered_map<string,	int>	*dist_map)	{	
				return	new	UserDifinedCLass(filename,	type,	global,	arg,	dist_map);	
}	
	
extern	"C"	Place	*instantiate(void	*argument)	{	
				return	new	UserDifinedCLass	(argument);	
}	
extern	"C"	void	destroy(Place	*object)	{	
				delete	object;	
}	

• 	double	weight:	weight	of	the	connection	
removeNeighbor	 void	 removes	a	neighbor	from	the	existing	neighbors		

• string	neighbor:	name	of	the	neighbor	to	be	
removed	

	
clearAllNeighbor
sAndWeight	

void	 	It	clears	all	the	neighbors.	Take	no	argument	

getNeighbors	 Vector<string>	 Return	all	the	neighbors	of	the	vertex.	Takes	no	
argument		

	
	 	
	
	
2.2.2.	GraphPlaces:	this	class	is	the	bread	and	butter	of	the	MASS	C++	graph	feature.		It	is	
the	child	class	of	Places	class.	When	this	class	constructed,	a	multi-dimensional	array	of	
Place	objects	will	be	maintained	inside	the	MASS_base::dllMap,	an	instance	of	map<int,	
Places_base	*>	.		Unlike	the	existing	MASS	C++	library,	the	graph	feature	supports	
dynamically	adding	and	removing	Place	(VertexPlace)	objects	once	instantiated.		
Adding/removing	Place	objects	after	instantiating	is	not	a	trivial	task.	Before	
adding/removing,	we	need	to	know	where	the	next	vertex	should	go	in	the	cluster.	We	
must	determine	how	to	retrieve	a	particular	vertex	when	we	need	it.	This	use	case	needs	a	
reliable	mathematical	mapping	algorithm	to	determine	the	next	computing	node	to	
send/remove	the	vertex	to.	
	
	Fortunately,	there	is	a	clever	mapping	algorithm	implemented	by	Justine	Gilroy	[3]	for	the	
MASS	Java	library	graph	feature.	MASS	C++	library	takes	advantage	of	that	algorithm.			
	
Here	a	brief	description	of	the	algorithm.		
	
Let’s	say	we	have	read	100	vertices	in	one	of	file	types	and	assume	we	have	four	members	
nodes	in	the	cluster,	nodes	with	rank	0,	1,	2,	and	3.		
Each	node	we	have	a	share	of	25	objects.	
	
Strip	size	=	#place/#computing	node	…………………………………………….[1]	
Strip	size	=	100/4	=	25.		--->	using	formula	1.		
Therefore,		
place	from	0-24	-----------goes	to	node	with	rank	0.	
place	from	25-49	---------goes	to	node	with	rank	1	
place	from	50-74	---------goes	to	node	with	rank	2	
place	from	75-99	---------goes	to	node	with	rank	3	
		
however,	because	of	the	dynamic	nature	of	the	graph	feature,	where	should	the	next	Place	
object	should	be	created	and	how	can	we	retrieve	it	if	needed?	This	is	where	the	Justin’s	
mapping	algorithm	comes	handy.	For	the	algorithm	to	work	as	intended,	the	initial	size	
(100	from	the	above	example)	should	not	be	modified	at	any	time	after	instantiating.		

	
To	determine	which	computing	node	the	next	vertex	should	go,	divide	the	global	Id	of	the	
vertex	by	the	size	(100	from	the	above	example)	and	then	take	module	of	the	initial	strip	
size	(25	from	the	above	example).	This	gives	you	the	computing	node	that	this	vertex	
should	go.			
	
The	following	example	is	taken	from	Justin’s	white	paper	[2],	with	little	modification		
	
	
	
	
	
	
	
	
	
	
	
Even	though	this	mapping	algorithm	solves	the	vertex	allocation	problem,	it	has	a	
downside.	It	doesn’t	share	the	workload	evenly.	Let’s	take	an	initial	size	of	100,	000(which	
is	not	too	big	to	assume	in	today’s	big	data)	and	10	commuting	nodes.	The	algorithm	
allocates	the	next	10,	000	nodes	for	node	1(rank	0).	Therefore,	node	with	rank	0	is	
overburdened	by	an	additional	10,000	jobs	before	the	algorithm	starts	allocating	vertices	
to	the	next	computing	node.		
	
