
0

Asynchronous and Automatic Agent Migration in MASS

Hung H. Ho

A report
submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Computer Science & Software Engineering

University of Washington Bothell

Spring 2015

Project Committee:

Professor Munehiro Fukuda, Project Advisor

Professor David Socha, CSS595/596 Instructor

1

University of Washington Bothell

Abstract

Asynchronous and Automatic Agent Migration in MASS

Hung H. Ho

MASS is a parallelizing library that provides umlti-agent and spatial simulation over a clus-

ter of computing nodes. The existing approach in MASS uses callAll() broadcast messages

to execute a function at each Agent object. It also uses manageAll() to initiate spawning,

migration, and termination of Agent objects. The goal of this project is to minimize this

communication overhead by only broadcast mesages if need to, hence improve execution time

and efficiency of MASS. We designed and implemented asynchronous and automatic migra-

tion (or auto migration in shorthand) functionality for agents of MASS library to achieve

this goal. The same execution result is achieved by issuing a single callAllAsync() instead

of multiple callAll() and manageAll() messages. This project also includes designing

and implementing a distributed termination detection algorithm using the termination no-

tification approach to detect when asynchronous agent execution has completed across all

computing nodes. Experiments on the Mandelbrot Set problem show that the new approach

achieves better performance than the current MASS synchronous approach when there are a

few thousand agent migrations during execution. Additionally, its performance is similar to

MPI Java under all computing node and thread configurations chosen in these experiments.

Future work includes performing more experiments on asynchronous and auto migration

functionality using real-life applications, such as Climate Change Simulation and Network

Motif, and extends these functionalities to the C++ version of MASS. More user studies are

needed to understand the usability of this new asynchronous and auto migration functionality

of agents.

TABLE OF CONTENTS

Page

Chapter 1: Introduction . 1

1.1 Problem Definition . 1

1.2 Goals . 2

1.3 Report Structure . 2

Chapter 2: Literature Review . 3

2.1 Agent-based Parallel Computing . 3

2.2 Distributed Termination Detection . 4

Chapter 3: Method . 6

3.1 MASS Programming Model . 6

3.2 Asynchronous Migration . 7

3.3 Auto Migration . 12

3.4 Communication Channel . 14

3.5 Remote Migration Request Bundling . 15

3.6 Distributed Termination Detection . 16

3.7 Verification . 21

Chapter 4: Experiments . 22

4.1 Setup . 22

4.2 Performance with 4032 agents . 23

4.3 Performance with 903168 agents . 26

4.4 Effect of number of agents . 29

4.5 Asynchronous migration performance on real-life application BioNet Network
Motif . 31

4.6 Summary . 35

Chapter 5: Conclusion and Future Work . 36

Bibliography . 38
1

List of Figures . 40

List of Tables . 41

Glossary . 42

Appendix A: Mandelbrot Set Experiment Results 43

Appendix B: BioNet Network Motif Experiment Results 50

2

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to University of Washington Bothell,

Professor Munehiro Fukuda, Professor David Socha, and others who have helped with this

project.

3

1

Chapter 1

INTRODUCTION

1.1 Problem Definition

Multi-agent simulation is a popular method to model and simulate large-scale social or

biological agents and their emergent collective behavior, which in some cases is difficult

using only mathematical methods. Many software frameworks have been proposed to tackle

this requirement, such as MACE3J[1] and MASS[2].

MASS, Multi-Agent Spatial Simulation parallelizing library, has been developed at Dis-

tributed System Laboratory, UW Bothell, since 2010. The library employs the concept of

Places and Agents to represent an individual simulation space or active animated enti-

ties. Both are distributed among computing nodes. Places stay the same throughout the

simulation, while Agents perform computation, migrate, and spawn among Places in each

simulation round. All computation is enclosed in each array element or agent. All commu-

nication is scheduled as periodic data exchanges among places or agents. Agents can spawn

more agents or migrate to places and rendezvous with one another.

Although MASS shows improved performance in certain cases and utilization of com-

puting nodes and cores[2], some performance issues still remain. First of all, because agent

execution and migration is done synchronously, in parallel applications, in which agents’

workload cannot be equally divided among them, agents with lighter workload, which finish

their assignments earlier in a period, will be idle while waiting for others to finish before

proceeding to the next instruction. Additionally, agents have to be disseminated explicitly

through broadcast messages rather than automatically by themselves. Issuing broadcast

messages has communication overhead, so it should be done only when it is necessary. In

the current approach, it is done more that needed as agents can migrate, spawn, and kill by

themselves. Hence the current approach is inefficient, and slows down the simulation.

In this project, we address these issues by minimizing communication overhead through

asynchronous migration and automatic migration (or auto migration, in shorthand) of agents.

Hence, unless a coordination/synchronization among agents is needed, agents that finish their

assignments can immediately migrate to other places and spawn new agents without having

to wait for migration broadcast messages and synchronization with other agents.

2

1.2 Goals

The goal of the project is to implement both asynchronous migration and auto migration

functionality of agents for the Java version of MASS library. Asynchronous migration and

auto migration are implemented together because they are closely related. Both target

improving MASS library performance by reducing agent migration communication overhead.

manageAll() function call is eliminated and agents can now migrate asynchronously on their

own. Auto migration reduces the number of remote migrations, which slow down execution.

Additionally, asynchronous and auto migration help improve usability of MASS library, in

particular, programmability, for programmers. First of all, asynchronous migration allows

programmers to specify all the functions that need to be executed in one callAllAsync()

call. Auto migration frees programmers from the burden of figuring how to migrate their

agents to perform data analysis tasks at each place. For the Master Capstone Project and a

six-month time frame, this goal is sufficiently challenging.

Achieving this goal includes creating an architecture design of the new functionalities,

which takes into account compatibility with existing functions of the library; implementation;

testing for their correctness using classic parallel problems, such as Mandelbrot Set, and

real-life applications, such as Biological Network Motif search and Climate Simulation; and

evaluating their performance against existing functionalities of MASS library.

1.3 Report Structure

The project report is organized into the following chapters. In chapter 2, we look into existing

related work. Chapter 3 discusses the design, implementation of the new functionalities, and

how to verify them. Performance evaluation of asynchronous and auto migration as well

as discussion of the results is presented in Chapter 4. Chapter 5, Conclusion and Future

Work, summarizes the achievements and shortcomings of the project and layout possible

improvements.

3

Chapter 2

LITERATURE REVIEW

2.1 Agent-based Parallel Computing

In any multi-agent distributed simulation system, communication is a significant overhead

factor that drags down the performance of the system. In a distributed system, communica-

tion usually involve sending data among computing nodes over the network using TCP/UDP

or socket connection, which is many times slower than reading and executing data from local

memory. This is because CPU has processing speed in GHz and RAM has read and write

speed in Gibibits magnitude, while LAN only has transfer rate of 100Mbits, which is 100

times slower. This inter-node communication overhead can happen between various entities,

for example, between processes, between agents, between an agent and a process, etc.

Considerable research has been conducted to improve performance by reducing overhead

in certain types of communication. Jang and Agha [3] implemented a framework which

includes middle-agent services to load-balance agents among computing nodes in the sys-

tem and minimize communication between agents as well as agents and their environment.

González-Pardo et al. [4] also studies communication overhead among agents . By analyzing

historical message exchange information, an optimized topology is deduced before execution,

so that messages can be redirected efficiently and propagate to all agents in the system in a

smaller number of iterations.

Cherie Wasous [5] proposed two auto migration schemes for MASS agents. In one scheme,

the number of agents remain unchanged throughout execution. In another scheme, starting

with four agents at the center, they will spawn and migrate to the edge of the Places matrix

after each iteration. These two schemes show little performance improvement but extensive

performance studies have not been done.

In this project, rather than communication overhead between agents as in previous re-

search, we want to address communication overhead between processes as well as process

and agents. We will also revisit previous auto migration schemes for MASS library, try out

a new auto migration algorithm, and perform a more extensive performance evaluation on

the new auto migration algorithm.

