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1.  Introduction 

1.1 Overview 

The Tuberculosis simulation (TB) is a benchmark program for the Multi-Agent Spatial Simulation (MASS) 

library under development at the University of Washington, Bothell. This program simulates an infection 

of mycobacterium tuberculosis in cells of the human lungs, and the efforts of the body to fight the 

infection using T-Cells and Macrophages. An example of the output of this program is shown in Figure 1. 

It uses agent-based modeling (ABM) to model the behavior of these cells.  

 

Figure 1. Simviz output showing spread of Tuberculosis bacteria and spawning of macrophages and 

T-Cells to fight the bacteria.  

The MASS library is designed to allow for the parallelization of multi-entity interactions over multiple 

computing nodes and multiple threads within those nodes. It is based on two key components: places 
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and agents. A Place object is a location in memory that holds data or attributes and can also host agent 

instances. Places can exchange data between each other or allow residing agents to access its data. 

Agents are execution instances that are located within a place. They can contain their own data and also 

instructions that dictate their behavior. Agents can “jump” between places, effectively transferring an 

execution instance from one location to another. This allows data to move between places while also 

allowing agents to access data within the new Place.  

The MASS CUDA library modifies the MASS library to take advantage of the performance capabilities of 

GPUs. In this version of MASS, places, agents, and their associated data are loaded into a GPU’s device 

memory and are executed in parallel, taking advantage of the thousands of cores within modern GPUs. 

The library handles copying of data and execution of functions between the system memory controlled 

by the CPU (called the host) and the GPU memory used by the GPU (called the device). This version of TB 

is designed to run on the MASS CUDA library and therefore take advantage of its computing 

performance. Specifically, this project upgrades the TB program from running on MASS CUDA version 

0.5.3 to version 0.7.1, the most current stable version. 

 

1.2 Background 

TB is used as a benchmark for comparing runtime performance between the various versions of MASS; 

MASS Java, MASS C++, and MASS CUDA. The MASS CUDA TB benchmark program was originally written 

by Christopher Sumali in Winter quarter of 2023 [3]. His program was written for MASS CUDA version 

0.5.3, which was released in 2022 by Brian Luger, based on previous work by Lisa Kosiachenko and 

Nathaniel Hart [1].  

However, the MASS CUDA library was significantly updated after this TB benchmark was written. Warren 

Liu updated the library to version 0.7.1 in Spring quarter of 2024, which rendered the library 

incompatible with previous benchmark programs. The main changes to the library made in this update 

are described below, and can be found in more detail in Warren’s White Paper [2].  

The primary change for version 0.7.1 was the complete rewrite of how place and agent data members 

are created, stored, and accessed by both the host and the device. Previously, data was stored for places 

and agents as two separate objects: Place & PlaceState, and Agent & AgentState. Place and Agent hold 

all the functionality of MASS objects; accessor functions for data, functions access or spawn agents, and 

the callAll() function that can call user-defined functions. A Place or Agent object then contained a 

3 



pointer to corresponding PlaceState or AgentState objects, respectively, which stored any data members 

used by those objects. These could include data such as their index, place neighbors, and agent travel 

paths. A user implementing a MASS program would extend the Place, PlaceState, Agent, and AgentState 

objects by adding their own functions to their UserPlace & UserAgent objects and their own data 

members to their UserPlaceState and UserAgentState objects. Once defined, arrays of UserPlace, 

UserPlaceState, UserAgent, and UserAgentState objects would then be created on the device and used 

to run MASS simulations. 

However, this implementation led to performance problems due to uncoalesced memory access within 

the PlaceState and AgentState. Storing arrays of PlaceState and AgentState objects on the device meant 

that accessing the same data member for multiple places or agents, such as their index, required 

accessing widely separated memory locations. Because a place's callAll() function operates on the same 

data members for all places and agents simultaneously, each object is therefore making suboptimal 

memory accesses with this implementation. 

To fix this problem, Warren’s work rewrote the MASS CUDA library to remove the PlaceState and 

AgentState objects and changed all data members to be stored as attributes of Place and Agent objects. 

This means that each data member is stored in a contiguous array of attributes for all places and agents, 

with attribute index i corresponding to the data member for place or agent i. Effectively, data was 

reorganized from being stored from an array of structures to a structure of arrays. This allows data to be 

stored and accessed more efficiently within CUDA threads. These changes led to significant 

improvements in MASS CUDA performance, with benchmark programs such as Game of Life taking 85% 

less time to run than in previous versions of MASS CUDA [2]. However, one consequence of this change 

is that place and agent data is now created and accessed differently than previous MASS CUDA versions. 

This paper primarily describes the steps to update the TB simulation to use the attributes system in 

MASS CUDA version 0.7.1.  

