
Hamzah Shahzad CSS497: Spring 2025 Term Report

1

Oracle Benchmarks for Graph Computing

1. Overview

Graph computing is an important aspect in our current world. Many companies and work

environment use graph computing to understand the relationship between many things, such as

social media, ecommerce, etc. To simply put, graph computing is useful in many areas, and some

companies have created their own graph computing service that they also offer to other

companies or individuals. For this project, when it comes to evaluating how useful these services

are, we mainly measure their performance. Specifically, as the number of computing resources

increases, then the time it takes to perform graph algorithms/queries should decrease.

At the University of Washington Bothell, the Distributed Systems Lab (DSL) has created a

system called Multi-Agent Spatial Simulation (MASS). MASS is UWB’s distributed memory

system library, and it uses agents to perform its’ computations. MASS also includes a graph

computing system that is used with graph database. For this project, we want to compare MASS’

performance with the performance of the commercial graph computing systems.

For my role in this project, I currently am working with Oracle Cloud Infrastructure (OCI) to use

their database and graph computing system together to measure the performance. OCI gives

access to a database where data can be stored, and it also has access to creating a virtual machine

instance where our graph server will be held. This virtual machine instance needs a “Flex” shape

so that we will be able to change the amount of OCPUs allocated for our graph server. The

Oracle PGX Graph Server is the graph server that oracle has created and utilizes when it comes

to graph computing. My current goal was to install the Oracle PGX Graph Server on to a virtual

machine and test the performance of that graph server using graphs ranging from 1K vertices to

40K vertices. For my current progress, I implemented and benchmarked some simple queries, I

implemented and benchmarked some of the given PGX algorithms, and I have worked towards

fully implementing Articulation Points.

2. Background

We need to utilize both an Oracle Database and the Oracle PGX Graph Server to test our graphs.

The Oracle Database is simply where one can store the data of the graph, such as the vertices,

edges, properties, etc. When using a CREATE PROPERTY GRAPH query on this data, the

Oracle Database does not actually create a property graph, instead it will create the metadata that

is required to understand and reconstruct that graph. Oracle’s Graph Server will then use that

metadata to understand, interpret, and interact with the graph.

Hamzah Shahzad CSS497: Spring 2025 Term Report

2

2.1. Understanding PGX

The Oracle PGX Graph Server is a server that when installed on to a machine/system, it will

utilize the computing resources of that machine/system to aid in performing parallelism over the

graph. Oracle PGX is designed to automatically perform parallelism while using given PGX

algorithms. The number of threads available for the server will depend on the number of CPUs

on the machine that the server is on. If your PGX server is installed on a machine with 4 CPUs,

then PGX can only use 4 CPUs. This also means that PGX will primarily scale vertically. While

other systems we are testing, like MASS, utilize multiple machines on a cluster to increase the

computing power, Oracle PGX will require allocating more computing on a single machine that

the PGX is on. Currently I am utilizing a virtual machine instance on OCI as that allows me to

allocate more or less computing power when I need to for testing. The main way to utilize PGX

is as a remote server, which means that the client application needs to travel through the network

to connect to the PGX Server, and same when the PGX Server needs to connect to the client

application.

2.2. Loading Graphs

Oracle PGX usually loads graphs using the metadata of that graph, and Oracle PGX can load that

metadata using different data sources. These data sources include JSON files, a Graph

Configuration Object, or using the readGraphByName API to read the graph straight from the

database. All three of these methods have one thing in common, which is that the data for this

graph is stored on an Oracle Database. The data in the Oracle Database is stored in relational

tables. In the Oracle Database there must be at least 1 vertex table and at least 1 edge table. The

vertex table will hold the ID of each vertex and the properties of each vertex. The edge table will

hold the ID of each edge, the source vertex ID and destination vertex ID for each edge, and the

properties for each edge. As mentioned earlier, executing a CREATE PROPERTY GRAPH Pgql

Statement with the vertex table and edge table will create the metadata for that graph. Once the

metadata is created, you can read the graph into the PGX using the readGraphByName API.

