
©Copyright 2025

Holt Ogden

Multi-GPU Parallelized Agent-Based Modeling

Holt Ogden

A dissertation

submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Computer Science & Software Engineering

University of Washington

2025

Reading Committee:

Professor Munehiro Fukuda, Chair

Professor Michael Stiber

Professor Robert Dimpsey

Program Authorized to Offer Degree:

Computer Science & Software Engineering

University of Washington

Abstract

Multi-GPU Parallelized Agent-Based Modeling

Holt Ogden

Chair of the Supervisory Committee:
Professor Munehiro Fukuda

School of STEM, Division of Computing & Software Systems Faculty

Agent-based modeling (ABM) is a method for simulating emergent behaviors in complex

systems by modeling the interactions of individual agents. These simulations often require

substantial computational resources, necessitating increased parallelization and spatial scal-

ability to produce usable results. One approach is to use a computer’s Graphics Processing

Unit (GPU) to allow increased parallelization by utilizing the greater number of threads

available on the GPU compared to the central processing unit. The Multi-Agent Spatial

Simulation (MASS) library for NVIDIA’s Compute Unified Device Architecture (CUDA)

provides a platform that allows users to write ABM programs to run on the GPU.

However, these programs are limited in their spatial scalability by the memory avail-

able on a single graphics card. In this project, we improved the MASS CUDA library’s

Place object implementation by extending it to function over multiple GPUs connected via

NVIDIA NVLink, increasing the potential simulation size of MASS CUDA programs. This

required splitting ABM data between multiple graphics cards, ensuring memory synchro-

nization between the cards, and recombining result data at the end of the simulation. These

changes improved the runtime of some benchmark programs by 32% and increased the max-

imum simulation size by 77%. In addition, these changes were designed to be abstracted

from the user so that minimal changes are required by ABM programs written for previous

single-GPU versions of MASS CUDA. Overall, this project significantly expands the compu-

tational resources available to the MASS CUDA library, allowing the running of larger and

more complex ABM programs.

TABLE OF CONTENTS

Page

List of Figures . iii

List of Tables . iv

Chapter 1: INTRODUCTION . 1

Chapter 2: BACKGROUND . 3

2.1 MASS Library . 3

2.2 MASS CUDA . 4

Chapter 3: RELATED WORK . 8

3.1 CPU-Based ABM Libraries . 8

3.2 GPU-Based ABM Libraries . 9

3.3 Multi-GPU ABM . 10

3.4 Motivation . 10

Chapter 4: IMPLEMENTATION . 11

4.1 System Overview . 11

4.2 Initialization . 12

4.3 Place Creation . 14

4.4 Attribute Creation . 21

4.5 Attribute Mapping . 22

4.6 Attribute Access . 25

4.7 Attribute Transfer . 26

4.8 Inter-Place Communication . 28

4.9 GPU Boundary Communication . 30

i

Chapter 5: EVALUATION . 34

5.1 Programmability . 34

5.2 Execution Performance . 37

Chapter 6: CONCLUSION . 44

Bibliography . 46

Appendix A: SOURCE CODE DETAILS . 48

Appendix B: BENCHMARK CODE DETAILS . 50

Appendix C: BENCHMARK RESULTS . 52

ii

LIST OF FIGURES

Figure Number Page

2.1 Removal of PlaceState and change to attribute arrays. 6

4.1 Multi-GPU MASS CUDA class diagram. 12

4.2 Creation of Place array distributed over two GPUs. 17

4.3 PlaceArray creation and key data members. 19

4.4 Attribute data vectors. 22

4.5 Attribute creation and mapping sequence . 24

4.6 Steps in attribute transfer from host to device. 27

4.7 Host destinations vector and resulting neighbors on device. 29

4.8 Copying of base places to overwrite ghost places on adjacent devices. 31

5.1 Heat2D visualization created using Simviz output tool. 39

5.2 Game of Life runtime benchmarks for single and multi-GPU MASS CUDA. . 40

5.3 Heat2D runtime benchmarks for single and multi-GPU MASS CUDA. 42

iii

LIST OF TABLES

Table Number Page

5.1 Comparison of Single-GPU and Multi-GPU static analysis. 37

C.1 Game of Life runtime benchmarks for single and multi-GPU MASS CUDA. . 52

C.2 Heat2D runtime benchmarks for single and multi-GPU MASS CUDA 52

iv

1

Chapter 1

INTRODUCTION

Agent based modeling (ABM) is a method for simulating emergent behaviors in complex

systems by modeling the interactions of individual agents. Agents are autonomous objects

that are programmed with a relatively simple set of rules, allowing them to interact and

exchange information with their environment and each other. Using these rules, a simulation

can model the large-scale emergent behavior of millions of agents starting with only a basic

understanding of individual behavior.

ABM often requires a huge number of agents to produce usable data, and therefore

simulating these agents demands significant computing resources. The number of agents

within an agent-based model is limited by the runtime of the simulation and the available

memory to perform the simulation. Increasing the size of the simulation requires improved

processing speeds and increased spatial scalability of the model. To accomplish this, agent-

based models often utilize strategies such as parallel computing to improve runtimes and

distributed computing to improve spatial scalability.

One specific strategy is to use a computer’s Graphics Processing Unit (GPU) to allow

increased parallelization by harnessing the greater number of threads available on the GPU

compared to the Central Processing Unit (CPU). CPUs typically support between 4 and

64 threads at once, while GPUs can have thousands of threads running simultaneously [1].

Using NVIDIA’s Compute Unified Device Architecture (CUDA), programmers can access

GPU resources for General Purpose computing on GPUs (GPGPU). CUDA therefore allows

a simulation, such as ABM, to utilize the resources of the GPU. However, writing software

to run on the GPU can be a difficult and time-consuming process that requires specialized

programming knowledge. CUDA is a language extension of C++ that requires knowledge of

2

C programming, memory management, and GPU architecture to be used effectively.

The Multi-Agent Spatial Simulation (MASS) CUDA library provides a method for ac-

cessing the GPU’s resources to run ABM without needing to understand the underlying

CUDA code. Users can set up agents, their simulation environments, and simulation data

through the MASS CUDA API, and then all of the code to run the simulation on the GPU

is handled in the back end [2]. This allows users to focus on writing their ABM programs

without worrying about the complexities of CUDA programming.

While the MASS CUDA library enables increased parallelization of ABM programs using

the GPU, the scalability of these programs is still limited by the available memory on the

GPU. ABM simulations that exceed the memory of a single GPU will likely crash, or may

encounter severe performance limitations due to the time cost of repeatedly copying data

from the CPU memory to the GPU memory. This effectively limits the size of the ABM

programs to the memory size of a single GPU; for example, the NVIDIA RTX A5000 used

by UW Bothell’s Juno lab computers has 24 GB of available memory.

To address this problem, our work extends the MASS CUDA library to run over multiple

GPUs connected via NVIDIA NVLink, increasing the potential simulation size of MASS

CUDA programs. NVLink provides a direct physical connection between multiple GPUs,

allowing them to exchange data more quickly between each other compared to transferring

data from the GPU to the CPU memory. For instance, the UW Bothell’s Juno lab computers

provide approximately 32 GB/s unidirectional transfer speeds from CPU to GPU over PCIe,

while their NVLink Version 4 bridge allows 56 GB/s. However, each GPU is still a separate

device with its own memory, and therefore requires careful memory management to split

a problem over two memory locations. Our work modifies the MASS CUDA library to

split the data evenly between the GPUs, manage synchronization between them during the

simulation, and recombine data at the end of the simulation. This project focused on the

implementation of multi-GPU MASS CUDA for the Place objects within MASS CUDA;

future work will provide an Agent object implementation.

3

Chapter 2

BACKGROUND

This section introduces the overall MASS library and the MASS CUDA library. It ex-

plains the basic functionality of the MASS library, the motivations for porting MASS to run

using CUDA, previous work on multi-GPU MASS CUDA, and recent work on the MASS

CUDA library.

2.1 MASS Library

The MASS library is designed to allow for performance-enhancement and abstraction of

agent-based modeling using both distributed computing and parallel computing strategies.

It is based on two key components: places and agents. A Place object, or place, is a location

in memory that holds data or attributes, and can also host Agent objects, or agents. Places

can exchange data between each other or allow residing agents to access their data. Agents

are execution instances that are located upon a place. They contain their own data and

also instructions that dictate their behavior. Agents can “jump” between places, effectively

transferring an execution instance from one location to another. New agents can also be

spawned or terminated during the simulation. This allows agents and their data to spawn,

move between places, and terminate based on user-defined behavior.

Users of the MASS library write programs by extending the Place and Agent classes into

their own subclasses and defining the behavior of these classes. For instance, in the Multi-

Agent Transport Simulation (MATSim) program, Place is extended to IntersectionPlace

in order to represent intersections, and Agent is extended to CarAgent to represent cars on the

road. Users then define functions that are called on all places or agents simultaneously, known

as callAll() functions. For instance, in the MATSim program a user might call a function

4

such as “MoveCarsIntoIntersection” on all CarAgent objects. By calling functions to run

on both places and agents, users can simulate complex emergent behavior in the simulation

using relatively simple commands and run functions on millions of places or agents in parallel.

The MASS library also provides tools to parallelize the ABM program. In MASS versions

written in C++ and Java, the MASS library can be run on a cluster of computing nodes using

multiple threads within those nodes, enhancing both spatial scalability and parallelization.

The library handles data connections between nodes and data synchronization during the

simulation, abstracting distributed and parallel computing elements away from the end user.

This allows users to write ABM programs that run in parallel across multiple computing

nodes without any knowledge of distributed computing.