4

2.2 Distributed Termination Detection

Because execution of each agent is now asynchronous and independent of one another, we

need a logic to detect when all agents have completed their execution. In this section, we

review existing Distributed Termination Detection algorithms, which are devised to address

this type of problem. As discussed in detail in the subsequent Method chapter, MASS’s

new communication channel developed in this project will be completely asynchronous, and

ordering is not guaranteed (non-FIFO). As such, we only consider distributed termination

detection solutions that accommodate this type of communication channel.

Existing solutions can be loosely classified into two approaches: controller initiation and

termination notification initiation. Controller initiation means that a designated process

or computing node is in charge of kicking off the termination detection algorithm, once

it suspects that distributed termination has happened. If the algorithm returns no, then

another round, also called a phase, or wave, in some algorithms, needs to be done again

some time in the future. Termination notification initiation, on the other hand, means that

when a process or computing node is terminated (becomes idle/passive), it notifies one or

many other processes or computing node. When the number of notifications satisfies certain

conditions defined by the algorithm, then the system is considered terminated.

[6], [7], [8], and [9] fall into the controller initiation category. The initiator or controller

propagates the termination detection message to other nodes or processes in the form of rings

[6], trees [7], or graphs [8][9]. A termination detection message is called a signal in [7] and [9],

and a probe in [6]. Upon receiving the message, each process will record its state or states

into the message and propagate the message along the ring, its child nodes, or neighbors.

Eventually the message or messages return to the initiator, and, based on the content, it can

decide whether or not global distributed termination state has been achieved.

[10] and [11] use the termination notification initiation approach. In [11], when a process

becomes passive (or idle), it will broadcast a termination detection message to its neighbors.

Any passive neighbor who receives the message will forward it to its neighbors who have not

received the message. If a passive neighbor has no more neighbors to forward the message

to, or all of its neighbors reply with a “ready-to-terminate” (RT) message, it will reply with

a RT message. Global termination is achieved when all the nodes return RT messages. In

[10], each process keeps track of a “ledger” table, which keeps track of the tasks that it

receives or finishes. There exists a designated controller, which is in charge of determining

global termination. The controller itself also has a “ledger” table, which keeps track of the

states of all the processes’ “ledger” tables. When a process becomes idle, it will update

its ledger table and send the updated report to the controller. Upon receiving the report,

the controller updates its ledger table. If the ledger table conditions are satisfied, global

termination is concluded. Our distributed termination detection algorithm is similar to

5

[10]. In our approach, each computing node keeps track of certain nodes based on certain

conditions. Global termination is achieved when the master node concludes that the nodes

that it keeps track of have finished their execution.

6

Chapter 3

METHOD

3.1 MASS Programming Model

The existing architecture is represented by Figure 3.1. Each computing node has a process,

called MProcess, running on it. Each MProcess contains multiple threads, called MThreads.

MThreads execute concurrently and perform computations on groups of Place and Agent

objects, that are distributed at that computing node. MThreads perform computation on

agents when receiving callAll() messages and migrate, spawn, or kill agents when receiving

manageAll() messages. In the migration/spawn/kill phase of agents, if there is a need for

an agent to migrate to a different node, communication threads are created at the source

nodes and destination nodes, to handle the migration. These threads are destroyed and not

re-used after each migration phase.

Figure 3.1: MASS’s architecture

New entities implemented in this project are shown in blue

7

MASS library employs a network of computing nodes, which communicate with one

another using Socket API. Requests and responses are handled by the main thread in a

synchronous first-in-first-out manner. Other classes in the library are as following:

• MASS base contains all the shared properties that are used by other classes. It also

keeps track of the socket communication among the nodes.

• MASS is a subclass of MASS base with other properties that are used by the master node

only.

• Agents base encapsulates variables and logic related to different agent collections such

as callAll(), manageAll(0.

• Agents is a subclass of Agents base with other properties and methods that are only

executed by the master node.

• Places base captures logic and variables related to place collections such as exchangeAll().

• Places is a subclass of Places base with other properties and methods that are ex-

clusive to master node

3.2 Asynchronous Migration

In order to achieve asynchronous and auto migration of agents, we implemented changes and

additional components to existing architecture as highlighted in blue in Figure 3.1. They are

called AsyncCommunicationThreads, which includes InputThread and OutputThread class.

Previously, in synchronous execution, migration communication is scheduled to happen at

the same time across all node. Hence, it is easy to use the main thread directly to handle

communication even though ServerSocket.accept() is a blocking function call. However,

in asynchronous migration, migration requests can happen at any time during execution,

sometimes with multiple requests to the same node at once, hence the need for dedicated

threads to handle this.

More properties and methods for asynchronous migration functionality are also added into

existing classes, as illustrated in Figure 3.2. MASS base maintains two variables: AsyncOutputThread

and AsyncInputThread to handle requests and responses from other nodes. Agents base

now has an asyncQueue to hold agents that need to be executed by MThreads. Agents are

dequeued and executed by MThreads until there are no agents left on the queue. Agents

class has a new method callAllAsync(). Programmers who want to use asynchronous and

auto migration functionality need to call this method instead of the existing callAll(). In

8

addition to the usual args parameter, programmers need to supply a list of functions that

will be executed by each agent. The method returns once all agents have finished executing

the method list. The return value is a list of copied instances of the agents which contains

the results that they collect during execution. Execution results are stored in a dedicated

variable in each Agent object. This approach is chosen to improve usability because, unlike

synchronous callAll(), each agent may need to collect multiple results during executing

a callAllAsync(). Using this approach, users only need to call appendAsyncResult()

whenever they need to collect an executing result. They do not have to re-implement the

collection logic every time they use asynchronous migration functionality.

In Agent class, each agent also maintains its own asyncArgument, asyncFuncList, and

asyncResult property. The names are self-explanatory with regard to their functional-

ities in the class. Agent class also has myAsyncOriginalPid, myOriginalAsyncIndex,

and myCurrentIndex property to keep track of its original position at the beginning of

callAllAsync() execution. Because agents can migrate, spawn, and kill anytime during

callAllAsync() execution, their final location at the end of execution can be different from

their original position. These properties help avoid confusion and enable programmers to

make sense of the results that the agents return at the end of execution. Additionally, new

methods killAsync(), migrateAsync(), and spawnAsync() are implemented and need to

be called in Agent’s subclass instead of the original kill(), migrate(), and spawn().

9

Figure 3.2: Class diagram for asynchronous functionality

Due to MASS library complexity, only new properties and functions implemented in this project are listed

in this diagram.

Figure 3.3 shows the activity diagram of callAllAsync() execution. First, the master

resets properties of MASS base, Agents base object, and Agent objects discussed previously

in Figure 3.2. The master node then calculates the distribution of the args parameter among

10

the existing agents. Because the master node has knowledge of the agent population at each

computing node, it knows which parameter needs to be sent to which node to be distributed to

the correct agent. It then constructs messages of type AGENTS CALL ALL ASYNC RETURN OBJECT

to send to each slave node and adds the arguments for each node to the corresponding mes-

sage.

After distributing the messages, the master’s threads will start executing Agents base.callAllAsync().

Because agents can now migrate, spawn, and kill asynchronously, even when a node’s threads

finish executing callAllAsync(), there still may be more agents migrating from other nodes

that need to be executed. Therefore, we need a Distributed Termination Detection algorithm,

which is discussed in more details in Section 3.6, to determine whether to continue executing

Agents base.callAllAsync() or start collecting results. Once the algorithm decides that

all execution has finished, the master issues result requests to its slaves and returns the result

collection to the caller.

