The MASS CUDA Translator (CSS600 Term Report)

Haobo Peng
penghb@uw.edu

August 25, 2025

10

11

12

1 Introduction

The Multi-Agent Spatial Simulation (MASS) is a library designed for high-performance Agent-
based modeling and simulation. It supports high parallelism by splitting the computation tasks
over multiple threads on multiple computing nodes. The standard MASS Java and MASS C++
library runs on CPU. Although modern CPUs contains multi-cores to support higher parallel
performance, the number of threads that can be “physically” executed at the same time is still
limited. To further improve the parallelism capability, the MASS CUDA library is introduced.
It is the CUDA GPU accelerated version of MASS that aims at providding similar APIs and
programming experience to MASS C++ while delivering better performance. Compared to
CPUs, a GPU usually has slower cores, but thousands of them to support thousands of threads
running at the same time. As a result, the MASS CUDA library is able to reach a much higher
parallelism performance than the standard version [1].

Originally MASS CUDA used Array of Structure (AoS) for storing custom Place and Agent
instances on the device memory just like the MASS C++ to maintain similar APIs. However,
AoS can cause threads in the same wrap to access uncontinuous memory when accessing at-
tributes of Place / Agent, violating the requirements for coalesced memory access. As a result,
the latency of memory access can significantly affect the overall performance. To address this
issue, the MASS CUDA library has been updated to use Structure of Array (SoA) instead,
which allows coalesced memory access when the threads are accessing attributes of Place /
Agent in the device memory and leads to improved performance [2].

Although the performance is improved by adopting SoA, it also leads to significant changes
in the API requirements for declaring custom Place and Agent, making the codes less intuitive
and more error-prone. To mitigate this issue and improve the programmability of the library,
a translator is implemented and introduced in this report to allow developers to write Place /
Agent declaration in a cleaner and safer way while the translator will automatically generate
additional codes to adopt API requirements of MASS CUDA.

2 Motivation

The original version of MASS CUDA does have relatively intuitive API requirements for declar-
ing Place and Agent by declaring the attributes inside a dedicated state class while the custom
Place or Agent hold a pointer to an instance of that class as a member field states. With that,
attributes can be accessed through this->states->attr. Listing 1 shows an example.

Listing 1: Original MASS CUDA Place Declaration Example

class MyPlaceState {
float attrl = 1.0f;
int attr2[3] = { 0, 0, 0 };

};
class MyPlace : public mass::Place {
public:
MASS_FUNCTION MyPlace(int index): mass::Place(index) {}
MASS_FUNCTION ~MyPlace() {}
MyPlaceState*x states;
__device__ virtual void callMethod(int functionId, void* arg);
33

10

11

12

13

17

18

19

20

21

22

23

24

25

26

27

Now with the SoA adopted in MASS CUDA, the requirement for declaring a custom Place
/ Agent becomes less intuitive. Attributes can no longer be declared as a member of the state
class. Instead, developers needs to invoke the setAttribute method on an instance of Places
or Agents with the type, id, length and initial value of the attribute, which will then allocate
an array on GPU to store values of that attribute for all the instances of that Place / Agent.
To access the attribute, developers should invoke the getAttribute method on an instance of
Place or Agent with the id and length of that attribute. For better readability, it is encouraged
to declare an ATTRIBUTE enum to hold the id of each attribute instead of using integer literal.
Listing 2 shows an example.

Listing 2: MASS CUDA with SoA Place Declaration Example

class MyPlace : public mass::Place {
public:
enum ATTRIBUTE {
ATTR1,
ATTR2
+;

MASS_FUNCTION MyPlace(int index): mass::Place(index) {}
MASS_FUNCTION ~MyPlace() {}
__device__ virtual void callMethod(int functionId, void* arg);
__device__ inline void method () {

float* attrl = this->getAttribute<float>(

/* id = %/ ATTRIBUTE::ATTR1, /* length = %/ 1);
int* attr2 = this->getAttribute<int>(
/* id = %/ ATTRIBUTE::ATTR2, /* length = %/ 3);

};

// in some other file
mass::Places* myPlaces

= mass::Mass::createPlaces<MyPlace>(/* args */);
myPlaces->setAttribute<float>(

/* id = %/ MyPlace::ATTRIBUTE::ATTR1,

/* length = */ 1, /* initial = %/ 1.0f);
myPlaces->setAttribute<int >(

/* id = */ MyPlace::ATTRIBUTE::ATTR2,

/* length = %/ 3, /* initial = %/ 0);
myPlaces->finalizeAttributes () ;

Such design has several drawbacks listed as follows:

1. The code becomes more verbose.

2. Comparing to declaring attributes as members of state classes using familiar C++ field
declaration syntax, the new version is less intuitive, especially for new comers.