2.2 MASS CUDA

The MASS CUDA library modifies the MASS library to take advantage of the performance

capabilities of GPUs. In this version of MASS, places, agents, and their associated data

are loaded into a GPU’s memory and their callAll() functions executed in parallel, taking

advantage of the thousands of cores within modern GPUs. The library handles copying of

data between the memory controlled by the CPU (the host) and the GPU memory used

by the GPU (the device). Upon execution of place or agent callAll() functions, each

place or agent is run on a separate thread using a CUDA kernel call, allowing for massive

parallelization of ABM programs [2].

MASS CUDA has been under development at the University of Washington, Bothell since

2012, with continuous improvements made since then. Early efforts in this development have

shown promising results, with MASS CUDA achieving up to 3.9 times faster runtimes of

benchmarks compared to sequential execution on the CPU [3]. Recent efforts have focused

primarily on two areas of improvement: improvements to the base single-GPU library and

attempts to implement multi-GPU MASS CUDA.

5

2.2.1 Recent Updates to MASS CUDA Library

The most recent incremental improvement to the MASS CUDA library was completed by

Warren Liu in the Spring of 2024. He fixed issues with the agent implementation, reorga-

nized the library, and improved documentation. Most critically for this paper, his single-

GPU MASS CUDA implementation implemented performance enhancements to bring MASS

CUDA closer to the performance of other ABM libraries [4].

For the purposes of this term paper, which focuses only on the implementation of places

within the MASS CUDA library, the primary change made by Warren’s project was the

complete rewrite of how place data members are created, stored, and accessed by both

the host and the device. Previously, data was stored as two separate objects: Place and

PlaceState. Place held all the functionality of a MASS place; its accessor functions for data,

functions to add and remove agents, and the callAll() function that can call user-defined

functions. A Place object then contained a pointer to a PlaceState object, which stored any

data members used by the Place, such as its neighbors, its index, and any agents residing

there. A user implementing a MASS program would extend the Place and PlaceState

objects by adding their own functions to their UserPlace and their own data members to

their UserPlaceState objects. Arrays of UserPlace and UserPlaceState objects would be

copied to the device and used to run MASS simulations.

However, this implementation led to performance problems due to uncoalesced memory

access within the PlaceState. Storing arrays of PlaceState objects on the device meant

that accessing the same data member for two adjacent places, such as their index, required

accessing widely separated memory locations. Because a place’s callAll() function operates

on the same data members for all places simultaneously, each Place object is therefore

making suboptimal memory accesses with this implementation.

To fix this problem, the MASS CUDA library was rewritten to remove the PlaceState

object and change all data members to attributes of the Place object, as shown in Figure 2.1.

This means that each data member is stored in a contiguous array of attributes for all places,

6

Figure 2.1: Removal of PlaceState and change to attribute arrays.[4]. The configuration

on the left shows the previous implementation of place memory as an array of Place objects

pointing to an array of PlaceState structs. The right shows the updated configuration with

separate arrays for each attribute. This allows for memory for each attribute to be accessed

as contiguous blocks upon kernel calls.

with attribute index i corresponding to the data member for Place i. Effectively, data was

reorganized from being stored from an array of structures to a structure of arrays. This allows

data to be stored and accessed more efficiently within CUDA threads. These changes led to

significant improvements in MASS CUDA performance, with benchmark programs such as

Game of Life taking 85% less time to run than in previous versions of MASS CUDA. However,

benchmark programs such as Heat2D and SugarScape still showed slower performance than

other ABM libraries, demonstrating the need for further improvements [4].

2.2.2 Previous Work on Multi-GPU MASS CUDA

Several students within the MASS lab have previously created implementations of multi-

GPU MASS CUDA. These include Nathaniel Hart, Lisa Kosiachenko, and Ben Pittman

[5, 6]. The most recent and complete implementation was done by Ben Pittman in the

Summer of 2021, who updated MASS places and agents to run over multiple GPUs and

then tested this by updating the benchmark programs Sugarscape and Braingrid to run on

7

his library [6]. However, the library encountered difficulties achieving the correct results

with both benchmark programs, and therefore did not create a fully functional multi-GPU

implementation.

The implementation of multi-GPU MASS CUDA described in this paper builds upon

some elements of this previous work, such as using OpenMP to make CUDA calls on each

GPU within its own thread simultaneously, and ghost places within each device’s place

array [6]. However, the multi-GPU implementation described in this paper is primarily built

upon Warren Liu’s single-GPU library. This is mostly due to the fact that the removal of

the PlaceState and the new attributes system made much of the previous work no longer

applicable to the current MASS CUDA library.

8

Chapter 3

RELATED WORK

There are several publicly available libraries comparable to MASS that allow users to write

programs for agent-based modeling. These include Multi-Agent Simulator of Neighborhoods

(MASON), NetLogo, and Recursive Porous Agent Simulation Toolkit (Repast). However,

there are fewer libraries that focus specifically on ABM on the GPU; the primary competitor

for MASS CUDA in the GPU-accelerated ABM space is Flexible Large-scale Agent Modeling

Environment (FLAME) GPU2. This section reviews each ABM library and compares them

to MASS and MASS CUDA.

3.1 CPU-Based ABM Libraries

MASON is a multi-agent simulation library developed by George Mason University. It

is written in Java and designed to support large-scale, discrete-time simulations involving

thousands to millions of agents. MASON is designed with the primary goals of efficiency,

fault-tolerance, and scalability. It uses custom-written Java libraries to decrease runtimes and

includes checkpointing procedures to save work during simulations. Unlike MASS, MASON

is primarily written to run on a single high-performance computer, or even supercomputers

for large jobs. However, it also has a Distributed MASON extension that allows for cluster

deployment, similar to the MASS Java implementation. MASON is a mature and widely

used ABM platform, with a project manual that spans more than 450 pages [7].

NetLogo is an open source agent-based modeling environment developed by Northwestern

University. It is written in Java and was designed to be useful both as a teaching tool and as

a powerful research platform. It is similar to MASS in that it includes both stationary agents

(called patches) analogous to MASS places and mobile agents (called turtles). In addition,

9

it supports specialized link agents that can be used to create graphs and networks. Addi-

tional features include an interface builder, built-in language primitives, and an extensions

library that supports additional languages, like Python and R. While NetLogo includes some

extensions and scripts that allow parallelization, it primarily runs in a single thread on the

CPU[8].

Repast Suite is a group of ABM platforms originally developed by the University of

Chicago, expanded by the Argonne National Laboratory, and now maintained by the Repast

Organization for Architecture and Design (ROAD). The Repast Suite includes Repast Sim-

phony, a Java-based modeling toolkit, Repast for High Performance Computing (HPC), and

Repast for Python. Repast is designed for high-performance simulations with detailed agent

behavior and supports features like GIS integration, social network modeling, and batch ex-

perimentation. Repast Simphony and Repast HPC both support cluster computing [9, 10].

3.2 GPU-Based ABM Libraries

While there are several widely used platforms that support CPU or cluster-based ABM,

there are considerably fewer platforms for running ABM on the GPU. This may be due

to the relatively recent availability of GPGPU platforms; CUDA was first released in 2007,

while MASON, NetLogo, and Repast were in development in the late 1990s and were released

between 1999 and 2003 [8, 9, 10, 11].

The primary competitor for MASS CUDA in the GPU-based ABM space is FLAME

GPU2, a GPU-enabled ABM developed by the University of Sheffield. It supports GPU-

based ABMmodeling as part of the core library, including abstractions to allow inexperienced

programmers to utilize the GPU without understanding parallel programming. Previous

capstone projects within the MASS lab have used FLAME GPU2 as a comparison to test

MASS CUDA against another real-world project. At this time FLAME GPU2 does not

support multi-GPU ABM, but there are plans to support it in the future [12].

10

3.3 Multi-GPU ABM

Currently, no libraries could be identified that provide direct platform support for multi-GPU

ABM, but there have been individual multi-GPU implementations applied to specific ABM

scenarios. Individual researchers have implemented multi-GPU support for the MASON

library, achieving 187 times faster runtime performance of the Boids simulation compared to

CPU-based MASON [13]. However, this paper only compared multi-GPU implementations

to CPU-based implementations and was a one-off test for a specific problem instead of

generalized library support. In another example, researchers from Virginia Commonwealth

University implemented agent-based blood coagulation simulations using NetLogo, Repast,

non-parallelized C code, and CUDA code to compare runtime executions, showing 10-300

time runtime speedups for CUDA implementations compared to ABM and non-parallelized

implementations [14]. However, this simulation used ABM and multi-GPU modeling but did

not combine them together.

3.4 Motivation

While there are several libraries that support CPU-based or distributed Agent-Based Mod-

eling, we have not been able to identify any current implementations of a general multi-GPU

ABM library. Therefore, the multi-GPU MASS CUDA presented in this report presents

an opportunity to develop a new approach to increasing the performance of ABM models.

Multi-GPU MASS CUDA offers a new general method to increase the spatial scalability of

ABM simulations using multiple GPUs, without requiring the user to understand CUDA

coding. It therefore can enable users to create larger, more complex agent-based models

using the existing MASS CUDA platform.

11

Chapter 4

IMPLEMENTATION

This section contains an overview of the MASS CUDA library structure and the key

functions used to run the ABM simulation. It reviews the functions that are used to initialize

MASS CUDA, create places, and utilize attributes, looking specifically at how these functions

were modified to support multiple devices. In addition, it explains the use of ghost places to

ensure data synchronization between devices.

4.1 System Overview

The MASS CUDA library is structured with a command-dispatcher model, such that all

classes pass their main function calls through the Dispatcher object. This functionality is

shown in the class diagram in Figure 4.1. This model ensures that all classes have access to

the required place data, and also allows the Places and Mass classes to have their function-

ality abstracted from the underlying CUDA implementation. A further level of abstraction is

defined in the DeviceConfig object. The DeviceConfig stores information on the available

GPUs and their settings, and manages the background infrastructure related to splitting

places across multiple devices. To do this, it stores a struct called a PlaceArray for each

Places object. This struct manages all the pointers to the devices and also the data required

to track ghost places.