11

Figure 3.3: callAllAsync() activity diagram

Activity Agents base.callAllAsync() in Figure 3.3 is broken down into detailed ac-

tivity diagram in Figure 3.4. Each thread in each computing node dequeues agents from

asyncQueue and executes their asyncFunctionLists, until there is no more agent to de-

queue. While executing functions in an agent’s asyncFunctionList, if the function is to kill

that agent, the thread will stop executing its functions and dequeue the next agent, if there

is still one or more left in the asyncQueue. If the function is to migrate the agent, depend

on whether the migration is locally at the same node or a remote migration, the thread will

enqueue the agent back into the asyncQueue or create a remote migration request and pass

it to asyncOutputThread. If the agent has no more functions to be executed, it will be

12

cloned and enqueued into completeQueue for result gathering later.

Figure 3.4: Agents base’s callAllAsync() activity diagram

3.3 Auto Migration

In addition to implementing the asynchronous migration feature, the project also implements

agent auto migration feature. While asynchronous migration improves MASS performance,

auto migration aims at improving programmability for users. Instead of having to determine

how to migrate agents in a pattern that has the best performance by themselves in a data

analysis job, programmers only need to specify the list of functions that need to be executed

at a place and MASS will do the remaining work. Since remote migration is very costly,

any chosen agent migration pattern needs to minimize the number of remote migrations. As

places are divided by their first dimension, in a data analysis problem, agents should migrate

along the last dimension of Places from the lowest index to the highest index in order to

13

minimize the number of remote migrations. This pattern is illustrated in Figure 3.5. When

the number of agents is the same as the number of rows, the rows can be easily divided

among the agents. The number of remote migrations is also minimized as they only happen

the very first time when agents line up at the lowest index. When the number of agents is

not equal to the number of rows, deciding how to assign the rows to agents so that remote

migration is minimized is complex. As this is the first implementation of auto migration, in

this project we only support the case when the number of agents equal the number of rows.

As each agent traverses from the lowest index to the highest one of the last dimension of

Places, assuming Places have a dimension of p1 x p2 x .. x pn, the number of agents

at the beginning of an auto migration call must equal p1 x p2 x .. x p(n-1) in order to

cover all the places. Behind the scene, MASS automatically generates the complete list of

(a) default agents’ location after initialization (b) agents traverse from the lowest index to the

highest index of the last dimension

Figure 3.5: Migration pattern of auto migration

functions, including computation functions and migration functions, that would be called if it

were an ordinary callAllAsync(). It then proceeds to callAllAsync() with the complete

function list as usual. Because of this approach, the performance of auto migration and

asynchronous migration should be similar with no significant difference. Before proceeding

to callAllAsync(), MASS also verifies if the current number of agents equals p1 x p2 x

.. x p(n-1). If this condition is not satisfied, MASS will simply return and no execution

will be done. Because an auto migration call can be part of many function calls from the

users, if MASS creates more agents or deletes agents so the condition is satisfied for one

auto migration function call, it may affect what the users intend to do in subsequent calls.

For example, if users do not have enough agents before invoking auto migration, and MASS

automatically create more agents to satisfy the constraint, then users create more agents

14

afterward without knowing of this, then memory overflow may happen. As such, it is better

to show users an error and let them decide what is best for their program.

3.4 Communication Channel

Currently, the MASS programming model uses Socket API to handle communication. The

implementation can only handle synchronous communication, because it uses ServerSocket.accept(),

which is a blocking function call, on the main thread. Hence, the function can only be used

when one computing node is expecting a communication request from another one. Asyn-

chronous communication cannot use this existing infrastructure, as requests can be sent

between any two nodes at any time during execution. Instead, a completely new compo-

nent, AsyncCommunicationThreads, which handles asynchronous communication between

computing nodes, is implemented.

There are two alternatives in implementing AsyncCommunicationThreads: using either

HTTP protocol or Socket API. The advantages and disadvantages of these two approaches

are shown in Table 3.1. In order of importance,

Effort The alternative should be easy for end-users, in this case, programmers who consume

MASS library, to use. HTTP protocol scores low in this criteria because it requires

each computing node to be set up as a server in order to receive requests. This may

also involve configuring the system firewall. On the other hand, Socket API does not

require these extra setups.

Flexibility Socket API has a lower programming level compared to HTTP protocol. Not

all communication in asynchronous migration is in the form of sending a request and

waiting for a response. For example, when a slave node notifies the master node that

it is idle, it does not need to wait for a response from the master. HTTP protocol does

not allow this, while Socket API does. With Socket API, programmers can also choose

when to close a connection. Additionally, socket connection is duplex. Programmers

can send input and output data as many times as you want in one Socket connection.

Programmability . Both HTTP protocol and Socket API satisfy this criteria as there are

existing libraries in C++ and Java that support them.

Because of Socket API’s advantage in Effort and Flexibility criteria, it is a clear choice

for implementing AsyncCommunicationThreads

In order to accommodate the asynchronous requirement, in which many requests can

be sent or received at the same time, as well as to maximize resource usage, the socket

will be implemented in a non-ordering manner. AsyncCommunicationThreads consists of

15

Table 3.1: Comparison of alternatives for AsyncCommunicationThreads

Criteria HTTP Protocol Socket API

Effort Low† High

Flexiblity Low High

Programmability High High

†Low/Medium/High where High is the best suitable for the criteria

two entities: AsyncInputThread and AsyncOutputThread. AsyncInputThread handles re-

quests received by the MProcess, while AsyncOutputThread is used to send requests to other

MProcess. When AsyncInputThread receives a request, it spawns a childThread and assigns

it to handle that request. AsyncInputThread itself returns immediately to listen for more

requests. The same logic is applied for AsyncOutputThread. This ensures that simultane-

ous requests can be handled and none will be dropped. Note that requests are handled in

non-FIFO manner in this logic, even though Socket API communcation is FIFO, because

childThreads are not guaranteed to run in the order in which they are created.

3.5 Remote Migration Request Bundling

In traditional synchronous migration, because all migrations happen at the same time during

manageAll() execution, remote migrations of the same source and destination are grouped

together and executed in one single remote migration request. In the new asynchronous

approach, when an agent needs to migrate remotely to another computing node, the source

node has two options: it can either address the request immediately and send the migration

request out immediately, or it can wait for more requests to the same destination and send

them all at once, saving network bandwidth and computing resources to construct and

keep track of remote migration acknowledgements. Choosing one option over the other is

essentially based on the trade-off between performance and network utilization.

On the one hand, sending migration requests as soon as possible ensures the agents are

fully utilized. On the other hand, bundling requests with the same destination together

reduces the overhead of constructing and keeping track of too many remote migrations. This

problem is similar to the “small package problem” of TCP/IP networks, in which very small

data are transmitted repeatedly, resulting in large overhead [12]. The problem is addressed

in [12] by combining messages until their number reaches a threshold or a timeout happens

before sending them out. By adjusting the timeout and the threshold of number of messages,

network optimization can be achieved with acceptable performance degradation.

16

However, unlike the “small package problem”, asynchronous remote migration request

problem has one additional constraint. If the request threshold is too low and there are

multiple agents (a computing node is supposed to be able to handle as many as 1 million

agents at the same time) requesting to migrate to the same destination in a short period of

time, exception of type java.net.SocketException: Too many open files will occur.

Conversely, when the request threshold is too high, source computing node will hang on

to remote migration requests for too long, result in performance inefficiency. The most

efficient way to set the request threshold and timeout value is by adjusting these throughout

execution according to the number of agents residing at a node and the remote destination

they are going to migrate to at a certain time. Unfortunately, current MASS architecture

does not support this knowledge, and accomplishing this will require code refactoring and

implementing completely new features. These are worthy goals of a future project themselves

and are outside the scope of this project. For the current project, message threshold is hard-

coded to 1000 and timeout value is 30 miliseconds.

3.6 Distributed Termination Detection

In synchronous MASS implementation, each callAll() results in each computing node ex-

ecuting exactly one method. Thus, the master node knows when to collect the result of

callAll(). In asynchronous implementation, however, callAllAsync() results in asyn-

chronous execution, spawning, migrating, and killing of agents many times in one function

call. Consequently, the number of agents at the beginning of the function call may not be

the same at the end. The agent can end up at a different computing node when execution

finishes. A computing node that finishes executing its agents can become active again be-

cause of other agents migrating to it. Hence, the master node needs an efficient logic to

determine when all computation has been completed, so it can collect results and return to

caller.