I	attempted	to	generate	the	Id	of	the	vertex	randomly	(as	opposed	to	sequentially)	to	
mitigate	the	vertex	allocation	skewness	of	the	above	algorithm.	However,	I	realized	that	
doing	so	will	create	holes	in	the	simulation	space.	For	example,	if	the	random	number	
generator	produces	109	in	the	above	example,	the	simulation	space	is	hollow	from	the	
coordinate	where	vertex	with	Id	=100	resides	all	the	way	to	where	vertex	with	id	=	109	
resides.			
	
However,	for	lack	of	clear	solution	for	now,	I	implemented	the	same	algorithm	for	MASS	
C++	library.	But	this	algorithm	should	be	optimized	for	better	job	allocation	in	the	future.	
		
The	above	vertex	allocation	algorithm	is	implemented	in	GraphPlaces	class	for	MASS	C++	
library.		
	
	
GraphPlaces	class,	in	addition	to	inheriting	from	Places	classes,	it	also	implements	the	
Graph	interface	(a	pure	abstract	class).		
	
	
	
	
	

Vertex	Name:	Hello	
Global	index:	362	--->	let’s	assume	it	is	362.		
MASS	Size:	100	--->	the	initial	size	
Size	of	the	cluster:	4	
Stripe	size:	25	--->	100/4	
Layer	Index(raw):	3	-->	(362	/	100)	--->	the	row		
Next	node	rank:	2	-->	(362	%	100	/	25)	
Place	index	(column)to	add	the	vertex	into:	12	-->	(362	%	25)	
	

	
	
	
	
	
	
	
	
Public	methods	of	GraphPlaces	class.	
	

public		 GraphPlaces	(int	handle,string	className,int	boundary_width,int	dimension,	
string	filename,	FILE_TYPE_ENUMS	type,	void*	argument,	int	arg_size);	
	

! calls	the	Place_base	constructor,	and	the	Place_base	constructor	calls	
the	appropriate	file	parser	routine	indicated	by	FILE_TYPE_ENUMS.	
Then	the	vertices	will	be	populated	in	the	map<string,int>	for	further	
use.		

! After	populating	the	map,	the	master	node	instantiates	Place	objects	
and	holds	them	inside	MASS_base::dllMp	

! When	the	Places_base	constructor	returns,	GraphPlaces		constructor	
calls	the	“init_master_base	method	of	the	Places	class	to	send	the	map	
of	vertices	and	arguments	to	the	remote	nodes.	

	 	
	

Public	 GraphPlaces(int	handle,	string	className,	int	boundary_width,	int	
dimension,	void*	argument,	int	argSize,	int	numberOfVertices);	
	

! calls	the	Place_base	constructor,	then	the	Places_base	constructor	of	
the	master	node	calls	init_master	method	to	instantiates	Place	objects	
and	populate	then	in	MASS_base::dllMp	

! when	the	Places_base	constructor	returns,	the	GraphPlaces	
constructor	calls	the	init_master_base	method	of	the	Places	class	to	
send	arguments	so	that	remote	nodes	can	instantiate	Place	objects.	
	

public	GraphModel*		 getGraphOnThisNode	()	
! returns	all	the	GraphModel	objects	which	lives	on	the	master	node	

public	GraphModel*	 getAllGraphOnTheCluster	()	
! return	all	GraphModel	objects	that	live	on	the	cluster	

	 	
public	void	 		setGraph(GraphModel	&newGraph)	