1.3 Purpose 

The primary purpose of this project is to update the TB program to the newest version of MASS CUDA 

and compare the performance of the new and old TB versions. This will allow further assessment of the 

performance improvements gained with the addition of the attribute system of data storage for places 

and agents. In addition, this benchmark could be compared to TB implementations for FLAME GPU2, a 

competitor GPU-based ABM library, when that benchmark is completed in the future. Finally, this 
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benchmark program will be largely compatible with ongoing efforts to implement multi-GPU MASS 

CUDA and so can be used to test that library when it is completed.  

2.  Program Architecture 

2.1 Overview 

The places in this simulation represent cells within the human lung, while agents represent either 

macrophages or T-Cells. The grid of cells is divided into four quadrants, as shown in Figure 2. At the very 

center of the place array, the tuberculosis bacteria spawns and then spreads outward, with each location 

infecting all of its neighbors. At the center of each quadrant, one cell is set as a “blood vessel” cell, where 

macrophage and T-Cell agents can enter the simulation (spawn). Macrophage and T-Cell agents spawn at 

the blood vessels at each simulation step and then move to adjacent cells. Only one macrophage and 

one T-Cell can be present within one cell at a time.  

 

Figure 2: Spawn locations for bacteria and agents. TB bacteria spawns at the center of the cell grid (in 

green), while blood vessels (in red) serve as spawn points for macrophage and T-Cell agents.  
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As the bacteria spreads outwards and infects cells, it will encounter macrophage and T-Cell agents that 

have spawned at the blood vessels. When a macrophage agent enters an infected cell, it increases the 

chemokine level of the cell to the maximum. The chemokine acts as a beacon, and both macrophage and 

T-Cells will migrate at each simulation step to the neighboring cell with the highest chemokine level. If a 

macrophage enters the infected cell, it will contain the bacteria but the bacteria will continue to multiply 

within the macrophage. Therefore, the macrophage relies on the T-Cells to be drawn by chemokine 

levels to their cell to kill the bacteria. If bacteria multiplies and exceeds a macrophage’s capacity before a 

T-Cell can reach it, the macrophage bursts and dies, spreading the bacteria.  

During the simulation, bacteria continuously spreads between cells, while macrophages and T-Cells 

continuously spawn, contact, and destroy bacteria from those cells. The simulation ends when all the 

bacteria have been destroyed.  

 

2.2 EnvironmentPlace 

The cells within the lung are modeled as an EnvironmentPlace object, which extends the base Place 

class.  These objects contain the following data members: 

● Size: Integer tracking overall array of places, so the array is (size * size) = total places. 

● Max Chemokine: Integer tracking the maximum chemokine levels within a cell, set to 2. 

● T-Cell Entrance: Integer representing the first simulation step when T-Cells can start to enter via 

blood vessels (there is a delay to allow the bacteria to spread). 

● Bacteria: Boolean tracking whether the bacteria is present in this cell. 

● Blood Vessel: Boolean tracking whether this cell is a blood vessel. 

● Chemokine: Integer tracking current chemokine levels. 

● Macrophage: Boolean tracking whether a macrophage is present in this cell.  

● Should Spawn Macro: Boolean tracking if a macrophage should be spawned at the end of this 

simulation step. 

● Macrophage State: Integer state of the residing macrophage (see macrophage section). 

● T-Cell: Boolean tracking whether a T-Cell is present in this cell.  

● Should Spawn T-Cell: Boolean tracking if a T-Cell should be spawned at the end of this simulation 

step. 
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● Rand State: A random seed that is assigned to this cell.  

The key functions of EnvironmentPlace are chemokineDecay(), bacteriaGrowth(), and cellRecruitment().  

The chemokineDecay() function updates the chemokine levels within the cell. The chemokine levels 

within every place automatically decay by one each simulation step, unless there is a macrophage on 

that cell. If there is, the macrophage maintains the chemokine levels at the maximum of two.  

If a cell is currently infected with bacteria, the bacteriaGrowth() function spreads bacteria to all of the 

neighboring cells. This infection occurs once every 10 simulation steps. The cells are able to access their 

neighbors by calling the MASS exchangeAll() function.  

At the beginning of each simulation step, the blood vessel cells run cellRecruitment() to spawn new 

macrophages and T-Cells. A blood vessel has four spawning options: Spawn nothing, spawn a 

macrophage only, spawn a T-Cell only, or spawn both. A blood vessel has a 50% chance of spawning a 

macrophage, and a separate 50% chance of spawning a T-Cell at each step.  

 

2.3 Macrophage 

Macrophages are modeled as Macrophage agents, which extends the base Agent class. These objects 

contain the following data members: 

● Bacteria Capacity: An integer storing the maximum number of bacteria the macrophage can hold 

before bursting. 

● Chronic Infection Limit: An integer storing the threshold of number of bacteria where the 

macrophage changes its state to “Chronically Infected”. 

● Spawn Point Number: An integer storing the number of macrophages that reside on blood 

vessels and spawn new macrophages. Set to four to match the number of blood vessels.  