3. Attribute declarations are separated from the Place / Agent declaration, leading to less
readability.

4. For each attribute, the length and type for invoking getAttribute must match those used
for invoking setAttribute. This must be ensured manually and cannot be checked by
the compiler, making the code error-prone.

Besides the difficulties introduced in the new version, the API requirements in original MASS
CUDA also include lots of boilerplate codes listed as follows:

1. The callMethod method, which is required for routing the method calls. Its implemention
is always a big switch-case statement that map the specified function id to the correspond-
ing member method.

2. The constructor and destructor. Becuase they must be annotated with __device__ and
__host__ (or MASS_FUNCTION as a shorthand), they cannot be automatically generated
by the compiler even though the body is usually empty.

Such API requirements for declaring Place and Agent is the result of the SoA design and
cannot be altered easily. So instead of trying to fully re-design the API, we decided to implement
a translator that takes in Place / Agent declaration written in a more intuitive and safer way
and automatically generate additional codes to make that Place / Agent to meet the new API
requirements. The format and requirement of Place / Agent declaration used for the translation
input is discussed in the Design section and the implementation details of the translator is
discussed in the Implementation section.

3 Design

As mentioned in the Motivation section, the translator takes in Place / Agent declaration written
in a different way that should be safer and more intuitive. The new declaration requirements
and formats requires a detailed design with two basic restrictions. First, The declaration should
still be a C++ class / struct that inherits from mass: :Place or mass: :Agent. In other words,
the new design is not a DSL. Second, the declaration should not contains direct attributes as
members, which will violate the SoA design.

3.1 Identifying Agent / Place Classes

For the translator to correctly analyze and generate codes, the first step is to find all the Place
/ Agent classes declaration in the codebase. One possible approach is to find all the classes
that inherits from mass::Place or mass::Agent. However, it is also important to leave the
developers a chance do the implementation by themselves for specific Place / Agent classes
without being interferred by the translator. As a result, the final design decision is to use C++
annotations, where the translator will only analyze and generate codes for classes annotated
with __MASS_AUTOGEN__ while inherits from mass::Place or mass::Agent. This way, if the
developers decide to fully implement a Place / Agent class all by themselves, they can simply
not annotate that class so that the translator will ignore it.

3.2 Attribute Declaration Design

To achieve better readability, the attributes of a Place / Agent should be declared in-place
within the declaration body of the Place / Agent class. However, one of the basic design
restrictions requires that the attributes must not be direct members of the Place / Agent class.
This difficulty is addressed by using a nested states struct inside the declaration body of the
Place / Agent class where the attributes will be declared as members of that nested struct.
Attributes declared in this way are not direct members of the outer Place / Agent class. So
they do not violate the SoA design. In addition, since the states struct is nested, the attributes

can still be considered as being declared in-place, providing improved readability compared to
declaring them through calling setAttribute in separated files. To access the attributes, the
translator will automatically generate getters for each of them, which will be discussed latter
in the Implementation section.

In the new MASS CUDA that adopts SoA, the setAttribute method takes in the initial
value of the each attribute. In the new design with the translator, this is supported by specifying
a inline initializer for each attribute. For example, for attribute declared as float attr; and
requires an initial value of 1.0f, the declaration can be written as float attr = 1.0f;.

An attribute may not always be a single value, it can also be an array. Array attributes are
also supported in the new design with the translator by declaring a C-style static length array
with its length explicitly specified. For example, an array attribute with float elements and
length of 10 can be declared as float arr[10];. Initial value is also supported with standard
array initializer list. However, due to the current limitation of MASS CUDA APIs, it is only
possible to specify the same initial value for all the elements of the array. For example, to give
an initial value of 1.0f to all elements of the array attribute arr above, use float arr[10]
= { 1.0f };. It is not an error to write float arr[10] = { 1.0f, 2.0f }, but only the first
element in the initializer list will be considered.