Oracle PGX uses this metadata and loads the graph in-memory. The readGraphByName API

essentially reads the metadata from the Oracle Database, internally creates a Graph

Configuration Object, and then internally creates that graph for analysis. Many of the graph’s

topology, data, and structure are stored off-heap, however any properties that have the data type

of String are stored on-heap. Oracle PGX partitions a graph by using the labels that the vertex or

edge has. If two vertices or edges have the same label, then they are grouped together. Oracle

PGX also utilizes different partitioning strategies: KEYS_AS_IDS, PARTITIONED_IDS, and

UNSTABLE_GENERATED_IDS. The default strategy is PARTITIONED_IDS which creates

IDs for vertices and edges by combining the label name with the provided key (user provided or

auto-generated). Results for how long it takes to load the graphs can be seen in the Appendix

Hamzah Shahzad CSS497: Spring 2025 Term Report

3

2.3. Simple Queries

For my current progress I tested some simple queries using the PGX Graph Server. These simple

queries are getVertex(), getNeighbors(), and getParents(). getVertex involves seeing how the

PGX Server gets a vertex from the graph. getNeighbors is testing to see the performance when

we want the neighbors of a vertex. Neighbors are categorized as the vertices that a vertex has an

edge with. getParents is similar to getNeighbors, however we instead of getting all vertices, we

specifically want the vertices that are seen as the “parents’ of the given a specific vertex. Graphs

in the Oracle PGX are primarily directed, so this means we need to account for the direction of

the edges. These simple queries should not be that intensive of computing resources compared to

more complex graph algorithms, and their performance should be relatively quick.

2.4 PGX Algorithms

Maven Central includes the Oracle PGX API which allows one to connect with their PGX Server

using Java code. The PGX API also gives access to the Analyst class. The Analyst class allows

someone to use PGX Algorithms with their graph. These algorithms are built-in with the PGX

Server and include algorithms for counting triangles, local clustering coefficient, weakly

connected components, etc. I wanted to test these algorithms to see how PGXs’ implementation

of these algorithms compared to other services and MASS.

2.5. Articulation Points

Articulation Points (or sometimes described as cut vertices) are vertices where if removed,

increases the number of components within a graph. Articulation Points are helpful to find as

they can show possible vulnerabilities within the current graph, as if an articulation point gets

removed, then the graph becomes disconnected. There are two ways to find articulation points.

The first way is to check if the number of total components increased when you remove a vertex.

You do this for each vertex, and any vertex that when removed increases the number of

components is an articulation point. However, this method is simply too taxing to perform. For

smaller graphs it might be fine, but as the graph gets larger it will get slower. The other way to

find articulation points is to use Tarjan’s algorithm. When using Tarjan's algorithm, you have to

take account of two things, discovery time and lowest possible vertex reachable. Discovery time

is simply when the vertex was discovered, and lowest possible vertex reachable is the farthest

back possible vertex that the vertex can reach based on the DFS tree.

Using Tarjan’s algorithm, there are two cases that determine when a vertex is an articulation

point. The first case is related to the root vertex. The root vertex is the vertex that the articulation

points algorithm started with. If the root vertex has at least 2 subgraphs connected to it, then that

is an articulation point. The next case is related to a vertex that isn’t the root. For a vertex that

isn’t the root, if the subtree of a child vertex has no connection (back edge) to an ancestor of the

parent vertex, then the parent vertex is an articulation. In Figure 1 you can see how articulation

points using those cases create more components.

Hamzah Shahzad CSS497: Spring 2025 Term Report

4

Figure 1: How Articulation Points Are Found

3. Implementation

3.1. Simple Queries

Implementing the simple queries utilizes the API given from the PGX-API Maven dependency.

For simple tests like getVertex, geNeighbors, and getParents required using the api functions to

interact with the graph and get the vertices. For getVertex(), all I did was use the getVertex

function to get the vertex from the graph. getNeighbors and getParents are a bit different. Oracle

Graphs are directed, so getNeighbors and getParents do not function the same. For getParents,

we need to use the function getInNeighbors() to get the incoming vertices, which would indicate

that they are parents of that vertex. For getNeighbors, we need both the incoming and outgoing

neighbors, so I use getNeighbors(Direction.BOTH) to get every neighbor vertex that is attached

to that vertex. When it comes to testing the simple queries, I ran them 1000 times and calculated

the average.

3.2. PGX Algorithms

Implementing the PGX given algorithms is also simple. The Analyst class is the object that

executes these algorithms, so I have to create the analyst object using the session from my PGX

connection. Using the analyst class, I call the functions for the specified algorithm that I want to

test. One thing to note is that the implementation of these algorithms is based off how PGX has

implemented them. For example, the triangle counting algorithm implemented in PGX is for the

entire graph, which means that it will count the triangles for the entire graph. If you want to

count triangles for a specific vertex, then that needs to be implemented on its own. For the PGX

algorithms, my main method of getting the benchmarks was running them five times and then

calculating the average.