Before describing the algorithm, here are some self-evident facts:

• Each computing node can only be in two states: active or idle. A node is active if it

has agents with functions to execute or sent/received requests to process; otherwise it

is idle.

• Agents come to existence at a node in two ways: either they are there at the begin-

ning of callAllAsync() function call or they are migrated from another node during

execution.

These facts lead to following definitions:

17

Definition 1. If node A changes from idle state to active state because of agents migrating

to it from node B then B is called the originator of A and A is a receiver of B.

This definition leads to following observations:

• A node can have only one originator yet many receivers.

• A node that is idle at the beginning of callAllAsync() has no originator until it

becomes active upon arrival of migrating agents from another node.

• A node can also have different originators at different times during callAllAsync()

execution because it can become idle and active many times. For example, an idle

node can become active again if new agents migrate to it from another node.

Definition 2. A node with at least one agent at the beginning of callAllAsync() is a

master node’s receiver and has the master node as its originator.

In implementation, a computing node uses originatorPid to store its originator’s process

ID, Pid, and receiverList to store its receivers’ Pids.

The definition of active and idle are formally redefined as follows:

Definition 3. A node is active if it has agents with functions to execute or sent/received

requests to process, and its receiverList is empty. Otherwise, it is idle.

Based on these definitions, the distributed termination detection algorithm is outlined in

Figures 3.6, 3.7, and 3.8. Figure 3.6 shows what needs to happen at master node and slave

nodes, respectively, at the beginning of callAllAsync() in order to uphold Definition 2.

Because the master node has knowledge of each slave node’s local agent population, it adds

nodes’ Pids to its receiverList if they have agents at the beginning of execution. Likewise,

each slave node with initial local agents sets its originatorPid to 0, the master node’s Pid.

for all slave node i do

if i has local agents then

add i to receiverList

end if

end for

(a) at master node

if has local agents at beginning then

originatorP id← 0

end if

(b) at slave node

Figure 3.6: Initialization of distributed termination detection algorithm

18

Figure 3.7 shows the logic when remote migrations occur. If the receiver of a remote

migration was in the idle state and becomes active after receiving it, the receiver will set

its originatorPid to the Pid of the sending node and include this information in the ACK

that is sent back to the sender. On the other side, if the ACK indicates that the sender has

become an originator, it will add the receiving node’s Pid to its receiverList.

process migration request

if transition from idle to active then

originatorP id← senderP id

indicate sender is originator in ACK

end if

(a) at receiving node

process ACK

if chosen as originator then

add receiver’s Pid to receiverList

end if

(b) at sending node

Figure 3.7: Distributed termination detection algorithm handling of remote migrations

When a computing node transitions from active state to idle state (based on Definition

3), it will send an idle notification to its originator, if it has one. On the other side, when a

computing node receives an idle notification from its receiver, it removes that receiver’s Pid

from its receiverList. If its receiverList becomes empty, the originator becomes idle,

and it will send idle notification to its own originator, if it has one. When the master

node becomes idle, it will collect results from all slaves and pass them back to the caller.

This logic is shown in Figure 3.8.

if no agent and request to process &&

receiverList is empty then

send idleNotification to originator

end if

(a) receiver role

Require: on received idleNotification

remove sender’s Pid from receiverList

if receiverList is empty then

if master node then

collect async results from slaves

else

send idleNotification to originator

end if

end if

(b) originator role

Figure 3.8: Distributed termination detection algorithm’s main function

19

Proof. The correctness of this Distributed Termination Detection Algorithm is proven as

follows:

Suppose the algorithm is incorrect. That means when node 0, the master node, becomes

idle and starts issuing AsyncResultRequests to collect results, there exists at least one node

which is still in active state.

If the node is still active, it has not sent idle notification to its originator, based on

Algorithm 3.8a. If its originator is the master node, then the master node’s receiverList

is not empty. Therefore, the master node is not idle and does not issue AsyncResultRequests

(CONTRADICTION). If its originator is another slave node, applying the same reasoning

recursively on that node’s own originator until the originator is the master node, we will

come to the same contradiction as above. The Originator eventually will be 0, because the

agent or agents that make a node active either exist from the beginning of callAllAsync()

execution or are spawned during execution. In both cases, they, or their parent agents, must

exist at a certain node at the beginning, and, based on Algorithm 3.6b, that node has 0 as

its originator.

Let us demonstrate the algorithm with an example illustrated in Figure 3.9. A dis-

tributed system has four computing nodes. There are four MASS agents at the beginning of

callAllAsync() execution. The agents are numbered from 1 to 4. Agent 1 resides at node

0. Agent 2 resides at node 1. Agent 3 and 4 reside at node 2, while there is no agent at

node 3. From Algorithm 3.6b, node 1 and 2 set their originatorPids to 0, which is the

master node’s Pid, while the master node adds 1 and 2 to its receiverList. Neither the

originatorPid nor the receiverList of node 3 are set, because it is idle at this moment.

During the course of execution, agent 4 migrates from node 2 to node 3. This makes

node 3 transition from idle to active. According to Algorithm 3.7a, node 3 considers node 2

as its originator and sets its originatorId to 2. Based on ACK response, node 2 adds 3 to

its receiverId accordingly.

When all agents’ functions are executed on all nodes, based on Definition 3, node 1 and 3

become idle, because their receiverLists are empty. They will send idle notification to their

respective originators, which are node 0 and 2. Node 0 and 2 will remove 1 and 3 from their

receiverLists. After this step, node 2’s receiverList becomes empty, and is therefore

considered idle. Hence, it in turn sends idle notification to its originator 0. After removing

2 from its receiverList, node 0 becomes idle, which allows it to issue AyncResultRequest

to collect the execution results.

20

(a) Beginning of execution

(b) End of execution

Execution steps: 1 Pid 3 sends idle notification to Pid 2 — 2 Pid 2 remove 3

from its receiverList — 1’ Pid 1 sends idle notification to Pid 0 — 2’ Pid 0

remove 3 from its receiverList — 3 Pid 2’s receiverList is empty so it sends

idle notification to Pid 0 — 4 Pid 0 remove 2 from its receiverList — 5 Pid 0’s

receiverList is empty so it collects results from slaves

Figure 3.9: Example of Distributed Termination Algorithm

21

3.7 Verification

The goals of verification are as follows:

Code correctness In deterministic application, the new approach should produce the same

result as the sequential execution. This is achieved by comparing results from both

approaches on classic deterministic parallel problems, such as Mandelbrot. If the results

are the same, the code is correct.

Performance improvement The new approach should show at least a 5-percent perfor-

mance improvement in terms of data analysis execution time comparing to traditional

approach. Again, this is verified by applying the two approaches to parallel problems

such as Climate Change Simulation. Data analysis performance is measured in terms

of execution time under various configurations. Execution time is measured in millisec-

onds (ms). Execution configuration includes different numbers of computing nodes and

numbers of threads per node when executing an application.

Scalability The new approach should be capable of handling hundreds of thousands of

agents and places per node. Execution configurations with a high number of agents

will be used to verify this.

Based on these goals, we designed a set of test cases, performed the experiments, and

evaluated the results. This process will be discussed in greater detail in Chapter 4 “Experi-

ments”.

22

Chapter 4

EXPERIMENTS

The first goal of conducting the present experiments is to evaluate the performance of

asynchronous and auto migration migration against synchronous migration under various

configurations: different numbers of computing nodes, threads, and agents per node. The

second goal is to verify that adding auto migration logic to asynchronous migration does not

affect performance significantly. The last goal is to compare performance of MASS versus

the Java-implemented version of MPI, a popular parallel framework. For each configuration,

execution for both the asynchronous and synchronous approach is performed three times,

after which the results for each approach are averaged.