There is no guarantee that a Place / Agent class will contains no additional nested struct
other than the one used for declaring attributes. The translator will need some help to identify
the one actually used for attribute declaration. C++ annotation is a good sulution to this
concern. The developers are required to annotate the nested state struct used for declaring
attributes with __MASS_ATTRIBUTE__ and when the translator is processing this Place / Agent
class, it will focus only on this nested struct to scan for attributes declarations.

Becuase the translator will not alter existed MASS CUDA API requirements for declaring
Place and Agent, the setAttribute must eventually be invoked to allocate memory on the
GPU. For that, all the required invocations to the setAttribute method will be generated
and wrapped in a static method of the Place / Agent class named registerToContainer.
The initial values declared for each attributes will be used here while it also provides an over-
load to accept alternative initial values for each attributes. More details about this generated
registerToContainer method will be discussed in the Implementation section.

3.3 Method Declaration Design

Method declarations in MASS CUDA with SoA adopted has no difference compared to the
original version. However, the callMethod method remains to be a heavy boilerplate code,
especially when there are many member methods to be exposed. Since the implementation of
this method is trivial, it is possible to have the translator to automatically generate it. The
detail of generating the implementation will be discussed in the Implementation section, but
there remains one problem at design level. That is to identify member methods that needs to
be exposed since some of them are just helper methods and are not intended to be exposed by
the callMethod method. This problem is again addressed by C++ annotations where member
methods intended to be exposed should be annotated by __MASS_METHOD__. As a result, the
translator will only search for member methods with this annotation and include them in the
generated callMethod method.

3.4 Constructor and Destructor Design

MASS CUDA requires each Place / Agent to have a constructor that accepts a single int
argument and a destructor, where both of them should be annotated with __device__ and
__host__ (or MASS_FUNCTION as a shorthand). In the new design with the translator, developers
are allowed to not defining them. In such case, the translator will automatically generate them.

3.5 Example

Consider a Place class declaration as an example. With the new design, it can be written as
presented in Listing 3.

Listing 3: MASS CUDA Place Declaration Example with New Design

class __MASS_AUTOGEN__ MyPlace : public mass::Place {
struct __MASS_ATTRIBUTE__ States {
float attr = 1.0f;
float arr[10] = { 1.0f };
13
__MASS_METHOD__ void exportedMethod () ;
__device__ void helperMethod () ;

4 Implementation

The translator is implemented as a external program that takes in multiple C++ source files
containing Place / Agent declarations in the new design and outputs generated codes to a
specified output directory while inserting some codes to the input source files. Details of the
implemention are discussed in the following sub-sections.

4.1 Library Used for Handling C++ Codes and AST

Parsing and handling C++ source codes by hand is not feasible due to the complexity. Therefore,
a third-party library is used to help with this task. The one chosen for this project is Clang
LibTooling, which is a sub library within the LLVM project. This library provides a set of APIs
to parse C++ source codes into Abstract Syntax Tree (AST) and allows developers to analyze
the AST for code inspection or code generation, which fits perfectly with the requirements of
the trasnlator [3].

4.2 Parsing and Matching Place / Agent Declarations

The translator starts by parsing the input C++ source files into C++ AST. This is done
automatically by adopting the clang: :tooling: :ClangTool, clang: :ASTFrontendAction and
clang: :ASTConsumer. ClangTool is the entry point that handles command line arguments and
create instances of ASTFrontendAction to parse the source codes. ASTFrontendAction provides
callbacks to handle different life cycle phases when processing each source file. By subclassing
it, the trasnlator can initializes and frees certain resources at appropriate time, such as the
Rewriter and the DiagnosticsEngine. Finally the ASTConsumer is responsible for receiving

the parsed AST and further process it, which require creating a custom subclass and overriding
the HandleTranslationUnit method.