Hamzah Shahzad CSS497: Spring 2025 Term Report

5

3.3. Articulation Points

When it comes to implementing articulation points, I followed the Tarjan’s algorithm approach.

Like mentioned earlier, using Tarjan’s approach is usually faster than the simple approach. First,

I have to implement setting up the articulation points algorithm by gathering all the neighbors for

each vertex. I am collecting the neighbors in an ArrayList so that every neighbor of the vertex is

contained. The getNeighbors function returns a Collection<PgxVertex<Object>> structure, so I

take that collection and turn it into an ArrayList so that I can have access to each neighbor. A

Collection only acts as a container that holds the data, so you can’t get individual elements,

which is why I am using an ArrayList so that I can have access to the individual neighbors in the

collection of neighbors. I have to go through each vertex in the graph and collect their neighbors,

and all of these neighbors are in one big ArrayList which holds ArrayLists.

Next, I initialize all the necessary data that I need to run the articulation points algorithm. This

includes creating the arrays for low and disc, lowest reachable vertex and discovery time

respectively. I also create arrays to hold the number of subgraphs for each vertex, the parents of

each vertex, and whether or not a vertex has been initially visited. Each array has the length of

the number of vertices in the graph. This makes it that the ID of the vertex can act as the index in

the array. When it comes to actually running the articulation points algorithm, I created a Stack.

Usually when it comes to creating an articulation points algorithm, it involves using recursion.

However, when I initially used the recursive approach, I was running into a StackOverflowError.

The reason the StackOverflowError was triggering was because too many recursive calls were

being pushed into the call stack, which means at some point the call stack had reached its limit.

Usually for a smaller graph, like a graph with 1K vertices, this doesn’t occur. However, when

running the articulation points algorithm for larger graphs, ones with 10K+ vertices, I was

running into the StackOverflowError.

In order to prevent this error from occurring, I used a Stack data structure. Using a Stack data

structure means that in order to implement the articulation points algorithm, I can’t use the

recursive approach and instead can only use the iterative approach. When running the

articulation points algorithm, I utilize a Stack to emulate the recursive process. When a vertex id

is in the stack, we only want to pop it from the stack once we have checked every neighbor. That

means initially when you want to get the index of a vertex, you need to peek instead of pop so

that the structure of the DFS tree isn’t broken.

When a vertex is first initially visited, we need to set the low and disc for that vertex as the

current number of hops/moves, and we also want to set the visited for that vertex to be true.

Increment the moves by one afterwards. It’s important to remember that because we are using the

Stack approach, we want to set the low and disc only if the vertex is not visited yet, as if we

don’t check for that, the low and disc for a vertex originally can be overwritten.

Hamzah Shahzad CSS497: Spring 2025 Term Report

6

Figure 2: Setting low and disc

After setting low and disc, we want to go through the neighbors of that vertex. In the iterative

stack approach, we have the neighbors for each vertex in an ArrayList so that we can get the

neighbors by simply using an index. I created an array in the setup phase called edges. This

array simply holds the neighbor index for each ArrayList related to a vertex. Once I get the

current neighbor index, we get that neighbor from the current vertex’s ArrayList of neighbors.

Afterwards we increment that neighbor index, so that next time we can get the next neighbor.

Using the current neighbor index, we determine if it’s been visited or not. If it hasn’t been

visited, then that means you add it to the stack so that you can go through the neighbors of that

vertex the next loop. I also increment the number of subgraphs for the parent vertex, and you set

the neighbors’ parent. If the neighbor has been visited and it is not the parent of the current

vertex, then you update the low of the current vertex with the minimum between the low of the

current vertex and the discovery time of the neighbor vertex.

Figure 3: Checking the neighbors

Once we have gone through every neighbor for a vertex, for each neighbor we update the low of

the current vertex with the minimum between the low of the current vertex and the low of the

neighbor vertex. Afterwards we check the two cases for articulation points I described earlier,

Hamzah Shahzad CSS497: Spring 2025 Term Report

7

and then we pop from the stack since we’re done with that vertex. Once this algorithm is fully

completed, then we should have all the articulation points possible in our graph.