! adds	the	GraphModel	to	the	value	indicated	by	the	argument		
	

public	bool	 addEdge(string	vertex,	string	neighbor,	double);	
! adds	an	edge	between	the	vertex	and	the	neighbor	and	set	the	weight	

of	the	link.		If	this	process	is	happening	on	the	master	node,	return	

true,	sends	addEdge	message	to	remote	nodes	and	return	false	 	
	

public	bool	 	removeEdge(std::string	vertexId,	std::string	neighborId);	
! removes	an	edge	between	vertices.	Return	true	of	the	process	

happens	at	the	master	node,	sends	removeEdge	message	to	remote	
nodes	and	return	false.		 	

	
public	int	 addVertex(string	vertexId);	

! adds	the	vertex	to	the	list	of	vertices	and	returns	the	index	
	 	

public	int	 addVertex(string	vertexId,	void	*argument,	int	arg_size)	
! creates	a	VertexPlace	object	from	the	argument	and	from	the	class	

and	adds	it	to	the	list	of	VertexPlace	vector	
	 	

public	bool		 removeVertex(std::string	vertexId);	
! removes	the	vertex	from	the	cluster.	Returns	true	if	the	vertex	is	on	

the	master	node,	sends	removeVertex	message	to	remote	nodes	and	
return	false	

public	bool	 removeEdgeLocally(std::string	vertexId,	std::string	neighborId);	
! removes	the	edge	between	vertices	and	its	neighbor	on	a	local	

machine.	If	the	edge	found	and	removed,	returns	true,	false	
otherwise.		

	 	
	

public	bool	 addEdgeLocally(std::string	vertexId,	std::string	neighborId,	double	weight);	
! addes	an	edge	between	the	vertices	in	the	argument.	If	the	vertices	

found	and	the	edge	formed,	it	returns	true,	false	otherwise.		 	
	

public	int		 addPlaceLocally(string	vertexId,	void*	argument,	int	arg_size);	
! create	a	Place	object	on	the	local	machine	from	the	argument	and	the	

class	name	and	adds	it	to	the	VertexPlace	vector	and	returns	the	
index	the	object	inserted.	If	the	process	couldn’t	succeed	returns	-1.			

	
public	bool	 removeVertexLocally(string	vertexId);	

! removes	the	vertex	on	the	local	machine	where	the	method	is	called.	
If	found	and	remove,	return	true,	false	otherwise.		

	
public	int	 addVertexPlace(string	host,	string	vertexId,	void*	argument,	int	arg_size);	

! calls	addVertexLocally	method	if	the	host	name	the	master’s	host	
name	and	returns	the	index	the	vertex	inserted.	If	the	hostname	is	not	
the	master,	the	method	send	addVertexPlace	message	to	the	remote	
nodes	and	returns	-1.		

	
public	void	 merge(GraphModel	&source,	GraphModel	&remoteGraphs);	

! merges	two	GraphModel	objects	together	

	
public	void	 callPlaceMethod(int	functionId,	void*	argument);		

! calls	the	Place’s	method	callMethod	for	each	vertex.	
	 		

public	void	 callAllWithReturns(int	functionId,	vector<void*>	&returns,	vector<void*>	
&arguments);	

! calls	the	Place’s	the	function	indicated	with	the	function	Id	and	keeps	
the	return	value	into	‘returns,	the	vector	of	void*	in	the	argument.	

	
public	void	 exchangeAll(int	currentFunctionId,	int	handle);	

! calls	the	function	indicated	by	the	currentFunctionId	for	the	
GraphPlace	simulation	object	indicated	by	the	handle.	Then	The	
vertexPlace	will	exchange	information	according	to	the	
implementation	of	the	function	indicated	by	the	currentFunctionId.		

	
public	void*	 	exchangeNeighbor(int	functionId,	vector<int>	neighbor,	void*argument);	

! the	neighboring	Place	objects	exchange	data	by	calling	the	function	
indicated	by	the	function	Id.	

	
public	int	 	getTotalPlaceOnThisNode	

! returns	the	count	of	vertices	which	lives	on	the	master	node.	
	
