
James Day CSS497: Winter 2025 term report

1

MASS Java Benchmarks for a Graph Database

1. Overview

Distributed graph databases play a critical role in modern computing, they power applications in

social networks, transportation systems, and recommendation engines. Evaluating their

performance and programmability is crucial to understanding the trade-offs between different

approaches. MASS (Multi-Agent Spatial Simulation) is a parallel-computing library being

developed by the Distributed Systems Laboratory (DSL). MASS is designed for distributed

memory systems to simulate agent-based models for spatial computations. MASS has previously

been used to implement a distributed graph database.

The University of Washington Bothell DSL would like to compare the MASS-based graph

database to alternative implementations of a distributed graph database such as Hazelcast.

Hazelcast is a distributed in-memory computing platform that will be benchmarked against

MASS’s agent-based approach to graph database computations. The Hazelcast distributed graph

database has been implemented using Hazelcast’s distributed hashmap (Imap). Hazelcast has a

wide range of configurability, including choices of consistency, replication of data, and

functionality for continuing computation even if communication with a computing node is lost.

The goal is to compare the performance, programmability, and scalability of both approaches for

a distributed graph database.

Atul Ahire, another member of the DSL, is implementing improvements to the MASS graph

database including a new partitioning algorithm that improves data affinity of the database.

Another improvement for MASS that is being made is improvements to the messaging system.

Currently most of the messaging is done using TCP but a switch to Aeron is being tested which

may reduce latency and increase performance. The first partitioning algorithm that was chosen

was Hazelcast which uses hash-based partitioning and doesn’t take data locality into account.

The second partitioning method that was chosen was METIS which is a partitioning algorithm

that divides a graph into partitions while minimizing the number of edges that are cut between

the partitions. The vertex partitioning improvements will likely increase load times for the graph

but decrease execution time for graph benchmarks.

For this capstone, I will implement two benchmark algorithms in MASS as well as in Hazelcast.

The first goal is to evaluate these libraries including programmability and performance of the

two libraries for a distributed graph database. The second goal of these benchmarks is to

demonstrate the performance improvements made by Atul as mentioned above. The benchmarks

are as follows:

1. Clustering coefficient

2. Articulation points

James Day CSS497: Winter 2025 term report

2

1.1 Background

In MASS, places are distributed across the computing nodes and represent the data, while agents

are execution entities that traverse and exchange information with these places. A graph database

has been implemented with MASS where graph nodes are represented as places (GraphPlaces)

and agents can traverse these nodes to perform graph operations such as triangle count,

clustering computations (connected components), and connectivity analysis. The following is a

breakdown of the clustering coefficient and articulation points benchmarks that I will implement

in MASS and Hazelcast.

1.2 Clustering Coefficient

Clustering coefficient is a measure of the degree to which nodes in a graph tend to cluster

together. Calculating the clustering coefficient of a graph can help you understand how tightly

knit the groups in your graph are. In social networks, the clustering coefficient can help identify

communities, while in transportation networks, it can highlight stations that may become

bottlenecks. Clustering coefficients are on a scale from zero to one, where zero is a completely

disconnected graph, and a coefficient of one is a graph with connections between every node.

There are two types of clustering coefficients. The first is a local clustering coefficient of a given

vertex that will tell you the portion of a vertex’s neighbors that are neighbors of each other. In

other words, the local clustering coefficient tells you how connected a vertex’s neighbors are.

The other form of clustering coefficient is a global clustering coefficient which is a measure of

the clustering tendency of the entire graph. The global or average clustering coefficient of a

graph helps bring understanding to the overall connectivity in a network. For example, in energy

grids, the average clustering coefficient for a network could help determine the level of

redundancy in the grid.

To calculate the local clustering coefficient there are two methods the first is the number of

triangles that the vertex is a part of, divided by the number of triplets that are centered at that

vertex. Another method for calculating it is to count the number of connections between that

vertex’s neighbors and divide it by the max possible number of connections between that vertex’s

neighbor. The maximum number of connections for a given vertex is simply n choose two or
𝑛(𝑛−1)

2
 (for an undirected graph).