Figure 4: Getting articulation points

4. Results

One important note to remember is that the benchmark results can vary based on the way you are

running the tests. This is also related to how PGX works, specifically connecting to it. There are

two primary ways to run the tests: Running on your client machine (laptop, cssmpi machine, etc.)

or running on VM on the same subnet as the PGX Server. Every PGX API function/method is a

remote procedure invocation. This means that when you call a PGX API function/method, it

needs to travel through the network to connect to the machine the PGX server is on. This is also

the same if the PGX server needs to send something back. When running from you client

machine, the results can vary as communication between the client and the server needs to be

through the network, however when you run these tests on the same subnet, that connection time

is somewhat nonconsequential. Another thing that’s important to remember is that when you first

connect to the PGX Server, it needs to establish a connection with the database. This can make

loading a graph and some queries seem longer than they are, which can make the results less

accurate. To account for this, just have the PGX Server read a graph once so that it establishes a

connection to the database and then run the tests again to start properly getting the results. Also,

as a note for benchmarking, because PGX uses OCPUs, the equivalent is 2 OCPUs = 1 machine

(cssmpi/Hermes).

4.1. Simple Queries

One thing that we can notice with these simple queries is that the number of computing power

(in this case OCPUs) does not necessarily impact on the performance of the simple queries. This

implies that the PGX Server does not utilize parallelism to perform these queries. We also notice

that getNeighbors consistently takes longer than getParents. Once again, this is because

Hamzah Shahzad CSS497: Spring 2025 Term Report

8

getNeighbors has to get both incoming and outgoing neighbors, while getParents just needs to

get the incoming neighbors. This means that getNeighbors does more work than getParents.

Figure 5 – 6: Averages for Simple Queries for 1K Graph and 40K Graph over 2 – 48 OCPUs

4.2. PGX Algorithms

The PGX algorithms provided by the PGX API and Analyst class are algorithms that are

designed to utilize the parallelism of the PGX Server. In the graphs we can see that parallelism in

the PGX Server is taking effect. When we add more OCPUs (more computing power), the

amount of time it takes to complete these algorithms is shortened. Some of the algorithms that

are affected by parallelism are local clustering coefficient, triangle counting, weakly connected

components, and article rank. Figure 7 showcases this trend in local clustering coefficient and

triangle counting as the average time decreases when the number of OCPUs increases. This trend

also exists for the graphs of various sizes, such as 1K vertices, 3K vertices, 10K vertices, etc.

Figure 7: Averages for Local Clustering Coefficient and Triangle Counting for 40K Vertices over 2 – 48 OCPUs

However, there are some algorithms where the amount of OCPUs seems to have no effect or

little effect on how it performs. This can give insight into the inner working of these algorithms,

as it could show that they have a more iterative approach. If they have a more iterative approach,

then that might mean parallelism doesn’t really influence how fast it finishes. You can see in

Hamzah Shahzad CSS497: Spring 2025 Term Report

9

Figures 8 and 9 that the number of OCPUs does not seem to affect an effect on the algorithms

compared to local clustering coefficient, triangle count, weakly connected components, and

article rank.

Figure 8 – 9: Strongly Connected Components Tarjan’s Approach and DFS Average for 40K Vertices over 2 – 48 OCPUs

4.3. Articulation Points

I have not gotten the chance to collect benchmark results for articulation points yet. This is

because there are still some errors in my setup and algorithm that I need to fix. I aim to collect

benchmark results by the end of the Summer Quarter.

5. Conclusion

Going into this project, I had very little information on distributed systems, graph computing,

etc. However, as I was working on the project, I got to learn more about these topics in general. I

especially learned more about distributed systems and graph computing. I was also the first

person on this project to set up and learn about Oracle and how they do graphs. Using Oracle and

creating benchmarks really helped me understand the idea of why using distributing systems is

important, especially when it comes to understanding large datasets.

For Spring Quarter 2025, I mainly aimed to do two things: Set up using Oracle’s Graph Server

and Database, and to create some benchmarks for Oracle. For Summer Quarter 2025, my aim is

to finish writing and getting results for the Oracle benchmarks. Another goal I have for Summer

Quarter 2025 is to get into MASS so that I can get results to compare with Oracle’s results.

Hamzah Shahzad CSS497: Spring 2025 Term Report

10

Appendix A: Simple Queries Implementation

Figure 10: Implementing Simple Queries Benchmarks

Hamzah Shahzad CSS497: Spring 2025 Term Report

11

Appendix B: PGX Algorithms Implementation

Figure 11: Implementing PGX Algorithms Benchmarks

Hamzah Shahzad CSS497: Spring 2025 Term Report

12

Appendix C: Setting Up Articulation Points

Figure 12: Setting Up Everything Needed to Run Articulation Points

Appendix D: Benchmark Results

Table 1: Simple Queries Benchmarks Client Connection

Average over 1000 runs

OCPUs Vertices Edges get_vertices_avg get_vertex_avg get_neighbors_avg get_parents_avg