4.1 Setup

Experiments were conducted using a machine grid available at the Linux lab, located at

building UW1-320 at University of Washington Bothell. There are 16 machines total. Each

has an Intel Core i7-3770 CPU at 3.40GHz speed and 16GB of RAM.

The problem chosen for the experiment is the Mandelbrot Set. In this problem, points in

2-D space are colored based on a certain algorithm. For this experiment, we use the Escape

time algorithm. The algorithm performs the same calculation at each point. Based on the

point’s x- and y-coordinate, the calculation will have a different number of iterations. The

number of iterations determines the point’s color. Available colors are picked beforehand

and stored in an array. The number of iterations is the index of the color in the array. The

Escape time algorithm is summarized in Figure 4.1.

The Mandelbrot Set problem was chosen is because the number of iterations, and, hence,

execution time vary among points. This simulates the condition in which agents, which

are distributed to calculate the number of iterations at each point, will finish at different

times. Agents that finish earlier than the rest will remain idle. Solving the problem using

a combined asynchronous and auto migration approach, as well as a synchronous migration

approach, and then comparing the results will prove whether asynchronous migration can

utilize this idle time.

All experiments were conducted on a 2-D space of size 4032 points by 4032 points. Each

point corresponds to one place. A place’s index corresponds to a point’s coordinate. This

space size is chosen so places can be distributed evenly across computing nodes and among

23

x0 ← 0

y0 ← 0

while x ∗ x + y ∗ y < 4.0 and iteration < MAX ITERATION do

double xtemp = x ∗ x + y ∗ y + x0

y ← 2 ∗ x ∗ y + y0
x← xtemp

iteration + +

end while

Figure 4.1: Escape time algorithm

the threads at each node, which can reach maximum of 4. Agents are distributed at the

leftmost place at each row. They migrate and perform the calculation at each place until

they reach the rightmost place of each row. If there are more agents than rows, each row

will be divided into equal, smaller chunks, so that each agent can have one chunk of places.

Agents will start from the leftmost of the chunk, migrate, and perform the calculation at

each place until the rightmost end of that chunk.

4.2 Performance with 4032 agents

The number 4032 is significant, because in the 2-D space of size 4032 x 4032, this number

of agents satisfies the contraint for the first version of auto migration, as discussed in detail

in Section 3.3. Each place is visited once by agents while the number of remote migrations

is minimized.

Figure 4.2 provides an overview of performance of MPI and MASS with synchronous,

asynchronous, and auto migration under various numbers of computing nodes and numbers

of threads per node. Overall, execution time reduces and performance improves when the

number of nodes and threads increases. Performance of synchronous agent migration of

MASS does not improve as much as with the other approaches. Furthermore, the trend of

performance when the number of computing nodes increases is the same for different number

of threads per node configurations. Hence, there is no interaction effect between number of

nodes and number of threads per node in this case.

24

Figure 4.2: Overall performance of various MASS agent migration types, when agent size is

4032, and MPI

The effect of the number of nodes on performance is shown in Figures 4.3. Figure 4.3a

illustrates the performance when the number of computing nodes increases from 1 to 16

while the number of threads per node is fixed at 1. As we have already observed, the

performance improves when the number of nodes increases. Execution time of asynchronous

and auto migration in MASS closely resembles each other and that of MPI, while that of

synchronous migration is higher, especially when the number of computing nodes increases.

This show that adding auto migration logic, that automatically identifies the migration

pattern, to asynchronous migration does not alter performance significantly. In addition,

the performance does not improve significantly when increasing the number of nodes from 2

to 4. This is because the bulk of calculation is concentrated at the center of the space, and

the total execution time can only be as fast as the slowest node. When there are two nodes,

the heavy calculation portion is equally divided among the node. That is why execution

time of 2 nodes is half of that of the 1-node configuration. When the number of nodes is

4, the heavy calculation portion is still only concentrated in the second and third quarter.

Hence, performance improves, but not as dramatically.

Figure 4.3b shows the performance when the number of computing nodes increases from

1 to 16 while the number of threads per node is fixed at 4. We also observe the same pattern

as when there is 1 thread per node. The overhead of asynchronous and auto migration in

MASS compared to MPI is more distinct in this configuration. This is because, unlike MASS,

25

connections among computing nodes in MPI are established before execution happens and

are only closed explicitly long after. Connections among nodes in MASS must be established

at the time of execution and are closed automatically when execution finishes. The reason

we did not exclude MASS connection establishment time when comparing MASS and MPI

is because this is user’s perceived performance of the libraries. Users perceive execution

time of MASS, or MPI, as the time from which they submit a task until they get the

result. Whether that period includes setup time or is just pure execution time is irrelevant

to the end-users. As such, we chose to include MASS connection establishment time in the

performance evaluation.

Furthermore, MASS also spends time to construct Place and Agent objects for each

execution. In this case, 16 millions Place objects and 4 thousands Agent objects are needed.

(a) 1 thread per node (b) 4 threads per node

Figure 4.3: Effect of number of computing nodes on MASS and MPI performance, agent size

= 4032

26

Figure 4.4: Effect of number of threads on MASS and MPI performance

16 computing nodes configuration. Agent size = 4032

Figure 4.4 shows the effect of the number of threads per node on performance. The

number of nodes is fixed at 16. Again, performance improves when the number of threads

per node increases. This is because when there are more threads per node, more CPU

cores are utilized to perform computation. Hence execution time is sped up. Performance

of synchronous migration in MASS is worse compared to that of asynchronous and auto

migration in MASS, and MPI.

The exact performance numbers for Figures 4.2, 4.3a, 4.3b, and 4.4 are shown in Tables

A.4, A.5, A.8, and A.9 in Appendix A.

4.3 Performance with 903168 agents

In addition to experiments using 4032 agents, we also conducted experiments with 903168

agents. Firstly, this number was chosen because we want to ensure that asynchronous and

auto migration can handle large numbers of agents. Currently, MASS has a limit of 1 million

27

agents per node. As the experiment was conducted with a minimum of 1 computing node, we

picked the number of agents to be at most 1 million in order to satisfy the limit of number of

agents per node while ensuring consistency across different numbers of node configurations.

Secondly, 903168 was chosen instead of exactly 1 million because the agents need to be

equally divided among places, which are of size 4032 by 4032; computing nodes, which have

values of 1, 2, 4, 8, and 16; and threads, which have values of 1, 2, and 4.

Additionally, as discussed in Section 3.3, for a Places group of dimension 4032 x 4032,

the number of agents needs to be 4032 to perform auto migration in MASS. Hence, no

experiment for auto migration was conducted for this configuration of 903168 agents.

Figure 4.5: Overall performance of various MASS agent migration types, when agent size is

903168, and MPI

Figure 4.5 shows overall performance of various MASS agent migration types, when agent

size is 903168, and of MPI. Overall, performance improves when the number of threads and

the number of computing nodes increase. There is no significant difference in performance

between any configurations. Again, the trend of performance when the number of computing

nodes increases is the same for different number of threads per node configurations. Hence,

there is no interaction effect between number of nodes and number of threads per node when

the number of agents is 903168.

The effect of the number of nodes on performance is shown in Figures 4.6. Figure 4.6a

illustrates the performance when the number of computing nodes increases from 1 to 16

28

while the number of threads per node is fixed at 1. Figure 4.6b shows performance for

the same range of number of nodes, but the number of threads per node is fixed at 4. As

we have already observed in Figure 4.3, the performance improves when the number of

nodes increases. Similar to experiments when the number of agents is 4032 in Figure 4.3,

performance of asynchronous and auto migration in MASS closely resembles that of MPI.

However, in this case, performance of synchronous migration is also similar to that of the

other two approaches. This is because, for 903168 agents and a space of 4032 by 4032 places,

each agent only needs to visit 18 places to ensure each place is visited once. This means

that the master node only needs to issue 18 callAll() and manageAll() instead of 4032,

as in previous experiments. Therefore, communication overhead is significantly reduced for

synchronous migration approach. This change in the total number of agents does not give

any advantage to asynchronous the migration approach. Again, we also observe here that

the performance does not improve significantly when increasing the number of nodes from 2

to 4. The reason is the same as discussed previously.