● State: An integer storing the state of the macrophage. These are defined in an enum, with the 

options being: 

○ Resting 

○ Infected 

○ Activated 

○ Chronically Infected 
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● Is Spawner: A boolean storing whether this macrophage is one of the spawners that reside on 

the blood vessels.  

● Internal Bacteria: An integer storing the number of bacteria residing within this macrophage. 

● Infected Time: An integer storing the number of simulation steps that the bacteria has been 

infected for.  

The key functions of Macrophage are updateState(), and burst(). The updateState() function performs a 

different action based on the four Macrophage states listed above. If a macrophage is resting, it changes 

to the infected state to search for bacteria. If it is infected, its bacteria grows within it, and it may change 

to chronically infected if there are enough bacteria. If there is a T-Cell in the same place, it changes to the 

activated state. In the activated state, the macrophage kills all the bacteria within it. In the chronically 

infected state, bacteria continue to increase, and if they reach the bacteria capacity the macrophage will 

burst. The burst() function terminates the macrophage agent in this place, and spreads the bacteria to all 

adjacent cells.  

 

2.4 T-Cell 

T-Cells are modeled as TCell agents, which extends the base Agent class. These objects contain the 

following data members: 

● TCell is Spawner: A boolean storing whether this T-Cell is one of the spawners that reside on the 

blood vessels.  

Because T-Cells only need to be present on a cell to trigger the killing of bacteria, they are simpler than 

macrophages in their operation. They simply spawn, migrate, and exchange their data with the current 

cell to inform it that a T-Cell is present.  

 

3.  Implementation 

3.1 Code Cleanup and Comments 

My first step in making changes to the Tuberculosis benchmark program was to do a full code 

walkthrough to try and understand the code. However, I found that some parts of the code did not have 

extensive commenting, especially what certain data members were and what they were used for. To 
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make this process easier for future users of the benchmark program, I worked to clean up the code and 

add comments to explain the function of every data member and method used in the program. This is 

also why I explained each data member in detail in this report, so that the next person to update the 

code hopefully can get a better understanding of the code through this report without having to do a full 

code review.  

3.2 Conversion to Attributes 

To convert to attributes, I first transferred every data member from the EnvironmentState, 

MacrophageState, and TCellState classes to a setAttribute() call within the main method, immediately 

after each Place or Agent subclass is created. For instance, rather than declaring int bacteriaCapacity 

within the MacrophageState private data members, I instead declared 

macrophageAgents->setAttribute<int>(MacrophageAttributes::BACTERIA_CAPACITY, 1, 100). This 

initialized all data as attributes in MASS CUDA.  

The next alteration I had to make was to change all data access within EnvironmentPlace, Macrophage, 

and TCell classes to access the memory using the getAttribute() function. For instance, this meant 

changing data access from bacteriaCapacity = 100  to 

*getAttribute<int>(MacrophageAttributes::BACTERIA_CAPACITY, 1) = 100. This had to be done for all data 

access within all place and agent functions.  

Finally, I updated the SimViz output to correctly access the data from the simulation using 

downloadAttribute(). This allows SimViz to access the current results of the data for visualization. Note 

that this does not run if the interval is set to 0, to allow for faster runtimes for benchmarking. To output 

the data, I first allocated host memory for all the Simviz data that was needed to create the visualization 

and then called downloadAttribute() for each one. The EnvironmentPlace Bacteria, Macrophage, 

Macrophage State, T-Cell, and Chemokine attributes need to be downloaded for SimViz.  

4.  Evaluation 

I ran the TB simulation for MASS CUDA versions 0.5.3 and 0.7.1 with varying place array sizes. The results 

are shown in Figure 3.  
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Figure 3: Runtimes of TB for MASS CUDA versions 0.5.3 and 0.7.1.  

Figure 3 demonstrates that the updates made by Warren to implement attributes led to a significant 

improvement in the runtimes of the TB benchmark program. At the largest number of places I was able 

to run (about 6.25 million) the updated MASS CUDA version 0.7.1 ran 85% faster than the previous 

version. Based on the trends shown in the graph, this advantage is expected to increase as the 

simulation size increases. In terms of spatial scalability, as expected both versions capped out at the 

same maximum, as they store the same amount of data, just organized differently.  

 

5.  Future Work 

5.1 Update to Multi-GPU MASS CUDA 

This is a relatively simple program that can be used to test multiple agent types within a MASS CUDA 

simulation. Therefore, it would be a good candidate to update with the minor changes required to run 

the multi-GPU MASS CUDA. These required changes are included in my 2025 White Paper, titled 

Multi-GPU Parallelized Agent-Based Modeling. 
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6.  How to Run Code 

In the Tuberculosis directory of the mass_cuda_appl repository, run the following commands: 

● make develop This sets up the development environment 

● make build This compiles the code 

● make test This runs tests on the code to ensure it is working properly 

● ./bin/Tuberculosis This runs the code with the default settings. 

● To view the possible settings, run ./bin/Tuberculosis –help 
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