By adopting the APIs provided by LibTooling above, the translator receives the parsed AST
as an instance of clang: : ASTContext. Such an AST can be very complicated while the transla-
tor only needs declarations of Place / Agent annotated with __MASS_AUTOGEN__. To find the de-
sired AST nodes, the clang: :ast_matchers: :MatchFinder is used. This class allows specifying
a set of rules to match AST nodes and invoke a specified callback to handle the matched nodes.
The callback is declared by subclasing clang: :ast_matchers: :MatchFinder: :MatchCallback
and overriding the run method. For this translator, the following four rules are used for match-
ing AST nodes and the actual codes are presented in Listing 4.

o cxxRecordDecl: match a C++ class / struct / enum declaration
e isDefinition: the declaration must has a body attached
e isExpansionInMainFile: the declaration must be defined in the current file

e hasAttr(Annotate): the declaration must has annotations, which does not required to
be __MASS_AUTOGEN__ due to the limitation of MatchFinder

Listing 4: AST Matching Rules for Matching Place / Agent Declarations

using namespace clang::ast_matchers;
using namespace clang::attr;
matchFinder.addMatcher (
cxxRecordDecl (
isDefinition(), isExpansionInMainFile(), hasAttr (Annotate)
).bind("class"),
&processor // the callback instance

)

In the run method of the MatchCallback, an argument of type MatchResult is received,
whose Nodes field contains the matched AST node. Since the rules used for the translator
match only C++ class / struct / enum declarations, it is safe to extract the AST node as a
clang: :CXXRecordDecl for further analysis.

4.3 Declaration Analysis

C++ class / struct / enum declarations are modeled as clang: :CXXRecordDecl in the AST,
which provide plenty of helper methods for extracting information as discussed in the following
sub-sections.

4.3.1 Extracting Declaration Name

The name of the declaration can be extracted by invoking the getNameAsString method on the
clang: :CXXRecordDecl instance, which is only the unqualified name without any namespaces.
To get the fully qualified name, use the getQualifiedNameAsString method.

4.3.2 Extracting Annotations

Decl, CXXRecordDecl, CXXMethodDecl, CXXConstructorDecl and CXXDestructorDecl all pro-
vide a attrs method to access all the attributes attached to them as a list of clang: :Attr
instances. Not all of them are annotations, so the correct way is to invoke 1lvm::dyn_cast
function to try to cast it to a clang: :AnnotateAttr, then invoke the getAnnotation method
to get the annotation string, which is used for checking whether the declaration has certain
annotation attached.

4.3.3 Extracting Declaration Type (Place or Agent)

The easiest way to decide whether the current declaration is a Place or an Agnet is through
the inherited classes. Such classes can be extracted through the bases method, which returns
a list of clang: :CXXBaseSpecifier instances.

4.3.4 Extracting The Nested State Structs

There is no API to directly get all the nested structs, so the only way is to invoke the decls
methods to traverse all nested declarations, try to cast each of them to clang: : CXXRecordDecl
and check whether it includes the __MASS_ATTRIBUTE__ annotation. If so, it is considered as
the nested state struct used for attributes declaration.

To avoid potential conflicts when the developers defines multiple qualified nested structs,
the translator will report an error if more than one match is found.

4.3.5 Extracting Member Fields

The translator will only try to find member fields inside the nested state struct annotated with
__MASS_ATTRIBUTE__ since this is where attribute declarations are supposed to be made. The
fields methods gives all the member fields of that struct as a list of clang: :FieldDecl. For
each of them, the translator will extract the following information:

e The name, through the getNameAsString method.

o The type, through the getType method.

e The initializer, if any, through the getInClassInitializer method

o Whether it is an array, through the isArrayType method in QualType

e The element type, if it is an array, through casting the type to ArrayType and invoke the
getElementType method.

e The length, if it is an array, through casting the type to ConstantArrayType and invoke
getSize or casting it to DependentSizedArrayType and invoke getSizeExpr. If it is an
array without length (both castings fail), the translator will report an error.

4.3.6 Extracting Member Methods

Information of the member methods, which can be accessed through methods as a list of
clang: :CXXMethodDecl, is required for generating the callMethod method. From each of

them, the following information is extracted:

e The annotations, through attrs method. This is used to filter member methods with the
__MASS_METHOD__ annotation, which indicates that this method should be exposed.

o The name, through getNameAsString method.

o The parameters (a list of clang: :ParmVarDecl), through parameters method.

In addition, the translator will check whether each exposed method has no parameter or
only a single one with type of void#. If that is not the case, an error will be reported. Reason
for this will be discussed in the Code Generation section.