12

Mass Places

Dispatcher

Contains Multiple

DeviceConfig

Passes Function Calls To

Passes Device Functions To

PlaceArray

Stores Place and Attribute Pointers for each
device within

Host Struct

Host Class

Device Data

LEGEND

GPU 0
- Place array

- Attribute arrays

GPU 1
- Place array

- Attribute arrays

Points To

Figure 4.1: Multi-GPU MASS CUDA class diagram. Shows how all functions from Mass

and Places classes are passed to the Dispatcher, which manages all MASS function calls.

Dispatcher passes any device-related functions to the DeviceConfig, which manages the

GPUs using PlaceArray structs to store data. These structs contain data and pointers for

MASS places and attributes for each device.

4.2 Initialization

When the MASS library is initialized, the following steps are followed:

1. Determine the number of devices using cudaGetDeviceCount(int* count). This re-

turns the total number of devices with compute capability (CC) greater than or equal

to 2.0. Compute capability is a version label that defines the CUDA features and

capabilities for GPU hardware.

2. Create a devices vector to store each device ID in the form of an int.

13

3. Determine which device has the highest compute capability by calling the code shown

in Listing 4.1.

Listing 4.1: Determination of highest CC device. This gets the properties of each device

using cudaGetDeviceProperties(), then gets the prop.major and prop.minor properties

to determine CC.

1 int bestDevice = 0;
2 int bestCC = 0;
3

4 for (int i = 0; i < gpuCount; i++) {
5 cudaDeviceProp prop;
6 cudaGetDeviceProperties(&prop, i);
7 int cc = prop.major ∗ 10 + prop.minor;
8 if (cc > bestCC) {
9 bestCC = cc;

10 bestDevice = i;
11 }
12 }

4. Add the device ID of the highest compute capability device to the devices vector. If

there is only one device, this device will be added to the vector by default.

5. For every other device, check if that device has the capability to access the default

device, and vis-versa using cudaDeviceCanAccessPeer(int* canAccessPeer, int

device, int peerDevice). If a device can access the default device, add it to the

devices vector.

6. Enable bi-directional peer memory access between every device in the devices vec-

tor. For each device, call cudaDeviceEnablePeerAccess(int peerDevice, unsigned

int flags) with every other peer device using nested loops.

7. Set up OpenMP access to call CUDA functions in parallel by assigning each device its

own host thread using the code shown in Listing 4.2 .

14

Listing 4.2: Setup of OpenMP and mapping of OpenMP threads to devices. This ensures

that there is one host OpenMP thread for each device and that each host thread can check

what its current device is by calling cudaGetDevice().

1 omp set dynamic(0);
2 omp set num threads(devices.size());
3 #pragma omp parallel
4 {
5 int gpu id = −1;
6 const int thread id = omp get thread num();
7 CATCH(cudaSetDevice(thread id));
8 CATCH(cudaGetDevice(&gpu id));
9 }

After this setup is complete, any subsequent device functions, such as launching kernels

or copying data to the device, can be wrapped in #pragma omp parallel segments, and

then cudaGetDevice(&gpu id) can be used to determine which device is being managed

by the current thread. In addition, the host can now copy data directly between the de-

vices using cudaMemcpyPeerAsync(void* dst, int dstDevice, const void* src, int

srcDevice, size t count, cudaStream t stream = 0).

4.3 Place Creation

To create places on the device, the user calls the Mass::createPlaces(int handle, int

dimensions, int size[], int majorType) function. This function creates an overall ar-

ray of places of size M x N, as defined in the size array parameter. This place array must be

evenly split between two devices. However, this split must first define the boundary between

the two devices and the method for communicating between GPUs at that boundary.

While the two GPUs have separate memory and run separate CUDA kernels, their places

must be able to communicate with each other across the GPU boundary. There are several

ways to do this. One method would be to simply wait until a place needs to access another

place’s data, check if that data is on another GPU, and then run cudaMemcpyPeerAsync()

15

to copy the data across devices. However, copying data repeatedly for each place would lead

to thousands of tiny data transfers in each simulation step, leading to inefficient movement

of data.

To solve this issue, we use ghost places to ensure synchronization and memory access

between devices. This approach creates a boundary layer of ghost places between GPUs

which are copies of the base (non-ghost) places on adjacent GPUs. This can be seen as

the green places shown in Figure 4.2. These ghost places hold the same data as their

complimentary base places, but do not run callAll() functions. The purpose of these

ghost places is that when a base place that is on the boundary of its GPU wants to exchange

information with an adjacent place on another GPU, it can directly access the ghost place on

its GPU that stores all that data, rather than having to access another GPU. The data within

the ghost place is kept updated using the boundary communication described in Section 4.9.

The createPlaces() function must calculate the number of base and ghost places and

save this data so the place array can be recombined later. To do this, DeviceConfig creates

a new PlaceArray struct to store all data and pointers for places with this handle. Once

this is setup, the function determines the number of base places and ghost places for each

device using the formulas shown in Listing 4.3, which are also illustrated in Figure 4.2. The

number of base places, called basePlacesPerStride, is determined by dividing the total

number of rows in the original place array by the number of GPUs then multiplying by

total columns in the original place array, such that basePlacesPerStride = (total place

rows / numDevices) * total place columns. This can be seen in line 1 of Listing 4.3.

16

Listing 4.3: Calculation of base and ghost place quantities. First, the basePlacesPerStride

is determined by dividing the number of rows by the number of devices. Next, the maxTravel

is found by taking the maximum of MAX PLACE EXCHANGE and MAX AGENT TRAVEL values set

by the user. Then, for each device the number of ghost places before and after is calculated

taking the number of ghost rows (which equals maxTravel) and multiplying by the number

of columns in the place array. If a device is the first device, it has no ghost places before,

while the last device has no ghost places after. Finally, the ghost places before, base places,

and ghost places after are added to get the total placeStride, or number of places on this

device.

1 int basePlacesPerStride = (p.dims[0] / activeDevices.size()) ∗ p.dims[1];
2

3 int maxTravel = std::max(MAX PLACE EXCHANGE, MAX AGENT TRAVEL);
4

5 #pragma omp parallel
6 {
7 int gpu id = −1;
8 CATCH(cudaGetDevice(&gpu id));
9

10 if (gpu id == 0) {
11 p.ghostPlacesBefore[gpu id] = 0; // First device will have no ghost places at start
12 } else {
13 p.ghostPlacesBefore[gpu id] = maxTravel ∗ p.dims[1];
14 }
15

16 if (gpu id == activeDevices.size() − 1) {
17 p.ghostPlacesAfter[gpu id] = 0; // Last device will have no ghost places at end
18 } else {
19 p.ghostPlacesAfter[gpu id] = maxTravel ∗ p.dims[1];
20 }
21

22 p.placeStride[gpu id] = p.ghostPlacesBefore[gpu id] + basePlacesPerStride + p.
ghostPlacesAfter[gpu id];

23 }

Next, the function determines the number of ghost places before and after each device’s

base places. This is based on two numbers: the maximum number of places an agent can move

across in one simulation step, and the maximum rows away a place can exchange information.

17

These values are defined by the user as MAX AGENT TRAVEL and MAX PLACE EXCHANGE in the

settings.h file. For instance, if the user’s simulation allows an agent to move three places away

at once, and allows places to exchange data up to four rows away, then createPlaces() will

take the maximum of these two values and create four ghost rows of ghost places between

each device. This is seen in line 3 of Listing 4.3.

0 1 2 3

4 5 6 7

8 9 10 11

Base Places

0 1 2 3

4 5 6 7

8 9 10 11

12 12 13 13 14 14 15 15

12 13 14 15

16 17 18 19

20 21 22 23

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

DevIndex Index

0 8 1 9 2 10 3 11

4 5 6 7

8 9 10 11

12 13 14 15

Index

Ghost Places
After

Ghost Places
Before

Base Places

Original Place Array Place Array Divided Over 2 GPUs

MAX_AGENT_TRAVEL and
MAX_PLACE_EXCHANGE

<=1

Device 0:
placeStride = 16
ghostPlacesBefore = 0
ghostPlacesAfter = 4
ghostOffset = 0

Device 1:
placeStride = 16
ghostPlacesBefore = 4
ghostPlacesAfter = 0
ghostOffset = 8

basePlacesPerStride
= 12

basePlacesPerStride
= 12

MAX_AGENT_TRAVEL and
MAX_PLACE_EXCHANGE

<=1

Figure 4.2: Creation of Place array distributed over two GPUs. The basePlacePerStride

value represents the base place on each device; if there are 24 initial base places, each

device will have 12 base places. Ghost places are defined by the MAX AGENT TRAVEL and

MAX PLACE EXCHANGE values; if both have a value of one then there will be one row of ghost

places before and after (except the first and last devices). The placeStride stores the total

places per device of both types. Finally, ghostOffset represents the difference between the

DevIndex (in black text on each place) and the Index (in red text).

For each device in parallel, the function then calculates the number of ghost places before

the base places (0 if the first device) and the ghost places after (0 if the last device), as

18

seen in lines 5-20 of Listing 4.3, and on the right side of Figure 4.2. These are added to the

basePlacesPerStride to get the total places on each device, as seen in line 22 of Listing 4.3.

In addition, a ghostOffset value is calculated for each device. This value determines the

difference between each place’s original index in the base place array and its new CUDA

thread idx within the device it is assigned to, called devIndex. Using this offset value, when

the place is initiated it can calculate its original index in the base array and store this value.