2 1000 93480 0 102 220.26 208.98

2 3000 293804 0 103.15 215.62 207.85

2 5000 492890 0 101.53 218.24 245.03

2 10000 989990 0 104.7 219.54 214.53

2 20000 1986380 0 103.06 217.19 216.48

2 40000 3994424 0 103.26 216.63 211.05

4 1000 93480 0 105.92 215.73 211.56

4 3000 293804 0 102.18 216.32 209.59

4 5000 492890 0 100.18 212.3 209.57

4 10000 989990 0.02 102.34 212.73 203.93

4 20000 1986380 0 99.31 211.07 207.02

4 40000 3994424 0 100.29 208.63 205.84

Hamzah Shahzad CSS497: Spring 2025 Term Report

13

8 1000 93480 0 103.02 216.22 211.1

8 3000 293804 0 103.81 213.49 205.83

8 5000 492890 0 101.77 210.51 206.14

8 10000 989990 0 100.4 212.32 206.28

8 20000 1986380 0 99.92 213.6 207.31

8 40000 3994424 0 100.67 211.18 209.8

16 1000 93480 0 103.33 217.42 218.45

16 3000 293804 0 101.31 213.6 207.07

16 5000 492890 0 100.88 209.91 205.38

16 10000 989990 0 99.91 211.7 205.62

16 20000 1986380 0 100.91 213.96 206.91

16 40000 3994424 0 100.72 216.23 206.53

24 1000 93480 0 103.8 210.27 204.28

24 3000 293804 0 101.58 209.15 207.21

24 5000 492890 0 101.59 212.35 213.79

24 10000 989990 0 102.38 211.81 205.57

24 20000 1986380 0 102.96 211.55 206.46

24 40000 3994424 0 100.09 210.4 205.88

32 1000 93480 0 103.49 218.62 209.87

32 3000 293804 0 102.39 215.39 210.83

32 5000 492890 0 101.64 213.18 209.63

32 10000 989990 0 101.82 213.52 212.96

32 20000 1986380 0 101.53 213.47 208.81

32 40000 3994424 0 102.28 215.55 208.5

40 1000 93480 0 105.22 217.79 220.06

40 3000 293804 0 102.25 216.63 213.01

40 5000 492890 0 103.26 217.46 213.27

40 10000 989990 0 103.81 219.65 217.82

40 20000 1986380 0 103.89 219.42 214.25

40 40000 3994424 0 102.57 220.87 209.41

48 1000 93480 0 103.84 216.28 208.33

48 3000 293804 0 103.11 215.68 209.44

48 5000 492890 0 102.52 216.1 209.85

48 10000 989990 0 102.2 219.68 207.5

48 20000 1986380 0 100.04 210.83 206.11

48 40000 3994424 0 100.4 209.61 207.01

Table 2: Simple Queries Benchmarks Same Subnet

OCPUs vertexcount edgcount get_vertices getvertex getneighbors getparents

2 1000 93480 0 5.28 11.46 8.79

2 3000 293804 0 4.59 11.21 8.78

2 5000 492890 0 4.35 11.26 8.59

Hamzah Shahzad CSS497: Spring 2025 Term Report

14

2 10000 989990 0 4.54 11.26 8.77

2 20000 1986380 0 4.45 11.07 8.36

2 40000 3994424 0 4.41 10.84 8.51

4 1000 93480 0 4.24 9.94 8.04

4 3000 293804 0 4.03 10.19 8.05

4 5000 492890 0 4.07 10.29 8.1

4 10000 989990 0 3.86 10.18 8

4 20000 1986380 0 3.82 9.91 7.91

4 40000 3994424 0 3.85 9.92 7.8

8 1000 93480 0 4.11 10.15 8.14

8 3000 293804 0 3.83 9.98 8.05

8 5000 492890 0 3.93 10.14 8.14

8 10000 989990 0 4.03 10.13 8.06

8 20000 1986380 0 3.83 9.94 7.8

8 40000 3994424 0 3.83 10.06 8.02

16 1000 93480 0 4.51 10.8 8.63

16 3000 293804 0 4.61 10.6 8.52

16 5000 492890 0 3.94 10.18 8.41

16 10000 989990 0 3.9 10.28 8.22

16 20000 1986380 0 4.5 11.59 9.78

16 40000 3994424 0 4.52 10.88 9.06

24 1000 93480 0 5.61 10.74 8.19

24 3000 293804 0 4.2 10.39 8.41

24 5000 492890 0 3.85 9.8 8.04

24 10000 989990 0 3.99 10.09 8.21

24 20000 1986380 0 3.81 9.81 8.14