4.3.7 Extracting Constructors and Destructors

The translator needs to check whether developers has already provided the constructor and the
destructor to decide whether to generate them. For the constructor, it can be done by traversing
all the constructors returned by the ctors method and check whether there is one that accepts
a single int argument. For the destructor, simply invoke getDestructor and check whether it
is nullptr.

In addition, for the found constructor, the translator will also check whether it is an-
notated with mass_autogen_constructor. Similar for the found destructor, but check for
mass_autogen_destructor annotation. If so, the translator will still generate them. More
details about this will be discussed in the Code Generation section.

4.4 Code Generation

With all the information extracted from the declaration discussed in the previous section, the
translator can now generate codes to make the declaration adopt to the API requirements
of MASS CUDA. To avoid inserting too many codes into the original source file, most of the
generated codes will be written to separated files while only an include statement will be inserted
into the body of the original declaration.

4.4.1 Naming Generated Files

For each processed Place / Agent declaration NS::A in source file F.h, generated declarations
will be written into NS--A.gen.h (colons are replaced by dashes due to limitation of Makefile)
and generated implementations will be written into F.h.gen. cu. If the declaration is templated,
then both the generated declarations and implementations will be written into NS--A.gen.h
since templated classes require inline definition.

4.4.2 Generate For Attribute Access

The translator will generate two getter overloads for each attribute declared in the nested state
struct, where one takes no arguments for accessing attribute of the current Place / Agent, while
the other takes an int for accessing attribute of other Place / Agent. Like the getAttribute
method, it returns a pointer, so that this getter can also be used for updating the attribute
value.

1 (__device__ virtual void callMethod(int functionId, void* arg);

Before generating the getters themselves, the translator will first generate an ATTRIBUTE
enum nested inside the Place / Agent declaration to hold the id of each attribute. The case
name for each attribute will be the underscore-separated name of the attribute in uppercase.

Then for each attribute, inline definitions of the getters will be generated with the following
format. Using inline definition instead of separating declaration and definition is for better
performance.

__device__ inline <type>* get<name>() const {
return getAttribute<type>(
ATTRIBUTE: :<enum_case_name>, getIndex(), <length>);

}
__device__ inline <type>* get<name>(int index) const {
return getAttribute<type>(
ATTRIBUTE::<enum_case_name>, index, <length>);
}

Codes in angle brackets are placeholders where:

o <type>: the data type of the attribute or the element type if it is an array
e <name>: the name of the attribute in big camel case

e <enum_ case name>: the corresponding name in the ATTRIBUTE enum

e <length>: the length of the attribute, which is the length of the array for array attributes
or 1 for non-array attributes

4.4.3 Generate callMethod Method

Similar to attributes, the translator will first generate a FUNCTION enum nested inside the Place
/ Agent declaration to hold the id of each exposed member method. The case name for each
method will be the underscore-separated method name in uppercase.

The generated callMethod method always has the same signature as follows:

As for the definition, it will be a big switch-case statement on functionId, where each
case matches one exposed member method and invokes it within the case body. If the method
require arguments, then the arg parameter will be passed to it directly without any type casting.
That means an exposed method must accept no argument or a single void* argument, which
is checked by the translator when extracting information of member methods.

__device__
void <class_name>::callMethod(int functionId, void* arg) {
switch (functionId) {
case FUNCTION::<enum_case_name>:
<name> () ; // or <name>(arg) if it accepts arguments
break;
default: break;

10

9

10

11

12

14

Codes in angle brackets are placeholders where:
o <class_name>: the fully qualified name of the Place / Agent class
e <name>: the original name of the method

e <enum_ case_name>: the corresponding name in the FUNCTION enum

4.4.4 Generate For Declaring Attributes

Although attribute declarations are now done by declaring member fields in the nested state
struct, the setAttribute must still be invoked somewhere to actually allocate memory on
the GPU. Without updating implemention in MASS CUDA, such invokations still need to be
done manually by the developers. To make it easier and safer, the translator will generate
a static method named registerToContainer for each processed Place / Agent, which will
invoke setAttribute for each attribute declared. This static method has two overloads with
the following signatures:

static void registerToContainer(<container_type>* const container);
static void registerToContainer (

<container_type>* const container,

const <state_struct>& defaultValues);

Codes in angle brackets are placeholders where:

e <container type>: either mass::Place or mass::Agent depending on the type of the
current declaration

e <state struct>: the name of the nested state struct for attribute declarations

The second overload accepts an instance of the nested state struct, which is used to provide
alternative initial values for each attribute.