This is seen in Figure 4.2, where the original index is in red for each place, the devIndex

is in black, and the offset is the difference between them shown for each device. The total

number of places on a device is called its placeStride and equals the ghostPlacesBefore

+ base places + ghostPlacesAfter. This is equivalent to the overall place count value in

a single-GPU operation and is used within kernel operations to ensure that threads whose

idx is greater than the placeStride value do not perform any operations. In addition, the

kernel dimensions to determine the size of blocks and threads when running kernels are based

on the placeStride of the devices.

19

DeviceConfig
std::vector<int> activeDevices

 std::map<int, PlaceArray> devPlacesMap

PlaceArray
std::vector<Place*> devPtrs

std::vector<int> ghostPlacesBefore
 std::vector<int> ghostPlacesAfter

 std::vector<int> placeStride;
std::vector<int> ghostOffset

dim3 kernelDims[2]

devPlacesMap Contains Multiple

GPU 0
Contains places of quantity:

placeStride[0]

PlaceArray.devPtrs[0] Points To

GPU 1
Contains places of quantity:

placeStride[1]

PlaceArray.devPtrs[1] Points To

Host Struct

Host Class

Device Data

LEGEND

Figure 4.3: PlaceArray creation and key data members. This shows an expanded view of

Figure 4.1 with key data members included. Each DeviceConfig stores a vector contain-

ing a list of active devices, as well as a map that links place handles to its corresponding

PlaceArray. Each PlaceArray stores a series of vectors, where each index in that vector

represents the values calculated in Listing 4.3 for device i. The devPtrs vector contains

pointers to the Place arrays allocated on each device.

Once the numbers of places are determined, the createPlaces() function allocates mem-

ory on each device and initializes Place objects on them. Figure 4.3, which represents a more

detailed view of the class diagram in Figure 4.1, shows how PlaceArray was modified to

contain vectors of pointers to the device memory instead of a single pointer; each device

is represented by an index in this vector. Similarly, the ghost places and offsets that were

20

previously calculated are stored for each device. Using multiple threads, the function then al-

locates memory on each device N of size PlaceType * placeStride[N]. Next each device

calls a kernel function that creates a new Place at each location. This is seen in Listing 4.4,

which gets the idx of the current thread, checks if the idx is less than the placeStride,

then determines if the place at this idx is a ghost or base place. If it is a ghost place, then

the function creates a new Place with the data member basePlace set to false, while base

places will be set to true. Both base and ghost places are created with an Index and a

devIndex value. While ghost places did not have an Index within the original place array,

they receive an Index that corresponds to the Index of the base place they are duplicating.

Listing 4.4: Place creation kernel. This kernel creates Place objects in device memory, sepa-

rating them into base and ghost places using the idx (which corresponds to the DevIndex),

placeStride, ghostPlaceBefore, and ghostPlaceAfter values.

1 unsigned idx = getGlobalIdx 1D 1D();
2 if (idx < placeStride) {
3 // Place is a ghost Place
4 if (idx < ghostPlaceBefore || idx >= placeStride − ghostPlaceAfter) {
5 new (&places[idx]) PlaceType(idx + offset, idx, false);
6 }
7 // Place is a base Place
8 else {
9 new (&places[idx]) PlaceType(idx + offset, idx, true);

10 }
11 }

Upon completion of createPlaces(), each device will have an array of Place objects

of size placeStride initialized where each Place stores its Index and whether it is a base

place or a ghost place. In addition, DeviceConfig now has pointers to each array of places

stored on each device.

21

4.4 Attribute Creation

Since places are now split over multiple devices, the attributes associated with those places

must also be split. Similar to the previous single-GPU MASS CUDA code, creating at-

tributes for places is a two-step process. First, the user calls Places::setAttribute()

for each attribute they intend to use. This allocates memory for those attributes on the

device and can also set a default value if provided by the user. The second step is call-

ing finalizeAttribute(), which transfers the array of attribute pointers to the device

and provides each Place object with pointers to its attributes. A detailed description of

finalizeAttribute() is described in Section 4.5.

Data for attributes is stored within the corresponding Places object as three vectors:

vector<int> attributeTags, vector<void**> attributeDevPtrs, and vector<size t

attributePitch, as shown in Figure 4.4. Each index within these vectors represent a differ-

ent attribute, with the tag storing a user-enumerated int label for the attribute, the device

pointers storing an array of size N GPUs, each with a void* to where the attribute is stored

on that device, and pitch storing the byte offset for storing two-dimensional attributes on

the device. This is a CUDA functionality that allows two-dimensional attributes to have

their data aligned in memory for faster access. The vector attributeDevPtrs was modi-

fied from the single-GPU version to store a void** instead of void* so that it can store

an outer array to hold the pointers to the attribute memory on each device. Every time

setAttribute() is called, it uses a parallel section to allocate memory on each device of

size placeStride[gpu id] * sizeOf(AttributeObject), then stores the pointer to that

memory for each device within a void** array. Finally, the Places object pushes the tag,

device pointer array, and pitch back onto the respective vector to save those values within

the Places object. These values are only saved within the Places object temporarily until

finalizeAttribute() is called.

22

Index 0 1 2 N

tag 9000 9001 9003 ...

devPtrs

GPU 0
Device Memory

GPU 1
Device Memory...

...

pitch 8 16 1 ...

Figure 4.4: Attribute data vectors. The vectors vector<int> attributeTags,

vector<void**> attributeDevPtrs, and vector<size t attributePitch store the data

for each attribute on the host upon attribute creation. Tag stores a user-enumerated ID, the

device pointers store pointers to the attribute data for each device, and the pitch stores a

CUDA value for aligning two-dimensional attributes.

4.5 Attribute Mapping

While each attribute has its memory allocated when calling setAttributes(), a Place ob-

ject on the device cannot yet access this memory because the attribute device pointers are

stored on the host as a data member of the Places object. Therefore,

Places::finalizeAttributes() must be called to transfer the data needed to access at-

tributes (namely, the vectors described in section 4.4) to the device. Figure 4.5, which is an

updated version of Figure 4.14 within Warren Liu’s paper, shows the sequence diagram for

23

mapping attributes to each Place object within the device [4]. The finalizeAttributes()

function allocates memory for each attribute vector (tag, device pointers, and pitch) and

stores pointers to that memory in the PlaceArray struct within the DeviceConfig object.

Because CUDA does not support vectors, the DeviceConfig stores these attribute arrays

as C arrays of the following form: int **d attributeTags, void ***d attributeDevPtrs,

and size t* d attributePitch. The finalizeAttributes() function copies each of these

arrays to each device.

24

Places Dispatcher GPUs

setAttribute()
Allocate Memory
Set Default Value

Return DevPtr, Pitch
Save Tag, DevPtr, and
Pitch for each device

finalizeAttribute()
Run Kernel:

Save pointers to
Tag, DevPtr, Pitch

arrays to each Place

Figure 4.5: Attribute creation and mapping sequence, an updated version of Warren Liu’s

Figure 4.14. [4]. This shows how attribute data is created using setAttribute() on the

Places object and then allocated on the GPUs by the Dispatcher. The three arrays tracking

this data are temporarily saved within the Places object, and then transferred to the GPU

upon calling finalizeAttribute(). This function also runs a kernel giving each Place

object a pointer to these arrays.

One thing to note is that each device only needs access to its own array of device pointers,

since trying to access the pointers to the other device would simply return a memory out of

bounds error. Therefore, finalizeAttributes() first copies each device’s device pointers

into a new, contiguous void array for each device, and then copies only that device’s device

pointer array to the device. The final step in finalizeAttribute() is to ensure that each

Place on the device has a pointer to the attribute arrays. To do this, finalizeAttribute()

25

launches an updateDevAttributesKernel() kernel on each device that saves pointers to

the attribute arrays as each Place object’s data members. Effectively, this means that each

Place can now access attribute arrays allowing them to retrieve pointers to where that place

can find the relevant attribute data it needs.

4.6 Attribute Access

When a Place object running a callAll() function needs to access one of its attributes, it

calls getAttribute(int tag, int length) within the callAll() function. This function

uses the pointer to the attributeTag array transferred to this Place during

finalizeAttribute() to search the attributeTag array for the index corresponding to

the given tag, as seen in line 4 of Listing 4.5. Then, getAttribute() simply accesses the

attributeDevPtr array at that tag index to get a pointer to where that attribute is stored

in device memory, shown in line 9 of Listing 4.5. Finally, the function accesses the attribute

data at the devIndex of this Place to find the attribute value that corresponds to this

particular place, shown in line 10 of Listing 4.5. This function is largely unchanged from the

single-GPU version, except that it now accesses the attribute at devIndex and not Index,

as the original Index of a place no longer corresponds to the thread idx of a Place when it

is split over two devices.

In addition to the getAttribute() function for accessing a Place object’s own attributes,

a place may also need to access the attributes of adjacent places. To do this, an additional

overloaded function with the parameters getAttribute(size t des Index, int tag, int

length) allows for this access. This function accesses the memory of adjacent places by

offsetting the accessed attribute memory block by the given desIndex value instead of the

place’s own Index. For multi-GPU MASS CUDA, this function presents the problem that

a place may attempt to access adjacent places that are stored on another device. While the

desIndex may be a valid place, if the place is on another device this attempt would result in

a segmentation fault. To address this issue in a simple way, we used the MAX PLACE EXCHANGE

setting within the settings.h file (as described in section 4.3) as the limit for attribute access

26

Listing 4.5: Code to access attributes upon a getAttribute() call. First, it searches the

attribute tag array to find the index of the given tag. Then, it gets the attribute device

pointer at that index. Finally, it returns the specific attribute value at the devIndex of the

device pointer array.