To gauge the clustering of the entire graph, there are two methods, first is the average of the local

clustering coefficients, and the second is the number of closed triplets in the graph divided by the

number of all triplets in the graph. These two approaches give different results with the latter

putting more weight on high-degree nodes, and the former putting more weight on low-degree

nodes. My implementation will simply take the average of the local clustering coefficients as it is

a simpler calculation and still gives us an idea of the graph’s clustering.

James Day CSS497: Winter 2025 term report

3

1.3 Articulation Points

Articulation points (or cut vertices) are vertices in a graph that if removed, would split the

network into two or more components. Articulation points are valuable for network design when

you are trying to identify single points of failure in a network. In a transportation network,

knowing that a station is an articulation point would let you know that its removal would make

certain routes impossible. This is very similar to a graph bridge which is an edge in a graph that

if removed would disconnect the graph into more components. It is important to note that while

all articulation points are connected to a bridge, not all vertices connected to a bridge are

articulation points.

The naive approach to finding articulation points would be to remove them from the graph and

then traverse the graph (BFS or DFS) to see how many components you have. If the number of

components increased, then it was an articulation point. This approach can be improved with

Tarjan’s Algorithm which is a DFS-based algorithm that also keeps track of each vertex’s

discovery time and lowest reachable discovery time, which is used to track connectivity and back

edges more efficiently.

2. Implementation / Progress

2.1 Clustering Coefficient

2.1.1 MASS Implementation

The MASS implementation of clustering coefficient starts

by spawning one agent on every vertex. The agents have an

originalPlaceId that is stored at this point. Then every agent

spawns agents equal to the number of neighbors and they

all migrate to their respective neighbors. The agents then

use the originalPlaceId to migrate back to the source with

the neighbor vertex’s neighbors list. This list of neighbor’s

neighbors can be referred to as second-degree neighbors.

The agent then stores the second-degree neighbor list on

the source GraphPlace. The GraphPlace calculates the local

clustering coefficient of itself by counting how many of the second-degree neighbors it is also

neighbors with. To calculate the global clustering coefficient a function has been implemented

for the places CallAll which returns all the place’s local clustering coefficients to the master node

and then averages them for the network average clustering coefficient. More details are available

in Appendix A.

Figure 1 Local Clustering Coefficient

James Day CSS497: Winter 2025 term report

4

Figure 2: MASS Average Clustering Coefficient Implementation

 1. private Object calculateCC() {
 2. ClusteringVertex place = (ClusteringVertex) getPlace();
 3. Object[] placeNeighbors = place.getNeighbors();
 4.

 5. Set<Object> set1 = new HashSet<>(Arrays.asList(placeNeighbors));
 6. Set<Object> set2 = new HashSet<>(Arrays.asList(secondDegreeNeighbors));
 7. // Find intersection

 8. set2.remove(nextPlaceId); //remove self loops
 9. set1.retainAll(set2);
10. place.neighborLinkCount += set1.size();
11.

12. kill();
13. return null;
14. }

2.1.2 Hazelcast Implementation

The Hazelcast implementation of clustering coefficient uses the implementation of Hazelcast’s

aggregator class which obfuscates all the parallel and distributes complexities into three simple

functions. The first of which is the accumulate function which Hazelcast runs on every single

vertex on that node. In this accumulate function the vertex’s neighbors’ vertices are retrieved. In

Hazelcast we are able to retrieve the actual vertices that are neighbors which allows for the

retrieval of second-degree neighbors easier programmatically. Then the accumulate function

finds the size of the intersection of the second-degree neighbors and the neighbors of that vertex,

this is the total number of connections between neighbors. To find the local clustering

coefficient, the accumulate function calculates the maximum number of connections between

neighbors and divides the actual number of connections by the maximum number of connections.

The next function, the combine function adds the local clustering coefficients together. The last

function, the aggregate function, divides the sum of the local clustering coefficients by the total

number of vertices in the graph to give us our graph’s average clustering coefficient.

Figure 3: Hazelcast Average Clustering Coefficient Implementation

1. @Override
 2. public void accumulate(final Entry<I, Vertex<I, V>> entry) {
 3. final var vertex = entry.getValue();
 4. final var u = vertex.getVertexID();
 5. final Set<I> uNeighbors = vertex.getNeighbors().keySet();

 6.
 7. Map<I, Vertex<I,V>> uNeighborVertices = dsg.graph.getAll(uNeighbors);
 8.
 9. uNeighbors.forEach(v -> {

10. if (Objects.equals(v, u)) return; // Skip if the neighbor is the vertex itself
11. Set<I> vNeighbors = uNeighborVertices.get(v).getNeighbors().keySet();
12.