The implementation for this method will invoke setAttribute for each attribute in the
following format:

void <class_name>::registerToContainer (
<container_type>* const container
) {
setAttribute<type>(
ATTRIBUTE: :<enum_case_name>, <length>, <initial_value>);
X
void <class_name>::registerToContainer (
<container_type>* const container,
const <state_struct>& defaultValues
) {
setAttribute<type>(
ATTRIBUTE: :<enum_case_name>, <length>,
defaultValues.<name>) ;

Codes in angle brackets are placeholders where:

e <type>: the data type of the attribute or the element type if it is an array

11

o <class_name>: the fully qualified name of the Place / Agent class
e <name>: the original name of the attribute
e <enum_ case_name>: the corresponding name in the ATTRIBUTE enum

o <length>: the length of the attribute, which is the length of the array for array attributes
or 1 for non-array attributes

e <initial wvalue>: the initial value to set for the attribute

4.4.5 Generate Constructor and Destructor

If the developers do not provide the required constructor and destructor, the translator will
generate them automatically with an empty body. Because they are relatively trivial, they are
generated as inline methods without separating the definition.

One concern here is that when the translator is executed again after the constructor and
destructor have been generated, it is not able to decide whether the found constructor / de-
structor is user-defined or generated. To address that, the translator will annotate the gener-
ated constructor with mass_autogen_constructor and annotate the generated destructor with
mass_autogen_destructor.

__host__ __device__
__attribute__((annotate("mass_autogen_constructor")))
<class_name>(int index): <super>(index) {}

__host__ __device__
__attribute__((annotate("mass_autogen_destructor")))
~<class_name>() {}

Codes in angle brackets are placeholders where:
o <class_name>: the fully qualified name of the Place / Agent class

e <super>: either mass::Place or mass::Agent depending on the type of the current
declaration

4.4.6 Inserting Include Statement

Since all the generated codes are written into separated files, they must be included into the
body of the original Place / Agent declaration to make them parts of the members. This can be
done by inserting an include statement at the end of the declaration body. To avoid inserting
the include statement multiple times, a special marker method will also be inserted, so that the
translator will skip the insertion when it finds this method.

class <class_name> : mass:Place {
// other declarations
private:
[[deprecated("an empty marker method, don't invoke it")]]
inline static void ___mass_autogen_import_marker___() {}
public:

#include "<class_name>.gen.h"

12

SL};

4.5 The Annotation Header

All the annotations used in the new design are defined as macros in this Annotations.h header.
The marker method used for telling the translator to skip inserting the include statement also
has a macro defined to make the inserted code cleaner.

#define __MASS_AUTOGEN__ __attribute__((annotate("mass_autogen")))
#define _ MASS_ATTRIBUTE _ \
__attribute__((annotate("mass_attributes")))
#define __ MASS_METHOD _ \
__attribute__ ((annotate("mass_method"))) __device__
#define __MASS_AUTOGEN _MARKER _ \
private: \
[[deprecated("an empty marker method, don't invoke it")]] \
inline static void ___mass_autogen_import_marker___() {}

5 Usage

The source codes of the translator can be found in the translator folder in the feature/translator
branch of the mass_ cuda_ core repository. Once merged, it should also be found in the develop
branch.

The translator binary needs to be executed in the following format:

translator <input-files> --gen-dir=<output-dir> --
-I<annotation-header-dir> <other-args>

Codes in angle brackets are placeholders where:

e <input-files>: the list of source files to process

e <output-dir>: path to the directory to output the generated files

e <annotation-header-dir>: the include search path of the annotation header
e <other-args>: any other arguments to pass to the clang compiler

Detailed instructions of how to build and integrate the translator into projects using MASS
CUDA can be found in the README file within the translator folder. A small example is also
hosted in translator/example folder demonstrating how to use the translator as an individual
package with both CMake and Makefile.

6 Evaluation

The new design with the translator has three categories of metrics for evaluation: programma-
bility, performance and compilation time. Programmability ensures that the new design does
result in codes of higher quality, performance ensures that the new design will not hurt the

13

https://bitbucket.org/mass_library_developers/mass_cuda_core/src/b53b07229dfdb45fa55d5a0e2c314ffb2b5473dc/?at=feature%2Ftranslator
https://bitbucket.org/mass_library_developers/mass_cuda_core/src/develop/

execution performance, and compilation time measures the time taken to compile the whole
application.