1 template <typename T>
2 device T∗ Place::getAttribute(int tag, int length) const
3 {
4 int i = find(attributeTags, nAttributes, tag);
5 if (i == −1)
6 {
7 return NULL;
8 }
9 T∗ array = static cast<T∗>(attributeDevPtrs[i]);

10 return &array[devIndex];
11 }

from other places. When a Place attempts to access another Place object’s attributes, the

function first checks that the Place being accessed is within the ghost place rows, otherwise

the program will throw a descriptive MASS error telling the user they need to increase

MAX PLACE EXCHANGE, rather than a segmentation fault.

4.7 Attribute Transfer

When a user of the MASS CUDA library sets attributes and then calls finalizeAttribute(),

all data for Place objects is now stored on the devices. All data is stored on the devices

because maintaining a host-side copy of every attribute would likely exceed the memory

available on the host, and synchronizing host attribute memory with device attribute mem-

ory would significantly reduce performance. Any user-defined callAll() functions, which

run on the devices, can access data using the getAttribute() function described in sec-

tion 4.6. However, callAll() functions all have void return types, so data remains stored

on the devices during program execution. While this configuration improves performance

by minimizing data transfers between host and devices, users may need to transfer data

27

back from the devices to the host in order to utilize intermediate simulation data or to

save the final results. To do this, they call the downloadAttributes(int handle, void**

d attributeDevPtrs, size t pitch, unsigned int length, unsigned int qty) func-

tion, which copies attribute data from the devices to the host.

The downloadAttributes() function is a template function that returns a host pointer

of the Template object type to the user, allowing them to use a copy of the device attribute

data. The user specifies which attribute they wish to download using both the attribute tag

and by entering the attribute object type as a template. The function allocates host memory

to store the attributes, with the understanding that control of the memory is transferred to

the user’s function on completion and must therefore be freed by the user.

0 2 1 3

4 4 5 5

DevIndex Index

2 2 3 3

1 10 0

2 4 3 5

4 6 5 7

Device
Allocate h_attributes1.

0 1 2 3 4 5 6 7

Host

GPU 1

GPU 2

2. Determine how
start and size of
data to copy,
trimming ghost
places

4. Copy attribute from device
to h_attribute use
cudaMemCpy with the Device
to Host parameter

Figure 4.6: Steps in attribute transfer from host to device. First, host memory is allocated for

the entire attribute array (from both devices) as h attribute. Next, the function determines

the start of the device base places and the destination section of h attribute on the host

for each device. Finally, the function copies the memory from device to host.

There are two complications regarding downloadAttributes() that arise from using

28

multiple devices. First, the attribute data stored on each device includes ghost places at

the beginning or end (or both) of the places on each device. However, this data is a du-

plicate of the base places they represent, and so should not be downloaded to the host for

the user to access. Therefore, the downloadAttributes() function must trim ghost place

attribute data. Second, each device must transfer its own separate attribute memory, but the

downloadAttributes() function should return a single contiguous array in host memory.

This means that the downloaded memory must be recombined to be accessed by a single

pointer. Figure 4.6 shows the steps involved in this process.

This code first allocates host memory for the entire place array (both devices combined)

with h attribute. Next, within a parallel section on each device the function determines

the start of the base places on each device, the size in bytes of the base places on the devices

(excluding ghost places), and the start position for each device’s copy in h attribute. Next,

it copies the attribute memory from the device to h attribute. The result is that the user

receives a pointer to a single attribute array, while all ghost places are discarded when the

data is copied.

4.8 Inter-Place Communication

In order to exchange information between Place objects, each Place must first determine

which neighboring Place objects it wants to exchange information with, and then save point-

ers to each of those objects. To do this, the user calls Places::exchangeAll(). Effectively,

this gives each Place object two arrays: one storing the indices of its neighboring Place

objects, and one storing a pointer to those neighboring Place objects so that it can access

their data or call functions on them. The user creates and provides a destinations vector

containing relative coordinates for each of a Place object’s neighbors. An example of this

vector and the resulting neighbors that will be stored on the device is shown in Figure 4.7.

29

Place i

[-1, 0]

[0, -1] [0, 1]

[1, 0]

vector<int*> destinations;
int north[2] = {-1, 0};
destinations.push_back(north);
int east[2] = {0, 1};
destinations.push_back(east);
int south[2] = {1, 0};
destinations.push_back(south);
int west[2] = {0, -1};
destinations.push_back(west);
places->exchangeAll(destinations);

Host destinations Vector Device neighbors

Figure 4.7: Host destinations vector and resulting neighbors on device. The user creates

a destinations vector containing int arrays, each of which contain an offset for each di-

mension of the place array. For instance, the int north contains the values {-1, 0}, which

suggests will add a neighbor one row before this place. Once all int arrays have been added,

the user provides the destinations vector as an argument to the exchangeAll() function.

In this implementation for a two-dimensional array of Place objects, the user sets the

standard neighbors for a Place as directly above, to the right, below, and to the left of each

Place. The exchangeAll() function then takes this destinations vector, saves a copy of it

as a data member of the Dispatcher object, and then calls exchangeAllPlacesKernel()

to have each Place save the adjacent Place objects as its data members and save pointers

to those objects.

To adapt this implementation to multi-GPU MASS CUDA, we had to make two changes.

First, the original algorithm for determining the Index values of neighboring Place ob-

jects, given the destinations vector, relied on the Index value of a Place being equal to

the device thread idx within the exchangeAllPlacesKernel(). However, with multiple

30

GPUs this is no longer the case, so we adjusted the kernel to perform the calculation in

terms of both the device devIndex (in order to get pointers to the neighboring Place)

and the Index (to save the actual Index of the neighboring Place). In addition, using

multiple GPUs for exchangeAll() creates similar complications to the getAttribute()

function, wherein a Place may attempt to access data (in this case its neighbor informa-

tion) from another GPU. We addressed this issue in a similar way by requiring the offsets

to be within the MAX PLACE EXCHANGE range set in the settings.h file. If the user at-

tempts to call exchangeAll() with destinations that are beyond the number of rows set

in MAX PLACE EXCHANGE, MASS will throw an error telling the user they need to increase

MAX PLACE EXCHANGE, rather than a segmentation fault.

4.9 GPU Boundary Communication

As described in section 4.3, each device has both base places and ghost places stored in its

memory. The ghost places are designed to be duplicates of their corresponding base places,

including all their attributes. However, as base places run callAll() functions and modify

their attributes, the attributes in the corresponding ghost places may become out of date.

To solve this problem, the exchangeGhostPlaces() function runs after every callAll()

function and copies all attribute data from the base places to the corresponding ghost places

on the adjacent devices. The basic functionality of this is shown in Figure 4.8 and Listing

4.6.

The code in Listing 4.6 show only copying base places from the current device to ghost

places on the previous device, but copying from current to next is similar. First, because each

device only saves a pointer to the start of its attribute arrays (e.g. the first place’s attribute

in the array), the function needs to determine the offsets (in number of places) to where

the source (start of base places) and destination (start of ghost places on previous device)

begin. This is shown in the calculation of dstOffset and srcOffset on lines 9 and 10. For

example, in the example shown in Figure 4.8 the srcOffset would be four places on the

second device (pointing to the start of the place with DevIndex four), while the dstOffset

31

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

0 1 2 3

4 5 6 7

8 9 10 11

12 12 13 13 14 14 15 15

DevIndex Index

0 8 1 9 2 10 3 11

4 5 6 7

8 9 10 11

12 13 14 15

next
Copy

prev
Copy

Figure 4.8: Copying of base places to overwrite corresponding ghost places on adjacent

devices. This shows how the attributes of base places with Index 8 through 11 on the first

device are copied to overwrite the corresponding ghost places on the next device. Similarly,

the attributes of base places with Index 12 through 15 (DevIndex 4 through 11)are copied

to overwrite the corresponding ghost places on the previous device.

would be twelve places on the first device, to point to the start of the place with DevIndex

twelve. Once the offsets are established, the code then loops through each attribute and does

the following steps:

1. Determine if this attribute is a one-dimensional attribute (only one value) or a two-

dimensional attribute (contains arrays of values) on line 17.

2. If the attribute is one-dimensional, the number of bytes to copy is equal to number

of ghost places * sizeOf(AttributeObjectType), shown on line 22. If it is two-

32

Listing 4.6: Ghost place copying to previous device. This determines the previous GPU ID,

then gets the placeStride and ghostPlacesAfter of that device. It uses these to calculate

the start position of the ghost places on the previous device, called the dstOffset. Then it

determines the start of the base places on the current devices, called the srcOffset. Next, it

calculates the size of the data to copy using either the attributePitch (for two-dimensional

attributes) or the attributeSize (for one-dimensional attributes). Finally, it calculates a

dst pointer by offsetting this attribute’s attributeDevPtrs by the devOffset, and a src

pointer by offsetting this attribute’s attributeDevPtrs by the srcOffset. These are the

arguments in the cudaMemcpyPeerAsync() call.

1 #pragma omp parallel
2 {
3 int gpu id = −1;
4 CATCH(cudaGetDevice(&gpu id));
5

6 if (activeDevices.size() > 1 && gpu id > 0) {
7 int prev gpu = activeDevices[gpu id − 1];
8

9 int dstOffset = p−>placeStride[prev gpu] − p−>ghostPlacesAfter[prev gpu];
10 int srcOffset = p−>ghostPlacesBefore[gpu id];
11

12 for (int i = 0; i < p−>nAttributes; i++) {
13

14

15 int count = p−>ghostPlacesAfter[prev gpu];
16 int offsetSize;
17 if (attributePitch−>at(i) > 0) { // If attribute is 2D, count and offsetSize are

based on attribute Pitch
18 count ∗= attributePitch−>at(i);
19 offsetSize = attributePitch−>at(i);
20 }
21 else {
22 count ∗= attributeSize−>at(i);
23 offsetSize = attributeSize−>at(i);
24 }
25

26 void∗ dst = (char∗)(attributeDevPtrs−>at(i)[prev gpu]) + (offsetSize ∗
dstOffset);

27 const void∗ src = (char∗)(attributeDevPtrs−>at(i)[gpu id]) + (offsetSize ∗
srcOffset);

28

29 CATCH(cudaMemcpyPeerAsync(dst, prev gpu, src, gpu id, count));
30 }}}

33

dimensional, the number of bytes is equal to number of ghostPlaces * attributePitch,

shown on line 18.