	
There	are	other	new	classes	created	for	the	graph	feature,	but	they	are	small	and	there	are	
enough	comment	comments.	Also,	they	are	not	usable	for	the	user,	they	are	there	for	the	
programmer.	
	
1.3 Modifications	on	the	Existing	MASS	C++	Classes		
In	addition	to	creating	new	classes,	I	have	modified	some	of	the	existing	classes.		
	
2.3.1	Places_base:	
	there	are	additional	utility	methods	added	in	this	class	to	support	the	graph	features.	Upon	
calling	the	constructor	from	GraphPlaces	class	with	the	appropriate	arguments,	the	
constructor	calls	either	‘init_all_graph’	for	the	master	node	or	
‘init_all_graph_for_worker_nodes’	for	the	worker	nodes.		
	
The	difference	between	these	methods	is,	init_all_graph	method	reads	the	vertices	from	the	
given	file	type	by	calling	‘FileParser::open’	method	before	creating	and	populating	the	
MASS_base::dllMap	with	Place	object.	However,	the	remote	nodes	will	get	the	vertex	map	
(unordered_map<string,	int>)	from	the	master	node.	Therefore,	remote	nodes	don’t	need	
to	parse	the	file	again.	So	they	call	‘init_all_graph_for_worker_nodes’	method	instead	
	
On	top	of	this,	the	init_all_graph	and	the	init_all_graph_for_worker_nodes	use	the	
‘instantiate_from_file’	object	factory	method	in	place	of	the	usual	‘instantiate’	object	factory	
method	of	DllClass.		

	
In	addition,	there	are	some	redundant	methods	that	are	also	implemented	in	GraphPlaces	
class.	The	reasoned	for	this	redundancy	is,	because	of	the	way	the	classes	compiled	and	
linked	in	the	Makefile,	we	cann’t	use	either	Places’s	or	GraphPlaces’s	methods	inside	the	
MProcess	class.	Doing	so	will	result	in	the	‘undefined	references’	linker	error.	Therefore,	
the	easiest	solution	I	found	is	propagating	some	of	the	methods	from	GraphPlaces	to	
Places_base	class.		
	
2.3.2	other	modifications	on	the	existing	classes	
Other	modifications	which	I’m	not	covering	in	detail	are	also	made	inside	the	Message,	
MProcess,	MObject	header	file,	DllClass	and	Places	classes.		
	
There	are	additional	elements	added	in	the	‘ACTION_TYPE’	enum	added	for	graph	features.		
Serialization	and	deserialization	routines	are	also	implemented	for	these	added	enum	
elements	in	the	Message	class.	These	added	ACTION_TYPE	enum	are	also	handled	inside	
the	MProcess	class.		
	
Here	under	is	the	diagrammatic	view	of	sequence	of	actions	when	MASS	C++	started	with	
GraphPlaces.		
	

	
	
	

Figure	9.	Sequence	of	Events	when	MASS	started.		
	

	
	
	
	
	
	 	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

References
1. Thakur,	Rajeev	and	Gropp,	William.	“Parallel	I/O”.		www.citeseerx.ist.psu.edu.	

Accessed	June	12,	2020.		
2. Fukuda,	Munehiro.	MASS	C++:	Parallel-Computing	Library	for	Multi-Agent	Spatial	

Simulation.	University	of	Washington,	August	4,	2015.		
3. Gilroy,	Justin.		Dynamic	Graph	Construction	and	Maintenance.	University	of	

Washington,	2020.		
4. “Human	Integrated	Protein-Protein	Interaction	rEference.”		www.cbdm-01.zdv.uni-

mainz.de/~mschaefer/hippie/information.php.	Accessed	July	12,	2020.		
5. Rieser,	Marcel.	

“matsim.atlassian.net/wiki/spaces/MATPUB/pages/83099693/Transit+Tutorial.”		
Last	updated	Jan	12,	2018.		Accessed	July	20,	2020.		

6. “pugixml	1.10	quick	start	guide.”	www.pugixml.org/docs/quickstart.html.		Accessed	
Aug	2,	2020.		