(a) 1 thread per node (b) 4 threads per node

Figure 4.6: Effect of number of computing nodes on MASS and MPI performance, agent size

= 903168

Figure 4.7 shows the effect of the number of threads per node on performance. The

number of nodes is fixed at 16. Again, performance improves when the number of threads

per node increases. There is no significant difference in performance between asynchronous

migration and synchronous migration in MASS. Performance of MPI is better than MASS

because of the overhead in connection establishment, as well as Place and Agent object

initialization in MASS.

29

Figure 4.7: Effect of number of threads on MASS and MPI performance

16 computing nodes configuration. Agent size = 903168

The exact performance numbers for Figures 4.5, 4.6, and 4.7 are shown in Tables A.6,

A.7, and A.9 in Appendix A.

4.4 Effect of number of agents

This experiment is intended to evaluate how the asynchronous approach will perform when

the number of agents increases. We compare performance of asynchronous and auto migra-

tion when there are 4032, 112896, and 903168 agents. These numbers are chosen so that

agents are distributed evenly among rows of places. The number of threads per node is fixed

at 4. The number of computing nodes is 1 and 8. The 2 values allow us to evalute perfor-

mance when the agents are concentrated in one node, which has no remote migrations, as

well as when they are distributed among a number of computing nodes, which require remote

migrations. Average results are plotted in Figure 4.8. The exact performance numbers are

listed in Tables A.2 and A.3 in Appendix A.

The optimal execution number is deduced by dividing sequential performance, which is

30

(a) 1-node configuration (b) 8-node configuration

Figure 4.8: Effect of number of agents on performance

2521 seconds and is summarized in Table A.1, by total number of threads. We observe the

followings from Figure 4.8.

• Performance decreases for asynchronous and increases for synchronous approach, when

the number of agents increases. This happens for both 1-node and 8-node configura-

tions.

• Asynchronous migration performs worse than synchronous migration in both configu-

rations when there are 903168 agents, but is 58% faster than the synchronous approach

when there are 4032 agents in 8-node configuration.

• None of the approaches performs as well as the ideal goal, which is when there is no

overhead in parallelization.

These observations can be explained based on the fact that when there are more agents,

synchronous execution needs to issue fewer callAll() and manageAll() calls. Hence, its

communication overhead is reduced and performance improves. This gets even better in the

case of 1-node configuration because there is no inter-node communication, only synchroniza-

tion among local threads. The Asynchronous approach, on the other hand, has the size of the

asyncQueue increased. Dequeuing agents from asyncQueue needs to be synchronized among

threads. Therefore, its overhead actually increases when the number of agents increases.

31

Additionally, each approach suffers from different kind of overhead, so none performs as well

as the optimal. Overall, the experiments also show that asynchronous approach can handle

16 million places and 900 thousands agents at one node.

4.5 Asynchronous migration performance on real-life application BioNet Net-
work Motif

Toward the end of the project, we also incorporated the asynchronous migration feature

into existing MASS implementation of real-life application BioNet Network Motif [13]. The

problem definition is to construct all subgraphs of a certain size, called motif size, of an input

graph. In MASS simulation implementation of the problem, each place represents a graph

node. Agents will traverse the graph by migrating among places, constructing subgraphs

along the way. If there are more than one path to traverse from a node, agents will spawn

additional child agents to traverse these extra paths. When a subgraph has the required

size, agents deposit that subgraph result to its current place and kill itself. When there is

no more agent to execute, subgraph results are collected from all the places.

We did not incorporate the auto migration feature into this application because agents

need to traverse graph nodes, not matrix, which is not supported by the current implemen-

tation of the auto migration feature. We reused experiment results for the sequential and

the synchronous approach conducted in [13]. Their exact results are shown in Table B.1,

B.2, and B.3 in Appendix B. Exact results for the asynchronous approach conducted in this

project are shown in Table B.4 and B.5. For each configuration, execution was performed

three times, after which the results are averaged.

Follow the same convention as [13], the results for the asynchronous approach are also

measured in miliseconds.

32

4.5.1 Motif size 4

Figure 4.9: Overall performance of BioNet Network Motif implemented using asynchronous

and synchronous agent migration of MASS, when motif size is 4

Figure 4.9 shows overall performance of asynchronous and synchronous migration approach

for motif size 4. Except for the 1-node configuration, the asynchronous approach performance

is better or similar to that of the synchronous approach, although it is still not as good as

the sequential approach. There is also no interaction effect between number of nodes and

number of threads per node in this case. The difference in performance is more obvious when

displaying the data using line charts in Figure 4.10.

When there are more than one computing node, the asynchronous migration approach

performs better than the synchronous approach because agent can migrate freely among

places without the need of manageAll() function calls, which have communication overhead.

When there is one computing node, as there is no need to broadcast messages, performance

of synchronous approach improves. However, the asynchronous approach still needs to con-

struct additional data structures and uses asyncQueue to enqueue and dequeue agents in

this configurationft. Hence, its performance is worse than the synchronous approach in this

33

case.

(a) 1 thread (b) 2 threads (c) 4 threads

Figure 4.10: Effect of number of nodes on performance for motif size 4

The synchronous migration execution time peaks when the number of nodes is 2. This is

because when there are 2 nodes, agents need to migrate remotely between them. This remote

migration overhead increase the execution time compared to the 1-node configuration, which

has no remote migration. When the number of computing nodes increases to 4 nodes or more,

performance of synchronous approach improves because the workload is now distributed

among more nodes, which have more computing resources. This also explains the similar

performance pattern seen in the asynchronous approach.

Performance does not improve much for both approaches when the number of threads per

node increases. This is because Network Motif does not contain a lot calculation to perform.

At each place, which represents a graph node, an agent only needs to add that node label

into the subgraph it is constructing. Hence, the majority of the time is spent dividing the

agents in the agent bag among the threads in the case of synchronous migration. For the

asynchronous migration approach, the majority of the execution time is spent on enqueuing

and dequeuing agents from the asyncQueue. These activities in both approaches require

critical code sections, which cannot be parallelized and do not benefit from increasing the

number of threads. Moreover, BioNet Network Motif application performs a lot of agent

objects initialization and destruction, which involve OS IO calls that are also critical and

cannot be parallelized.

4.5.2 Motif size 5

Figure 4.11 shows overall performance of asynchronous and synchronous migration approach

for motif size 5. The asynchronous approach performance is better than that of the syn-

chronous approach. It is not as good as the sequential approach. There is also no interaction

34

effect between number of nodes and number of threads per node in this case. The difference

in performance is easier to observe when displaying the data using line charts in Figure 4.12.

Figure 4.11: Overall performance of BioNet Network Motif implemented using asynchronous

and synchronous agent migration of MASS, when motif size is 5

Similar to experiments with motif size 4 in Section 4.5.1, the synchronous migration

execution time peaks when the number of nodes is 2, for the same reason discussed previously.

Performance does not improve much for both approaches when the number of threads per

node increases as well.

However, unlike in motif-size-4 experiments, execution time of the asynchronous approach

increases when the number of nodes increases. This is because when there is only one

computing node, there is no remote agent migration need to be done. However, when the

number of nodes increases, the number of remote migration also increases while the benefit

of increasing the computing resource does not offset this overhead much. Hence, execution

time increases, but not by a lot comparing to the increase in the synchronous approach.

35

(a) 1 thread (b) 2 threads (c) 4 threads

Figure 4.12: Effect of number of nodes on performance for motif size 5

4.6 Summary

Through various experiments on both synthetic and real-life application using various con-

figurations, we showed that the new asynchronous and auto migration have achieved their

performance goals and is ready for production. In most of the chosen configurations and

problem sizes, both asynchronous and auto migration have similar or better performance

compared to the synchronous approach. In some cases, the asynchronous approach has

similar performance as MPI. By experimenting using 903168 agents, we showed that asyn-

chronous migration can still handle the required maximum number of agents per node previ-

ously defined. We also showed that adding auto migration logic on top of the asynchronous

approach does not affect execution time. In short, we achieved the original goal of improving

MASS library by reducing communcation overheads.