Evaluation are done with the Heat2D, GameOfLife and SugarScape applications, by mod-
ifying the current codes for declaring Place and Agent to use the new design. The platform
for running all the tests is the UW Bothell’s Juno Linux server equipped with a AMD EPYC
7232P 8-Core Processor and two NVIDIA RTX A5000 GPUs (24G of device memory each).

6.1 Programmability

Programmability is evaluated on all the source files being modified to use the new design with
the following two metrics.

« Lines of code (LOC) (lower the better)

o Average Cyclomatic complexity per function (AvgCCN), which indicates the complexity of
the code by measuring the number of linearly independent paths through the code (lower
the better).

The tool used for measuring these two metrics is Lizard, which automatically analyzes
source files and counts total lines of codes and average cyclomatic complexity for each function

[4]-

Results evaluated on the three applications are presented in Table 1, 2 and 3. Note that
the LOC for the new design includes the include statement being inserted, so the codes that
developers actually write is 3 lines less than the LOC shown in the tables.

According to the results, the new design has significantly reduced the LOC and slightly
reduced the AvgCCN. Theoretically, the new design will not change the executaion logic of
the codes and should have no effect on AvgCCN. However, the translator remove the need of
manually implementing the callMethod method, which contains a big switch-case statement
that leads to relatively high Cyclomatic complexity. As a result, the AvgCCN is slightly reduced.

Table 1: Programmability Evaluation Results with Heat2D

Metal.h Metal.cu Heat2D.cu
old new old new old new
LOC 23 20 103 87 157 154
AvgCCN 1.0 0.0 4.0 4.0 4.2 4.2
Table 2: Programmability Evaluation Results with GameOfLife
Life.h Life.cu GameOfLife.cu
old new old new old new
LOC 19 14 70 51 72 71
AvgCCN 1.0 0.0 3.5 3.3 3.7 3.7
Table 3: Programmability Evaluation Results with SugarScape
Ant.h Ant.cu SugarPlace.h | SugarPlace.cu | SugarScape.h
old new old new old new old new old new
LOC 27 18 56 36 39 27 154 117 189 180
AvgCCN 1.0 0.0 2.2 1.5 1.0 0.0 2.9 2.4 12.0 12.0

14

6.2 Performance

Performance is evaluated by running the three applications in different problem sizes with both
the original design and the new design, and measuring the execution time using the timer inside
each application. For each problem instance, the application will be executed five times and
the average execution time will be recorded.

The problem sizes and other configuration chosen for each application are presented in Table
4 and the measurement results are presented in Table 5, 6 and 7.

According to the results, performance of applications adopting the new design and the
translator shows no significant difference compared to the original MASS CUDA, indicating
that the new design with the translator will not hurt runtime performance.

Table 4: Problem Sizes and Configurations for Performance Evaluation
Sizes Other Configurations

Heat2D 100, 500, 1000, 3000 | heat_ time=2700, max_ time=3000, interval=0
SugarScape | 100, 500, 1000, 3000 | generations=100

GameOfLife | 100, 500, 1000, 3000 | seed=-1, step=100, interval=0, timer=true

Table 5: Performance Evaluation Result with Heat2D

size=100 size=500 size=1000 size=3000
old | 5108.4ms 6128ms 9392.8ms 43440.8ms
new | 5105.6ms 6121.8ms 9256.8ms 41822.6ms

Table 6: Performance Evaluation Result with GameOfLife

size=100 size=500 size=1000 size=3000
old | 4922ms 4968.4ms 4968.2ms 5383.6ms
new | 4950.2ms 4969.8ms 5008.2ms 5383.2ms

6.3 Compilation Time

The compilation time is measured for each application project by running make build through
the time command and recording the real time. Note that the compilation time for the new
design includes the time taken by the translator to analyze and generate codes.

Results are presented in Table 8, showing that the compilation time for the new design is
significantly longer than the old design. This is expected since it takes time for the translator
to analyze and generate codes. Besides, the generated source files also increase the compi-
lation time. Although developers have to wait longer for building the project, the safer and
higher-quality codes enforced by the new design can help reduce time spent on debugging and
maintenance.