3. Use pointer arithmetic to determine the destination pointer, dst, to the start of the

ghost places on the previous device, on line 26.

4. Use pointer arithmetic to determine the source pointer, src, to the start of the corre-

sponding base places on this device, on line 27.

5. Copy data between the devices using cudaMemcpyPeerAsync() on line 29. The Async

version of cudaMemcpyPeer() allows the copy calls to run in the background while the

host calculates the dst and src values for the next attribute, improving performance.

By running exchangeGhostPlaces() after every callAll() function, the MASS CUDA

library ensures that the attributes saved on the ghost places are always up to date with

the attributes saved on their corresponding base places. While this data transfer can be

computationally intensive, we believe it is more efficient than a piecemeal copying of data

between devices by every place. To allow the user to minimize the amount of device to

device data transfer, we also provided a callAll (int functionId, void* argument =

nullptr, int argSize = 0) const version of callAll(). This version allows the user to

specify that they are not intending to update any attributes with their callAll() function,

and so exchangeGhostPlaces() will not be run. This saves time copying attribute data

when no data has been updated.

34

Chapter 5

EVALUATION

Evaluation of the multi-GPUMASS CUDA implementation consists of a programmability

comparison with the single-GPU MASS CUDA library and execution performance tests

using the Game of Life and Heat2D benchmark programs. The programmability comparison

reviews how a user would convert an ABM program written for single-GPU MASS CUDA to

multi-GPU MASS CUDA, and how the libraries compare in a static analysis of the code. The

benchmarking assesses the runtimes and spatial scalability of benchmark programs running

on the two MASS CUDA versions.

5.1 Programmability

5.1.1 Compatibility with Single-GPU Library

One goal of this multi-GPU MASS CUDA project is to require as few modifications as

possible for applications written for the single-GPU MASS CUDA library version. The

MASS library maintains a group of common benchmark applications used to compare MASS

versions, such as MASS Java to MASS CUDA, as well as to other competitor ABM libraries.

Several of these benchmark programs, such as Heat2D, MATSim, and Tuberculosis were

already completely rewritten to support the single-GPU MASS CUDA library update to

use attributes for data storage [15, 16]. Because rewriting benchmark programs is a time-

consuming process, the multi-GPU MASS CUDA library purposely maintains the previous

MASS CUDA interface, with some minor exceptions.

Benchmark programs using the multi-GPU MASS CUDA library must make two main

changes to their programs: updating the base constructor code and including OpenMP linker

flags during compilation. When a user creates a UserPlace class that extends the Place

35

class, they must provide a UserPlace constructor that overrides the Place constructor.

Previously, this Place constructor only needed a Place index to create the base Place

object. However, now that a Place has a separate index and devIndex, and can be either

a base place or a ghost place, the user needs to make the change to their constructor shown

in Listing 5.1.

Listing 5.1: Single-GPU and Mult-GPU UserPlace Constructor. This shows the differences

in the base constructor the user needs to provide in their UserPlace header file. This is the

only time where the user needs to use the devIndex or basePlace data members.

1 /∗ SINGLE−GPU ∗/
2 UserPlace(int index) : Place(index) {}
3

4 /∗ MULTI−GPU ∗/
5 UserPlace(int index, int devIndex, bool basePlace) : Place(index, devIndex, basePlace) {}

The second change the user must make is enabling OpenMP support by adding the fol-

lowing code as flags for the CUDA compiler, nvcc: -Xcompiler -fopenmp. The -Xcompiler

flag tells nvcc to pass any subsequent flags directly to the host compiler instead of the nvcc

compiler, while the -fopenmp flag tells the host compiler to link the OpenMP library.

In addition to code changes, users must specify the settings values of MAX PLACE EXCHANGE

and MAX AGENT TRAVEL to match the needs of their benchmark program, as explained in

section 4.3. These values should be determined by the user based on the maximum distance

(in terms of number of place rows) they expect places to exchange information and the

maximum distance they expect agents to migrate, respectively. These can be set in the

settings.h file within the MASS CUDA source directory, as shown in Listing 5.2.

36

Listing 5.2: Setting MAX PLACE EXCHANGE and MAX AGENT TRAVEL within settings.h. This

value is determined by the user based on the needs of their benchmark program.

1 #ifndef MAX AGENT TRAVEL
2 #define MAX AGENT TRAVEL 1
3 #endif
4

5 #ifndef MAX POTENTIAL AGENTS
6 #define MAX POTENTIAL AGENTS 12
7 #endif

37

5.1.2 Static Analysis of Single-GPU and Multi-GPU Libraries

To compare the programmability of the single-GPU and multi-GPU MASS CUDA imple-

mentations, we performed a static analysis of the two code bases. This analysis compares the

lines of code and the cyclomatic complexity. Cyclomatic complexity is assessed by finding

the number of linearly independent paths through the code, with this being increased by

conditional statements like if, else, for, switch, etc. To perform this analysis, we ran

lizard, an open-source code complexity tool, on the entire source directory of both library

versions. The results of the single-GPU and multi-GPU MASS CUDA static analysis are

shown in Table 5.1.

Table 5.1: Comparison of Single-GPU and Multi-GPU static analysis, showing the similari-

ties in LOC and cyclomatic complexity.

Metric Single-GPU Multi-GPU

Lines of Code 1106 1316

Cyclomatic Complexity 2.36 2.40

Overall, the modifications to implement multi-GPU MASS CUDA did not drastically

increase the lines of code or cyclomatic complexity of the library. The relatively small

number of additional lines of code and small increase in cyclomatic complexity is due to the

efficiency of using OpenMP to parallelize the same kernel calls over both GPUs. In fact,

most of the additional lines of code are from implementing logic to split the places array and

calculate ghost place locations.

5.2 Execution Performance

To benchmark the performance of the updated MASS CUDA library, we ran the Game of

Life and Heat2D benchmark programs for both single-GPU and multi-GPU MASS CUDA.

Both benchmark programs use only Place objects, not agents, so they are ideal for our

38

implementation. In addition, they generally only require minimal data exchange between

immediately adjacent place objects, which means they need less ghost places and therefore

less data transfer between devices.

Conway’s Game of Life is a program that simulates the growth and competitions of living

organisms [17]. These organisms are arrayed on a grid of places that represent cells, and

each organism lives, reproduces, or dies using a simple set of rules based on how many other

organisms are around it. These rules are:

1. A live cell with fewer than two living neighbors dies.

2. A live cell with two or three live neighbors survives to the next generation.

3. A live cell with more than three live neighbors dies.

4. A dead cell with exactly three live neighbors becomes alive.

These simple rules utilize the exchangeAll() and callAll() functions of the MASS

CUDA place implementation within a loop to run the simulation.

Heat2D simulates the dispersion of heat across a metal plate over time. It starts with a

single point source of heat applied to the plate, and from there the heat spreads across the

plate. In MASS, Heat2D is represented by a two-dimensional grid of places, each representing

a discrete point on the metal plate. Each place exchanges information with its neighbors

to determine the temperature of those neighbors, then calculates its own temperature based

on that using the Euler method. This simulation therefore makes heavy use of inter-place

communication, as described in section 4.8. Figure 5.1 shows an example of the spread of

heat from a point source at the top middle of the place grid, which was simulated in MASS

CUDA and visualized using the Simviz library.

39

Figure 5.1: Heat2D visualization created using Simviz output tool. Shows a single heat

source (in red) being applied at the top center of the plate, with that heat in the process of

radiating throughout the rest of the plate.

40

5.2.1 Benchmark Runtimes

Benchmark program runtimes were tested on the UW Bothell’s Juno remote Linux lab com-

puter. This computer has two NVIDIA RTX A5000 graphics cards, each with 24 GB of

device memory. The two cards are connected by an NVLink 4.0 bridge; tests for single-GPU

runtimes used one of these GPUs, while tests for multi-GPU used both. The simulation used

a Timer class within the source code to calculate the runtime from MASS initialization to

MASS shutdown, with the simulation in between. The results of the runtimes for various

places array sizes are shown in Figures 5.2 and 5.3.

Number of Places

R
un

tim
e

(m
s)

0

200

400

600

2,500,000 5,000,000 7,500,000 10,000,000 12,500,000 15,000,000

Single-GPU Multi-GPU

Figure 5.2: Game of Life runtime benchmarks for single and multi-GPU MASS CUDA. The

slopes of the graph are 18.9 nanoseconds per Place for single-GPU and 26.5 nanoseconds

per Place for multi-GPU.

41

Figure 5.2 shows that for this benchmark program, the single-GPU and multi-GPU

MASS CUDA implementations had similar runtimes, with the multi-GPU being slightly

slower. However, the multi-GPU implementation demonstrated the increased spatial scala-

bility available on two GPUs. The graph for single-GPU Game of Life ends at nine million

places, which is the maximum simulation size that could be run before running out of device

memory. In contrast, the multi-GPU implementation was able to run Game of Life with

a maximum of sixteen million places. This represents a 77% increase in the spatial scala-

bility of the Heat2D simulation using the multi-GPU MASS CUDA library. The Game of

Life benchmark suggests that multi-GPU MASS CUDA may be effective for running larger

programs even if the runtimes are slower.