36

Chapter 5

CONCLUSION AND FUTURE WORK

In this project, we implemented both asynchronous migration and auto migration func-

tionality of agents for the Java version of MASS library. This includes creating architecture

and detailed design of the new functionalities, which takes into account compatibility with

existing functions; code implementation; testing for correctness; and evaluating performance

on the Mandelbrot Set problem. Experiments using the Mandelbrot Set showed that asyn-

chronous and auto migration provide a better utilization of resources and performance when

computation is not distributed evenly across agents. This improvement will help increase

the appeal of MASS library to programmers compared to other parallelizing frameworks.

Throughout this project, I gained valuable knowledge regarding parallel programming and

project management. I understood better how Java handles locks for thread synchronization

and cached memory for shared variables. I also learned how to implement socket in a way

that supports multiple connections at the same time. During this project, by using reports

to keep track of progress, I ensured the project went according to schedule. Having weekly

meetings with my supervisor also provided benefits in making sure everything went according

to plan. I also gained a new perspective on project planning and budgeting, setting aside

more time for documentation.

In term of result, I successfully implemented and verify correctness of the new asyn-

chronous and auto migration feature that I planned at the beginning of the project. Exper-

iments on the Mandelbrot Set problem and BioNet Network Motif simulation under various

configurations showed that the new functionalities have improved performance for most con-

figurations. I also completed my project within the time constraint and completed the final

report substantially to document my work.

The project does not address all the issues of MASS. Firstly, we did not separate commu-

nication establishment among computing nodes, which needs to be done for each execution

and contributes to performance overhead, from execution. Future work can improve MASS

to behave like MPI, in which connections can be established once and reused for many execu-

tions. Secondly, in order to achieve asynchronous execution, more synchronized critical code

sections have been introduced into the library. This contributes to the execution overhead.

Hence, execution of asynchronous migration is not better than synchronous approach in all

cases. Lastly, the auto migration feature implemented in this project only supports data-

analysis problems in which places are distributed in an n-dimension matrix. Data-analysis

37

problems are just a subset of tasks that MASS is able to solve. Besides, places are not

always distributed in a n-dimension matrix. They can be used to simulate tree nodes or

graph nodes, which represent various real-life entities, as well. Also, the number of agents

at the beginning of auto migration execution needs to equal an exact number in order for it

to proceed.Hence, this first implementation of the auto migration feature is not flexible.

Moving forward, many improvements can be made on the current project. Firstly, a C++

version can be implemented. Secondly, we are in the process of incorporating asynchronous

and auto migration into existing real-life applications such as Network Motif and Climate

Change Simulation. Thirdly, the auto migration feature can be improved to be more flexible

in handling other types of problems, various number of agents, as well as different place

distributions. Lastly, usability studies should be conducted to evaluate this aspect of the

new approaches, as this is an important advantage of MASS. The new approaches should have

enough documentation and method signatures should be easy to understand and convenient

to use for MASS library users. To evaluate this, it will be necessary to survey existing users

of MASS library; this will enable the measurement of the new code’s usability. This should

include questions that allow users to rate their experience working with the new functionality,

and to report how often they choose the new approach over the synchronous one, and how

hard is it for them to switch their existing code to the new function. Ideally, it should also

elicit feedback in the form of comments.

38

BIBLIOGRAPHY

[1] L. Gasser and K. Kakugawa, “Mace3j: fast flexible distributed simulation of large, large-
grain multi-agent systems,” in Proceedings of the first international joint conference on
Autonomous agents and multiagent systems: part 2. ACM, 2002, pp. 745–752.

[2] T. Chuang and M. Fukuda, “A parallel multi-agent spatial simulation environment for
cluster systems,” in Computational Science and Engineering (CSE), 2013 IEEE 16th
International Conference on. IEEE, 2013, pp. 143–150.

[3] M.-W. Jang and G. Agha, “Agent framework services to reduce agent communication
overhead in large-scale agent-based simulations,” Simulation Modelling Practice and
Theory, vol. 14, no. 6, pp. 679–694, 2006.

[4] A. González-Pardo, P. Varona, D. Camacho, and F. d. B. R. Ortiz, “Optimal message in-
terchange in a self-organizing multi-agent system,” in Intelligent Distributed Computing
IV. Springer, 2010, pp. 131–141.

[5] C. L. Wasous, “Distributed agent management in a parallel simulation and analysis
environment,” Ph.D. dissertation, University of Washington, 2014.

[6] E. W. Dijkstra, W. H. Feijen, and A. M. Van Gasteren, “Derivation of a termination
detection algorithm for distributed computations,” in Control Flow and Data Flow:
concepts of distributed programming. Springer, 1986, pp. 507–512.

[7] R. W. Topor, “Termination detection for distributed computations,” Information Pro-
cessing Letters, vol. 18, no. 1, pp. 33–36, 1984.

[8] F. Mattern, “Asynchronous distributed terminationparallel and symmetric solutions
with echo algorithms,” Algorithmica, vol. 5, no. 1-4, pp. 325–340, 1990.

[9] T.-H. Lai, “Termination detection for dynamically distributed systems with non-first-in-
first-out communication,” Journal of Parallel and Distributed computing, vol. 3, no. 4,
pp. 577–599, 1986.

[10] R. F. DeMara, Y. Tseng, and A. Ejnioui, “Tiered algorithm for distributed process
quiescence and termination detection,” Parallel and Distributed Systems, IEEE Trans-
actions on, vol. 18, no. 11, pp. 1529–1538, 2007.

39

[11] D. M. Dhamdhere, S. R. Iyer, and E. K. K. Reddy, “Distributed termination detection
for dynamic systems,” Parallel computing, vol. 22, no. 14, pp. 2025–2045, 1997.

[12] J. Nagle, “Rfc 896 - congestion control in ip/tcp internetworks,” 1984, accessed:
2015-01-25. [Online]. Available: http://tools.ietf.org/html/rfc896

[13] M. Kipps, W. Kim, and M. Fukuda, “Agent and spatial based simulation of biological
network motif search,” Processing.

40

LIST OF FIGURES

Figure Number Page

3.1 MASS’s architecture . 6

3.2 Class diagram for asynchronous functionality 9

3.3 callAllAsync() activity diagram . 11

3.4 Agents base’s callAllAsync() activity diagram 12

3.5 Migration pattern of auto migration . 13

3.6 Initialization of distributed termination detection algorithm 17

3.7 Distributed termination detection algorithm handling of remote migrations . 18

3.8 Distributed termination detection algorithm’s main function 18

3.9 Example of Distributed Termination Algorithm 20

4.1 Escape time algorithm . 23

4.2 Overall performance of various MASS agent migration types, when agent size
is 4032, and MPI . 24

4.3 Effect of number of computing nodes on MASS and MPI performance, agent
size = 4032 . 25

4.4 Effect of number of threads on MASS and MPI performance 26

4.5 Overall performance of various MASS agent migration types, when agent size
is 903168, and MPI . 27

4.6 Effect of number of computing nodes on MASS and MPI performance, agent
size = 903168 . 28

4.7 Effect of number of threads on MASS and MPI performance 29

4.8 Effect of number of agents on performance 30

4.9 Overall performance of BioNet Network Motif implemented using asynchronous
and synchronous agent migration of MASS, when motif size is 4 32

4.10 Effect of number of nodes on performance for motif size 4 33

4.11 Overall performance of BioNet Network Motif implemented using asynchronous
and synchronous agent migration of MASS, when motif size is 5 34

4.12 Effect of number of nodes on performance for motif size 5 35

40

41

LIST OF TABLES

Table Number Page

3.1 Comparison of alternatives for AsyncCommunicationThreads 15

A.1 Sequential execution . 43

A.2 Performance of asynchronous migration with various agent size 43

A.3 Performance of synchronous migration with various agent size 44

A.4 Performance of asynchronous migration with agent size 4032 44

A.5 Performance of synchronous migration with agent size 4032 45

A.6 Performance of asynchronous migration with agent size 903168 46

A.7 Performance of synchronous migration with agent size 903168 47

A.8 Performance of auto migration . 48

A.9 Performance of Java MPI . 49

B.1 Average sequential execution, reused from [13] 50

B.2 Average synchronous migration execution, in miliseconds, motif size 4, reused
from [13] . 50

B.3 Average synchronous migration execution, in miliseconds, motif size 5, reused
from [13] . 51

B.4 Asynchronous migration execution, in miliseconds, motif size 4 51

B.5 Asynchronous migration execution, in miliseconds, motif size 5 52

41

42

GLOSSARY

PID: : Process ID. A unique non-negative integer value assigned to each computing node.
Master node’s Pid is always 0.