24 40000 3994424 0 3.98 10.21 8.39

32 1000 93480 0 5.36 10.8 8.27

32 3000 293804 0 4.45 10.59 8.7

32 5000 492890 0 4.01 10.37 8.64

32 10000 989990 0 4.07 10.32 8.52

32 20000 1986380 0 3.88 10.04 8.35

32 40000 3994424 0 4.05 10.19 8.48

40 1000 93480 0 5.5 10.79 8.41

40 3000 293804 0 4.2 10.3 8.34

40 5000 492890 0 4.06 10.05 8.34

40 10000 989990 0 3.94 10.07 8.42

40 20000 1986380 0 3.95 10.23 8.46

40 40000 3994424 0 3.85 9.96 8.19

48 1000 93480 0 5.45 10.74 8.39

48 3000 293804 0 4.41 10.58 8.5

48 5000 492890 0 4.19 10.6 8.65

48 10000 989990 0 4.04 10.29 8.49

Hamzah Shahzad CSS497: Spring 2025 Term Report

15

48 20000 1986380 0 4.07 10.4 8.54

48 40000 3994424 0 4.02 10.37 8.59

Table 3: PGX Benchmarks Client Connection

PGX Benchmarks were the average of 5 runs

OCPUs Vertices Edges countTriangles bfs dfs articleRank LCC sccTarjan's wcc

2 1000 93480 1250.6 539.6 446.8 235.4 1161.8 354 336

2 3000 293804 3879.8 442.4 428.4 253.2 3672 323 320.6

2 5000 492890 5127 430.4 447.4 269.4 5756.8 345 359

2 10000 989990 6464.2 426.2 447.4 343.4 12001 377.8 364.4

2 20000 1986380 26331.2 425.2 555.4 493.8 28946.6 461.6 438.8

2 40000 3994424 34216.2 415 657.4 702.8 71055 612.4 595

4 1000 93480 845 480.2 433.4 228.6 736.4 325.8 324.4

4 3000 293804 2149.4 430.2 438.4 210.6 2619.8 315 306.4

4 5000 492890 2803.4 416.2 459.2 231.2 3671.8 335.4 304

4 10000 989990 3956.4 444.6 442.2 246.8 6769.4 375.4 343.8

4 20000 1986380 10377.8 422.8 525.6 299.6 11998 446.2 369

4 40000 3994424 16810 410.8 621.6 405.4 32094.2 649 433.2

8 1000 93480 870.4 496 440.8 251.2 443.8 321 362.2

8 3000 293804 1313.6 439.8 437.6 214.8 1031.2 314.4 303.2

8 5000 492890 1732 412.8 441.2 203.8 1581.6 347.6 308.8

8 10000 989990 2817.6 429.2 442.2 210.8 3659.2 389.4 304.8

8 20000 1986380 4921.6 419.6 522.2 253.6 5945.2 438.6 348

8 40000 3994424 12110.8 426.6 638.2 315 14082.6 652.2 378.2

16 1000 93480 793.8 508.8 432.2 219.4 379.2 330 364.8

16 3000 293804 969 451.4 435.8 209.4 752 314 317

16 5000 492890 1035.8 431.8 442.6 206.2 1036.2 354.8 306.6

16 10000 989990 1637.8 420.8 461 207.6 1787 386.2 302.2

16 20000 1986380 2822.8 423 512.4 225.8 3645.8 446.2 318.6

16 40000 3994424 4127.4 418.8 625.6 238.4 7856.8 624.6 351.6

24 1000 93480 753.2 487.8 442.6 236.8 324.2 313.6 353.6

24 3000 293804 733.4 423.8 432.4 215.8 476.8 305.8 312.4

24 5000 492890 798 411.6 428.6 200.2 729.4 332.4 308.2

24 10000 989990 1176.8 426 442.6 200.8 1564 352.6 309.2

24 20000 1986380 2830.4 422.6 512.4 208.8 2588 430 307

24 40000 3994424 3880.8 419 598.8 249.2 5863.2 599.8 335

32 1000 93480 762.4 493.4 436.2 235.4 304.4 333.4 354.4

32 3000 293804 997.4 433.8 434 200.8 424.4 305.6 317.8

32 5000 492890 703.6 420.2 428.2 207.8 584 346 312.6

32 10000 989990 893 416.4 440.8 208 1046.2 370.8 296

32 20000 1986380 1755.8 441 504.8 217 2582.8 434.8 299.8

Hamzah Shahzad CSS497: Spring 2025 Term Report

16

32 40000 3994424 3042.8 410 593.2 245.2 4709.4 620.8 303

40 1000 93480 529.4 407.6 431.2 219.4 238.8 218.6 302.6

40 3000 293804 550.2 425 429.4 203 384.6 304.4 303.8