7 Conclusion and Future Work

The new design of the MASS CUDA API requirements for declaring custom Place / Agent
together with the translator that support it has been shown to help improving the code quality
while not affecting the runtime performance, allowing developers to write cleaner and safer

15

Table 7: Performance Evaluation Result with SugarScape

size=100 size=500 size=1000 size=3000
old | 5078ms 5728.2ms 7924.6ms 31117.4ms
new | 5187.6ms 5727.2ms 7935.2ms 31053ms

Table 8: Compilation Time

Heat2D SugarScape GameOfLife
old 28.518s 24.738s 25.391s
new 60.247s 50.966s 52.626s

codes. Although it requires longer time for compiling the application, the higher-quality codes
can reduce the time spent on debugging and maintenance, ultimately leading to increased
productivity and efficiency.

Currently the translator still have certain limitations that can be addressed in the future.
First, it does not support indirect inheritance to mass: :Place or mass: :Agent. In other words,
if a class declaration inherits from another Place / Agent, the translator is not currently able
to identify it as a Place / Agent. This can potentially be addressed by recursively checking
the inheritance list of all the base classes in the inheritance hierarchy. Second, if developers
change the name of a Place / Agent declaration when the include statement has already been
inserted, the translator will not be able to update the include statement accordingly. In this
case, the developers will have to manually remove the include statement and run the translator
again. Finally, since the translator is implemented as an external program that will generate
additional source files, developers have to manually integrate the translator into their build
script and include the generated files into the build commands, making the project setup process
more complex. This limitation is very tricky to address with the current “external program +
annotation” implementation. A potential solution is to switch to the “Clang plugin with custom
#pragma” implementation, but it requires switching the compilor used for MASS CUDA from
GCC to Clang, which may require more effort.

16

References

1]

L. Kosiachenko, N. Hart, and M. Fukuda, “MASS CUDA: A General GPU Parallelization
Framework for Agent-Based Models,” en, in Advances in Practical Applications of Surviv-
able Agents and Multi-Agent Systems: The PAAMS Collection, Y. Demazeau, E. Matson,
J. M. Corchado, and F. De la Prieta, Eds., Cham: Springer International Publishing, 2019,
pp- 139-152, 1SBN: 978-3-030-24209-1. DOI: 10.1007/978-3-030-24209-1_12

W. Liu, M. Fukuda, K. Sung, and C. Olson, “Programmability and Performance Enhance-
ment of MASS CUDA,” University of Washington, Bothell, Capstone Report, Jun, 2024.

C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program analysis &
transformation,” in International Symposium on Code Generation and Optimization, 2004.
CGO 2004., Mar. 2004, pp. 75-86. DOI: 10.1109/CG0.2004. 1281665 Accessed: Aug. 17,
2025. [Online|. Available: https://ieeexplore.ieee.org/document/1281665

T. Yin, Lizard: An extensible Cyclomatic Complexity Analyzer, Published: Astrophysics
Source Code Library, record ascl:1906.011, Jun. 2019. Accessed: Aug. 19, 2025. [Online].
Available: https://ui.adsabs.harvard.edu/abs/2019ascl.soft06011Y

17

https://doi.org/10.1007/978-3-030-24209-1_12
https://doi.org/10.1109/CGO.2004.1281665
https://ieeexplore.ieee.org/document/1281665
https://ui.adsabs.harvard.edu/abs/2019ascl.soft06011Y

	Introduction
	Motivation
	Design
	Identifying Agent / Place Classes
	Attribute Declaration Design
	Method Declaration Design
	Constructor and Destructor Design
	Example

	Implementation
	Library Used for Handling C++ Codes and AST
	Parsing and Matching Place / Agent Declarations
	Declaration Analysis
	Extracting Declaration Name
	Extracting Annotations
	Extracting Declaration Type (Place or Agent)
	Extracting The Nested State Structs
	Extracting Member Fields
	Extracting Member Methods
	Extracting Constructors and Destructors

	Code Generation
	Naming Generated Files
	Generate For Attribute Access
	Generate callMethod Method
	Generate For Declaring Attributes
	Generate Constructor and Destructor
	Inserting Include Statement

	The Annotation Header

	Usage
	Evaluation
	Programmability
	Performance
	Compilation Time

	Conclusion and Future Work