42

Number of Places

R
un

tim
e

(m
s)

0

10000

20000

30000

40000

50000

2,500,000 5,000,000 7,500,000 10,000,000 12,500,000 15,000,000

Single-GPU Multi-GPU

Figure 5.3: Heat2D runtime benchmarks for single and multi-GPU MASS CUDA. The slopes

of the graph are 4.26 microseconds per Place for single-GPU and 2.47 microseconds per

Place for multi-GPU.

Figure 5.3 shows multi-GPU MASS CUDA runs significantly faster than single-GPU

MASS CUDA as the number of places increases. At nine million places (the maximum size

of the single-GPU simulation), the multi-GPU version takes 32% less time to complete the

simulation than single-GPU. However, for simulations less than one million places the single-

GPU version is faster. This demonstrates the tradeoffs between the additional resources and

the higher overhead of a multi-GPU implementation. For smaller numbers of places, the

overhead to split the data and copy ghost places between devices outweighs the additional

threads available to multiple GPUs. This relationship is reversed with larger simulation

sizes, with the two GPUs allowing the simulation of larger data sets with more threads. In

43

addition to improvements in runtime for large simulations, Figure 5.3 also demonstrated the

same improvements in spatial scalability seen in Game of Life.

The improved runtime performance of Heat2D compared to Game of Life is likely due to

the increased complexity of the program. While Game of Life simply counts the number of

adjacent places that are alive, Heat2D uses the heat equation to calculate the temperature

of the current place based on the temperatures of the adjacent places. This more complex

calculation can take advantage of the greater number of cores in multi-GPU MASS CUDA,

increasing the overall performance. Therefore, in future benchmarks we would expect that

more complex programs that require more calculation time would perform better in multi-

GPU MASS CUDA as their overhead due to ghost place exchange would be spread over

more calculation time.

44

Chapter 6

CONCLUSION

This project successfully implemented multi-GPU MASS CUDA for place objects, in-

cluding unit testing and benchmark testing. This includes all aspects of the Place object

implementation, including initialization, place creation, attribute creation and access, and

inter-place communication. In addition, this project implemented synchronization of place

data between devices using ghost places and GPU boundary communication. These changes

were implemented in a way that largely maintained compatibility with the previous MASS

CUDA implementation, which will allow existing benchmark programs to be quickly updated

to run on multi-GPU MASS CUDA. The evaluation of this project showed promising results,

with the potential for both faster runtimes and increased spatial scalability, depending on

the program. This opens the possibility of allowing larger ABM simulations to be run on

the MASS CUDA library.

However, there are some limitations to this project and its implementation. First, testing

was limited to two GPUs, so the algorithms to split places and attributes over more than

two could not be fully tested. However, all algorithms were written with the intent that

they can run on N GPUs. Second, there are limited benchmark programs that require only

places and not agents, which limited the scope of the runtime evaluation. Lastly, this project

focused largely on modifying the existing MASS CUDA implementation for multiple GPUs,

and therefore did not focus on any optimization or reorganization of the original MASS

CUDA code.

The final limitation to note is that this project is the first half of a larger effort to fully

implement MASS CUDA for multiple GPUs. While places have been fully implemented,

MASS requires agents to run most benchmark programs and reach full functionality. There-

45

fore, future work will be required to adapt the single-GPU MASS CUDA code to multiple

GPUs. However, we believe that much of the groundwork established in this code can be

transferred to agents, such as OpenMP parallelization, algorithms to split data over multiple

GPUs, and algorithms to copy attribute data between devices.

Another potential project for future work is to reconcile the differences between the

MASS CUDA library and the MASS C++ and MASS Java libraries. The implementation

of attributes caused the way users create ABM programs in MASS CUDA and the other

MASS versions to diverge. Differences in the codebases, such as MASS CUDA no longer

having a PlaceState or AgentState object and accessing attributes using getAttribute(),

causes incompatibility between the library versions that make programming more difficult

when transferring between libraries. The MASS CUDA implementation of attributes also

somewhat undermines the object-oriented nature of the code by requiring all attribute to

be declared inline within the main function, rather than being encapsulated within objects.

While the decision to change the MASS CUDA library to implement attributes remains

sound due to its performance enhancements, some form of interface or setup script for MASS

CUDA could restore the PlaceState and AgentState objects to the user while maintaining

the attribute implementation on the background. This future work could greatly improve

the compatibility of MASS library versions with each other.

In conclusion, the multi-GPU implementation of the MASS CUDA library greatly en-

hances both the runtime performance and spatial scalability of the library for large simula-

tions. This allows the library to run larger, more complex simulations that require time and

memory usage to obtain results. This significantly improves the capabilities of the MASS

CUDA library, making it more competitive with other ABM models in running simulations.

Finally, this approach to improving the capabilities of MASS CUDA opens opportunities

for further improvements to the MASS CUDA library, such as adding additional GPUs to

further increase performance.

46

BIBLIOGRAPHY

[1] CPU vs. GPU: What’s the difference? [Online]. Available: https://www.cdw.com/cont
ent/cdw/en/articles/hardware/cpu-vs-gpu.html

[2] N. Hart, “MASS CUDA: Parallel-computing library for multi-agent spatial simulation.”
[Online]. Available: https://depts.washington.edu/dslab/MASS/docs/MassCuda.pdf

[3] E. Kosiachenko, “Efficient GPU parallelization of the agent-based models using MASS
CUDA library,” 2018. [Online]. Available: https://depts.washington.edu/dslab/MAS
S/reports/LisaKosiachenko MasterThesis.pdf

[4] W. Liu, “Programmability and performance enhancement of MASS CUDA,” p. 69.
[Online]. Available: https://depts.washington.edu/dslab/MASS/reports/WarrenLiu w
hitepaper.pdf

[5] L. Kosiachenko, N. Hart, and M. Fukuda, “MASS CUDA: A general GPU parallelization
framework for agent-based models,” in Advances in Practical Applications of Survivable
Agents and Multi-Agent Systems: The PAAMS Collection, Y. Demazeau, E. Matson,
J. M. Corchado, and F. De la Prieta, Eds. Springer International Publishing, pp.
139–152. [Online]. Available: https://doi.org/10.1007/978-3-030-24209-1 12

[6] B. D. Pittman, “Multi agent spatial simulation (MASS) in multiple GPU environment
with NVIDIA CUDA.” [Online]. Available: https://depts.washington.edu/dslab/MAS
S/reports/BenPittman whitepaper.pdf

[7] S. Luke, “Multiagent simulation and the MASON library.” [Online]. Available:
https://cs.gmu.edu/∼eclab/projects/mason/manual.22.pdf

[8] U. Wilensky, “NetLogo.” [Online]. Available: http://ccl.northwestern.edu/netlogo/

[9] Repast simphony reference manual. [Online]. Available: https://repast.github.io/docs/
RepastReference/RepastReference.html

[10] N. Collier, “Repast HPC manual.” [Online]. Available: https://repast.github.io/docs/
repast hpc.pdf

https://www.cdw.com/content/cdw/en/articles/hardware/cpu-vs-gpu.html
https://www.cdw.com/content/cdw/en/articles/hardware/cpu-vs-gpu.html
https://depts.washington.edu/dslab/MASS/docs/MassCuda.pdf
https://depts.washington.edu/dslab/MASS/reports/LisaKosiachenko_MasterThesis.pdf
https://depts.washington.edu/dslab/MASS/reports/LisaKosiachenko_MasterThesis.pdf
https://depts.washington.edu/dslab/MASS/reports/WarrenLiu_whitepaper.pdf
https://depts.washington.edu/dslab/MASS/reports/WarrenLiu_whitepaper.pdf
https://doi.org/10.1007/978-3-030-24209-1_12
https://depts.washington.edu/dslab/MASS/reports/BenPittman_whitepaper.pdf
https://depts.washington.edu/dslab/MASS/reports/BenPittman_whitepaper.pdf
https://cs.gmu.edu/~eclab/projects/mason/manual.22.pdf
http://ccl.northwestern.edu/netlogo/
https://repast.github.io/docs/RepastReference/RepastReference.html
https://repast.github.io/docs/RepastReference/RepastReference.html
https://repast.github.io/docs/repast_hpc.pdf
https://repast.github.io/docs/repast_hpc.pdf

47

[11] D. Perez. NVIDIA® CUDA™ unleashes power of GPU computing. [Online]. Available:
https://web.archive.org/web/20070329144655/http://www.nvidia.com/object/IO 399
18.html

[12] P. Richmond, R. Chisholm, P. Heywood, M. Leach, and M. Kabiri Chimeh, “FLAME
GPU.” [Online]. Available: https://zenodo.org/records/5465845

[13] N. M. Ho, N. Thoai, and W. F. Wong, “Multi-agent simulation on multiple GPUs,”
vol. 57, pp. 118–132. [Online]. Available: https://www.sciencedirect.com/science/articl
e/pii/S1569190X15001033

[14] W. Chen, K. Ward, Q. Li, V. Kecman, K. Najarian, and N. Menke, “Agent based
modeling of blood coagulation system: Implementation using a GPU based high
speed framework,” in 2011 Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, pp. 145–148, ISSN: 1558-4615. [Online]. Available:
https://ieeexplore-ieee-org.offcampus.lib.washington.edu/document/6089915

[15] J. Nguyen, “Development of FLAMEGPU2 and MASS CUDA benchmark programs
(heat2d).” [Online]. Available: https://depts.washington.edu/dslab/MASS/reports/Jo
hnNguyen wi24.docx

[16] H. Ogden, “MASS CUDA MATSim.” [Online]. Available: https://depts.washington.e
du/dslab/MASS/index.html