40 5000 492890 625.2 401 423.2 204.8 569.8 334.8 304.4

40 10000 989990 731.4 430.8 447.2 199.6 978.2 380.2 295.6

40 20000 1986380 1768.6 406.6 529.6 213.8 1563.8 439.2 302.6

40 40000 3994424 2237 422.8 595.2 212.6 3652.4 604 312.2

48 1000 93480 396 402 425.8 212.4 237.2 297.6 346.8

48 3000 293804 570.6 412.6 419.4 203.8 363.8 305.6 302.4

48 5000 492890 585.8 417.2 434.8 204.2 457.6 337.6 315.8

48 10000 989990 729.4 416 453.6 201.4 736.8 368.8 314.4

48 20000 1986380 1211.8 406.4 513.4 197.6 1555.2 441.4 296.4

48 40000 3994424 2842.4 414.2 616.6 208.8 2612 635.2 311.4

Table 4: PGX Benchmarks Same Subnet

OCPUs vertexcount edgcount countTriangles bfs dfs articleRank LCC sccTarjan wcc

2 1000 93480 690.6 37.6 32.8 36 1049.6 27.2 30.8

2 3000 293804 2147.4 47.6 55.8 47.2 3049.2 51.2 51.2

2 5000 492890 3149.2 39 91.4 83 5059 79.4 77.2

2 10000 989990 6078.8 43.4 100.4 145.8 10064 138.6 99.6

2 20000 1986380 10959.2 49.8 152.2 276.6 19081.8 279.4 255.4

2 40000 3994424 28051.2 52.4 283.8 533.4 57148.6 537.6 537

4 1000 93480 583 21.8 27 19 535.4 23.8 17.6

4 3000 293804 2100.4 33.8 51.6 31.2 2043.8 48.4 30.6

4 5000 492890 3101.8 27.6 59.6 44.8 3046.4 55.6 33.2

4 10000 989990 3939.8 36.6 84.2 77.4 6050.4 81 69.2

4 20000 1986380 9616.8 35.8 148.6 144.8 11868.2 275 121.4

4 40000 3994424 13558.4 35.4 277.6 272.6 30089 532.2 249

8 1000 93480 360.2 26 27.2 19.6 325.8 22.4 19

8 3000 293804 1082.6 44.6 51.8 28.8 1045.2 49.2 21.4

8 5000 492890 2106.4 31.4 60.2 28.4 2046 76 28.2

8 10000 989990 2122.8 39.2 85.6 45 3048.6 121.6 38.4

8 20000 1986380 5191.8 26.4 150.2 78.8 6055.8 277.2 82

8 40000 3994424 8130.8 33.4 280.4 146 14068.6 535.4 136.4

16 1000 93480 564 31.4 29.2 20 147.2 24.4 17.8

16 3000 293804 577 40.2 52.8 19.8 532.4 49.4 17.6

16 5000 492890 1085.8 27.2 66.8 20.2 1046 83 23.4

16 10000 989990 1107.2 34 87.2 30.6 2048.8 97.6 32.4

16 20000 1986380 3143.4 28.2 152 47.2 3052.6 280.2 41.4

16 40000 3994424 4414.6 30.2 285.2 83.4 8065.6 538.8 81.2

24 1000 93480 388.8 158.6 38.2 47.8 172.4 45.8 113.2

24 3000 293804 676.8 41.8 58.4 18.8 530.4 48.6 20.8

Hamzah Shahzad CSS497: Spring 2025 Term Report

17

24 5000 492890 568.4 49.4 63.6 18.4 529 61.2 19.2

24 10000 989990 793.4 38.6 84.2 27.4 1042.4 133.2 23.6

24 20000 1986380 2138.4 26.6 150 45 2047.4 275.8 41

24 40000 3994424 3397.8 27.6 279.6 79 5054.8 534 74.8

32 1000 93480 611 94 36.6 46.8 120 48 85

32 3000 293804 684 42.2 58.2 19.2 271.8 48.4 20

32 5000 492890 572.8 42.2 57.8 18.6 531.4 61.8 16.2

32 10000 989990 592.6 73.8 85 27.4 1042.8 94.8 26.6

32 20000 1986380 2138.6 37.6 149 27 2044.8 275.4 30.6

32 40000 3994424 2564.8 26.6 278.4 45.6 4052.6 533.8 50.6

40 1000 93480 588 98.6 46 49.8 121 46.8 71.2

40 3000 293804 680.4 65 64.8 18.8 274.8 48.2 19.4

40 5000 492890 426 40.8 65.2 19 530 62.2 16.6

40 10000 989990 595.2 51.4 83.8 25.8 1045.6 82 21.8

40 20000 1986380 1129.8 29.4 149 27 2047 198.2 26.6

40 40000 3994424 2409.8 28.2 279 45.4 3048 534.2 45.2

48 1000 93480 606.4 107 40.4 48 172.2 49.6 65.2

48 3000 293804 323.4 54.6 50.6 27.6 276 48.8 19.6