42

43

Appendix A

MANDELBROT SET EXPERIMENT RESULTS

Table A.1: Sequential execution

Execution (seconds)
Average

#1 #2 #3

2521 2525 2566 2537

Table A.2: Performance of asynchronous migration with various agent size

of nodes
Threads

Agent size
Execution (seconds)

Average
per node #1 #2 #3

1 4 4032 722 715 715 717

1 4 112896 769 782 793 781

1 4 903168 757 815 813 795

8 4 4032 188 185 185 186

8 4 112896 187 184 184 185

8 4 903168 207 214 216 212

44

Table A.3: Performance of synchronous migration with various agent size

of nodes
Threads

Agent size
Execution (seconds)

Average
per node #1 #2 #3

1 4 4032 710 710 716 712

1 4 112896 708 707 707 707

1 4 903168 707 708 708 708

8 4 4032 425 409 406 413

8 4 112896 209 209 207 208

8 4 903168 195 201 195 197

Table A.4: Performance of asynchronous migration with agent size 4032

of nodes
Threads Execution (seconds)

Average
per node #1 #2 #3

1 1 2652 2660 2678 2663

1 2 1377 1318 1374 1356

1 4 722 715 715 717

2 1 1313 1313 1313 1313

2 2 701 681 697 693

2 4 386 383 385 385

4 1 1086 1078 1073 1079

4 2 576 572 554 567

4 4 301 302 303 302

8 1 679 684 679 681

8 2 368 366 366 367

8 4 188 185 185 186

16 1 353 366 352 357

16 2 185 186 192 188

16 4 135 141 141 139

45

Table A.5: Performance of synchronous migration with agent size 4032

of nodes
Threads Execution (seconds)

Average
per node #1 #2 #3

1 1 2569 2568 2568 2568

1 2 1314 1313 1495 1374

1 4 710 710 716 712

2 1 1391 1387 1388 1389

2 2 765 767 762 765

2 4 453 460 455 456

4 1 1272 1272 1272 1272

4 2 723 731 732 729

4 4 469 460 471 467

8 1 885 909 909 901

8 2 585 597 564 582

8 4 425 409 406 413

16 1 614 625 616 618

16 2 441 430 431 434

16 4 350 346 355 350

46

Table A.6: Performance of asynchronous migration with agent size 903168

of nodes
Threads Execution (seconds)

Average
per node #1 #2 #3

1 1 2651 2659 2675 2662

1 2 1392 1342 1342 1359

1 4 757 815 813 795

2 1 1316 1320 1326 1323

2 2 685 745 731 720

2 4 423 399 406 409

4 1 1096 1093 1097 1095

4 2 565 561 571 566

4 4 321 305 302 309

8 1 690 662 691 681

8 2 342 347 341 343

8 4 207 214 216 212

16 1 411 420 427 419

16 2 195 188 188 190

16 4 115 108 107 110

47

Table A.7: Performance of synchronous migration with agent size 903168

of nodes
Threads Execution (seconds)

Average
per node #1 #2 #3

1 1 2571 2571 2573 2572

1 2 1315 1315 1314 1315

1 4 707 708 708 708

2 1 1348 1346 1327 1340

2 2 691 692 690 691

2 4 406 390 396 397

4 1 1109 1110 1110 1110

4 2 579 585 585 583

4 4 336 317 322 325

8 1 678 692 699 690

8 2 351 351 351 351

8 4 195 201 195 197

16 1 375 375 363 371

16 2 196 202 196 198

16 4 117 116 116 116

48

Table A.8: Performance of auto migration

of nodes
Threads Execution (seconds)

Average
per node #1 #2 #3

1 1 2574 2575 2576 2575

1 2 1317 1319 1318 1318

1 4 739 712 713 721

2 1 1313 1316 1315 1315

2 2 694 695 696 695

2 4 386 401 393 393

4 1 1078 1087 1073 1079

4 2 568 554 553 558

4 4 309 313 317 313

8 1 681 677 655 671

8 2 341 341 340 341

8 4 187 184 190 187

16 1 362 354 354 357

16 2 191 185 190 189

16 4 109 132 116 119

49

Table A.9: Performance of Java MPI

of nodes
Threads Execution (seconds)

Average
per node #1 #2 #3

1 1 2521 2521 2521 2521

1 2 1270 1270 1270 1270

1 4 665 665 665 665

2 1 1270 1271 1270 1270

2 2 639 639 639 639

2 4 334 334 337 335

4 1 1062 1060 1054 1059

4 2 539 531 542 537

4 4 278 278 281 279

8 1 645 638 648 644

8 2 325 322 325 324

8 4 172 172 169 171

16 1 338 345 344 342

16 2 170 170 170 170

16 4 90 90 90 90

50

Appendix B

BIONET NETWORK MOTIF EXPERIMENT RESULTS

Table B.1: Average sequential execution, reused from [13]

Motif Size

Execution (miliseconds) 648 2459.83

Table B.2: Average synchronous migration execution, in miliseconds, motif size 4, reused

from [13]

of nodes
of threads

1 2 4

1 1867.67 1515 1438.33

2 5294 4585 5063

4 3254 3121 3368

8 2529 2288 2410

14 2358 2985 2490

51

Table B.3: Average synchronous migration execution, in miliseconds, motif size 5, reused

from [13]

of nodes
of threads

1 2 4

1 48838.5 53179 66333

2 93648 87070 95212

4 49570 59067 58436

8 27156 26466 33629

14 15400 14790 17431

Table B.4: Asynchronous migration execution, in miliseconds, motif size 4

of nodes
Threads Execution (seconds)

Average
per node #1 #2 #3

1 1 2615 2605 2579 2600

1 2 2138 1906 2226 2090

1 4 2409 2363 2652 2475

2 1 3267 3312 3283 3287

2 2 2771 2784 2787 2781

2 4 2805 2742 2690 2746

4 1 2487 2614 2590 2564

4 2 2511 2580 2536 2542

4 4 2546 2373 2595 2505

8 1 2230 2129 2138 2166

8 2 2456 2285 2573 2438

8 4 2072 2561 2644 2426

14 1 1876 1782 1791 1816

14 2 2005 2100 2089 2065

14 4 2094 1947 1965 2002

52

Table B.5: Asynchronous migration execution, in miliseconds, motif size 5

of nodes
Threads Execution (seconds)

Average
per node #1 #2 #3

1 1 6696 6318 6750 6588

1 2 5257 5378 5166 5267

1 4 7800 6448 7057 7102

2 1 8108 8388 11587 9361

2 2 10455 11044 9769 10423

2 4 13927 12002 11700 12543

4 1 12136 8695 11518 10783

4 2 11247 14624 15031 13634

4 4 13505 11157 12040 12234

8 1 18407 19036 15092 17512

8 2 18598 18772 16201 17857

8 4 11665 16950 16452 15022

14 1 11555 14748 13317 13207

14 2 11901 13486 11883 12423

14 4 12727 12435 13005 12722