[17] M. Gardner, “Mathematical games - the fantastic combinations of john conway’s new
solitaire game ”life” - m. gardner - 1970,” vol. 223, pp. 120–123. [Online]. Available:
https://web.stanford.edu/class/sts145/Library/life.pdf

https://web.archive.org/web/20070329144655/http://www.nvidia.com/object/IO_39918.html
https://web.archive.org/web/20070329144655/http://www.nvidia.com/object/IO_39918.html
https://zenodo.org/records/5465845
https://www.sciencedirect.com/science/article/pii/S1569190X15001033
https://www.sciencedirect.com/science/article/pii/S1569190X15001033
https://ieeexplore-ieee-org.offcampus.lib.washington.edu/document/6089915
https://depts.washington.edu/dslab/MASS/reports/JohnNguyen_wi24.docx
https://depts.washington.edu/dslab/MASS/reports/JohnNguyen_wi24.docx
https://depts.washington.edu/dslab/MASS/index.html
https://depts.washington.edu/dslab/MASS/index.html
https://web.stanford.edu/class/sts145/Library/life.pdf

48

Appendix A

SOURCE CODE DETAILS

Source code for the Multi-GPU MASS CUDA library Place implementation can be found

at https://bitbucket.org/mass_library_developers/mass_cuda_core/src/0cf061a

db6779ca883e2c73b36e6662100b4baf7/?at=holto%2Fmulti-gpu-cuda

This code has not been merged into the develop or main branches because it includes

only the Place implementation, so it would not be able to run most benchmark programs at

this time. We anticipate that the multi-GPU version would use version number 0.8.0 when

fully implemented.

To set up the source code on the UW Bothell’s Juno computers, follow these steps:

1. Connect to the Juno lab computers by entering ssh NETID@juno.uwb.edu

2. Clone the library by running git clone https://holtogden@bitbucket.org/mass

_library_developers/mass_cuda_core.git

3. Change to the library directory by running cd mass cuda core

4. Download and install dependencies by running make develop

5. Compile the library by running make build

6. Run the tests by calling make test

An example output for these steps is shown in Listing A.1. Note that other tests can be

enabled by modifying the testing::FLAGS gtest filter = "MASS Places.SetAttribute"

line within the test/main.cu file to specify other tests within the file. To run all tests for

the place implementation, use "MASS Places.*".

https://bitbucket.org/mass_library_developers/mass_cuda_core/src/0cf061adb6779ca883e2c73b36e6662100b4baf7/?at=holto%2Fmulti-gpu-cuda
https://bitbucket.org/mass_library_developers/mass_cuda_core/src/0cf061adb6779ca883e2c73b36e6662100b4baf7/?at=holto%2Fmulti-gpu-cuda
https://holtogden@bitbucket.org/mass_library_developers/mass_cuda_core.git
https://holtogden@bitbucket.org/mass_library_developers/mass_cuda_core.git

49

Listing A.1: Example output of multi-GPU MASS CUDA setup.

1 [holto@juno mass cuda core]$ make build
2 Building MASS library...
3 MASS library build complete.
4 [holto@juno mass cuda core]$ make test
5 Building test...
6 ========= COMPUTE−SANITIZER
7 Note: Google Test filter = MASS Places.SetAttribute
8 [==========] Running 1 test from 1 test suite.
9 [−−−−−−−−−−] Global test environment set−up.

10 [−−−−−−−−−−] 1 test from MASS Places
11 [RUN] MASS Places.SetAttribute
12 [OK] MASS Places.SetAttribute (5668 ms)
13 [−−−−−−−−−−] 1 test from MASS Places (5668 ms total)
14

15 [−−−−−−−−−−] Global test environment tear−down
16 [==========] 1 test from 1 test suite ran. (5668 ms total)
17 [PASSED] 1 test.
18 ========= ERROR SUMMARY: 0 errors
19 [holto@juno mass cuda core]$

50

Appendix B

BENCHMARK CODE DETAILS

Source code for the MASS CUDA library benchmark programs used in this paper can be

found at the following locations:

• Game of Life: https://bitbucket.org/mass_application_developers/mass_c

uda_appl/src/0cd15bb4b4dd40dc74fa3bc616c0b06e1ac7658d/GameOfLife/GameO

fLife_PlaceV2/?at=holto%2FHeat2D-multi-gpu

• Heat2D: https://bitbucket.org/mass_application_developers/mass_cuda_ap

pl/src/0cd15bb4b4dd40dc74fa3bc616c0b06e1ac7658d/Heat2D/Heat2D_MASS/?at

=holto%2FHeat2D-multi-gpu

To set run these programs on the UW Bothell’s Juno computers, follow these steps:

1. Connect to the Juno lab computers by entering ssh NETID@juno.uwb.edu

2. Clone the library by running git clone [url]

3. Change to the benchmark directory by running cd [folder]

4. Download and install dependencies by running make develop

5. Compile the library by running make build

6. Run the programs by calling ./bin/[program]

Example output for these programs is shown in Listings B.1 and B.2.

https://bitbucket.org/mass_application_developers/mass_cuda_appl/src/0cd15bb4b4dd40dc74fa3bc616c0b06e1ac7658d/GameOfLife/GameOfLife_PlaceV2/?at=holto%2FHeat2D-multi-gpu
https://bitbucket.org/mass_application_developers/mass_cuda_appl/src/0cd15bb4b4dd40dc74fa3bc616c0b06e1ac7658d/GameOfLife/GameOfLife_PlaceV2/?at=holto%2FHeat2D-multi-gpu
https://bitbucket.org/mass_application_developers/mass_cuda_appl/src/0cd15bb4b4dd40dc74fa3bc616c0b06e1ac7658d/GameOfLife/GameOfLife_PlaceV2/?at=holto%2FHeat2D-multi-gpu
https://bitbucket.org/mass_application_developers/mass_cuda_appl/src/0cd15bb4b4dd40dc74fa3bc616c0b06e1ac7658d/Heat2D/Heat2D_MASS/?at=holto%2FHeat2D-multi-gpu
https://bitbucket.org/mass_application_developers/mass_cuda_appl/src/0cd15bb4b4dd40dc74fa3bc616c0b06e1ac7658d/Heat2D/Heat2D_MASS/?at=holto%2FHeat2D-multi-gpu
https://bitbucket.org/mass_application_developers/mass_cuda_appl/src/0cd15bb4b4dd40dc74fa3bc616c0b06e1ac7658d/Heat2D/Heat2D_MASS/?at=holto%2FHeat2D-multi-gpu

51

Listing B.1: Example output of multi-GPU MASS CUDA Game of Life benchmark.

1 [holto@juno GameOfLife PlaceV2]$ make build
2 Building GameOfLife PlaceV2...
3 GameOfLife PlaceV2 build complete.
4 [holto@juno GameOfLife PlaceV2]$./bin/GameOfLife PlaceV2
5 Game Of Life (MASS Implementation)
6 Starting MASS CUDA simulation with MAX NEIGHBORS 8
7 Running MASS CUDA simulation for 10 generations, with size of 100
8 CUDA total time 16.2948 ms
9 CUDA time for initialization 10.294 ms

10 CUDA time for each step 0.250026 ms
11 CUDA time after setting up 2.60112 ms
12 MASS time for size 100: 130 ms
13 Done with deviceConfig freeDevice().
14 Ending Simulation
15 [holto@juno GameOfLife PlaceV2]$

Listing B.2: Example output of multi-GPU MASS CUDA Heat2D benchmark.

1 [holto@juno Heat2D MASS]$ make build
2 Building Heat2D MASS...
3 Heat2D MASS build complete.
4 [holto@juno Heat2D MASS]$./bin/Heat2D MASS
5 Running Heat2D with params: size=100, heat time=2700, max time=3000, interval=0
6 CUDA total time 2008.655762 ms
7 CUDA time for initialization 56.742882 ms
8 CPU time for initialization 5091 ms
9 CUDA avg step time 0.605538 ms

10 MASS time 6933 ms
11 [holto@juno Heat2D MASS]$

52

Appendix C

BENCHMARK RESULTS

The full benchmark results for Game of Life and Heat2D are shown in Tables C.1 and C.

Table C.1: Game of Life runtime benchmarks for single and multi-GPU MASS CUDA.

Size # Places Single-GPU Runtime

(ms)

Multi-GPU Runtime

(ms)

% Difference

100 10,000 5130 7019 36.82%

1000 1,000,000 9354 10299 10.10%

2000 4,000,000 22183 18814 -15.19%

3000 9,000,000 43412 29294 -32.52%

4000 16,000,000 Out of Memory 46917 N/A

5000 25,000,000 Out of Memory Out of Memory N/A

Table C.2: Heat2D runtime benchmarks for single and multi-GPU MASS CUDA

Size # Places Single-GPU Runtime

(ms)

Multi-GPU Runtime

(ms)

% Difference

100 10,000 118.5 125 5.49%

1000 1,000,000 132.5 145 9.18%

2000 4,000,000 192 201 5.73%

3000 9,000,000 286 302 5.59%

4000 16,000,000 Out of Memory 558 N/A

5000 25,000,000 Out of Memory Out of Memory N/A

	List of Figures
	List of Tables
	INTRODUCTION
	BACKGROUND
	MASS Library
	MASS CUDA

	RELATED WORK
	CPU-Based ABM Libraries
	GPU-Based ABM Libraries
	Multi-GPU ABM
	Motivation

	IMPLEMENTATION
	System Overview
	Initialization
	Place Creation
	Attribute Creation
	Attribute Mapping
	Attribute Access
	Attribute Transfer
	Inter-Place Communication
	GPU Boundary Communication

	EVALUATION
	Programmability
	Execution Performance

	CONCLUSION
	Bibliography
	SOURCE CODE DETAILS
	BENCHMARK CODE DETAILS
	BENCHMARK RESULTS