48 5000 492890 318 55.4 65 18.8 273.6 55.4 18.2

48 10000 989990 594.4 40.8 84.6 25.8 534 96.2 21.6

48 20000 1986380 1111.8 27.2 149.4 27.4 1046.8 250.2 23.4

48 40000 3994424 2206.4 39 277.2 44.8 3052.6 532.2 47.8

Table 5: Load Times Same Subnet

OCPUs Vertices Edges load_time_ms

2 1000 93480 1313

2 3000 293804 2333

2 5000 492890 2575

2 10000 989990 3460

2 20000 1986380 5435

2 40000 3994424 7334

4 1000 93480 1277

4 3000 293804 2350

4 5000 492890 2331

4 10000 989990 2301

4 20000 1986380 4259

4 40000 3994424 6375

8 1000 93480 1249

8 3000 293804 2339

8 5000 492890 2320

Hamzah Shahzad CSS497: Spring 2025 Term Report

18

8 10000 989990 2314

8 20000 1986380 4285

8 40000 3994424 6334

16 1000 93480 1259

16 3000 293804 2248

16 5000 492890 2234

16 10000 989990 2244

16 20000 1986380 3246

16 40000 3994424 5262

24 1000 93480 1262

24 3000 293804 2239

24 5000 492890 2239

24 10000 989990 2230

24 20000 1986380 3232

24 40000 3994424 5239

32 1000 93480 1240

32 3000 293804 2242

32 5000 492890 2250

32 10000 989990 2238

32 20000 1986380 3250

32 40000 3994424 6252

40 1000 93480 1260

40 3000 293804 2249

40 5000 492890 2235

40 10000 989990 2229

40 20000 1986380 4242

40 40000 3994424 6243

48 1000 93480 1233

48 3000 293804 2284

48 5000 492890 2234

48 10000 989990 2228

48 20000 1986380 4243

48 40000 3994424 6250

Appendix E: Running the Benchmarks

1. Clone the repo (oracle-benchmarks branch)

git clone -b shahzham/oracle-benchmarks --single-branch

https://bitbucket.org/mass_application_developers/mass_java_appl.git

https://bitbucket.org/mass_application_developers/mass_java_appl.git

Hamzah Shahzad CSS497: Spring 2025 Term Report

19

2. Go to the directory

cd Graphs/OracleBenchmarks/SimpleAndPgxBenchmarks

3. Setup Database and PGX Graph Server

Go read the README in the directory

4. Package the jar

mvn clean package

5. Running code

Note: Only graph_name and vertex_table_name are required, if you already created the

graph, then there is no need for the other arguments. However, if you wish to create the

graph, then the other arguments are required. create_graph can only be true or false. I

already took the data from Michaels’ branch and turned them into txt files for the code;

you just need to give the file name. I also suggest using easy name conventions for

graphs and tables to make them easier to remember. For example, a graph name can be

GRAPH1 with the vertex table VTABLE1 and edges table ETABLE1.

a. On client

java -jar target/SimpleAndPgxBenchmarks.jar <graph_name>

<vertex_table_name> <edge_table_name> <create_graph> <file_location>

b. On same subnet as Server

scp -i /location/of/ssh.key /location/of/jar.jar username@publicIP:~/

ssh -i /location/of/ssh.key username@publicIP

java -jar SimpleAndPgxBenchmarks.jar <graph_name> <vertex_table_name>

<edge_table_name> <create_graph> <file_location>

Note: Using the server VM is fine, the results should be the same/similar when

just executing jar on another VM on the same subnet or just on the VM the server

is on.