13. //retain elements in intersection
14. vNeighbors.retainAll(uNeighbors);
15. vertex.setLinkCount(vertex.getLinkCount() + vNeighbors.size());
16. });

17. vertex.setLocalClusteringCoefficient((uNeighbors.size() != 1 && !uNeighbors.isEmpty())
18. (double) vertex.getLinkCount() / (uNeighbors.size() * (uNeighbors.size() - 1)) : 0.0);
19. globalClusteringCoefficient += vertex.getLocalClusteringCoefficient();
20. }

James Day CSS497: Winter 2025 term report

5

Because file sizes are currently a bit smaller, an improvement could be made by using

Hazelcast’s project method which could return all vertex’s neighbor IDs to each node when

doing its computations. This method likely would not work as the graph size continues to grow

and disregards the purpose of distributed storage (this is also how triangle count was

implemented in Hazelcast).

2.2 Articulation Points

2.2.1 MASS Implementation

The implementation for articulation points for MASS

initially built upon Caroline Tsui’s prior work for finding

graph bridges. Her implementation uses a variation of

Tarjan’s algorithm where each vertex will store its

discovery time and low link value. The low link value is the

smallest vertex ID reachable from that vertex including

itself. Caroline used an approach where agents propagate

and migrate and essentially conduct Tarjan’s algorithm but

in a BFS manner. The problem with this approach is that it

ends up missing certain bridges and articulation points and

has very explosive agent growth. This means that this initial approach only could complete with

graph files smaller than 30 vertices.

The approach that was taken to address this problem was to make a sequential implementation of

this algorithm which essentially works just like the normal Tarjan’s algorithm. If the user is

attempting to find articulation points in file sizes with one hundred to one million edges, this

sequential approach is better. But if the user is simply trying to use a benchmark that better

shows the computational performance of MASS (albeit on a very small graph) then the standard

articulation points benchmark is better. I will skip over implementation details of the original

articulation points / graph bridge approach because as previously mentioned, the performance is

non-optimal.

The sequential approach in MASS simply uses one agent that traverses the graph in a DFS

manner. In MASS there is no way to simply check the attributes of a vertices neighboring places;

to address this issue, child agents are spawned during the backtracking phase that traverse to the

neighbors and return with the neighboring low link values. The DFS agent waits at this vertex

until the children return to avoid race conditions, then the child agents call kill() on themselves.

Initially the determination of a vertex being an articulation point was done during the

backtracking phase and then a places call all was used to return all articulation points

information. This had to be changed because the METIS and Hazelcast partitioning algorithms

did not have the places call all function implemented yet. To address this a change was made to

determine if each vertex was an articulation point at the end of the program with a separate set of

Figure 4 Articulation Points

James Day CSS497: Winter 2025 term report

6

Figure 5 Clustering Coefficient 40k Vertices

agents. This is slightly slower but should be valuable for comparing partitioning strategies for

now. In the future this change should be reversed to calculate articulation points in the

backtracking. It’s also important to mention that this algorithm doesn’t work on disconnected

graphs currently. This is because MASS does not have the capability to spawn agents on a vertex

based on a condition. For example, in DFS, a for loop iterates over all vertices and conducts a

DFS starting at that vertex if it is not visited yet. There is currently no way to spawn an agent on

a given vertex if it is unvisited. There are talks of changes that would allow for this, and the

benchmark would just need to add the standard DFS loop to allow for disconnected graphs.

2.2.2 Hazelcast Implementation

The sequential implementation in Hazelcast is a bit simpler and mostly follows Tarjan’s

algorithm. The only difference is that information about neighbors must be retrieved from other

compute nodes dropping the performance of the algorithm. Hazelcast does have a method for

returning information about all neighboring vertices, but this data becomes stale as the DFS

continues, and ends up with most of the databases data on one machine, defeating the purpose of

a distributed database. This means each time the low link value of a neighbor is needed, a request

is made to get that value and the process waits for the messaging. Hazelcasts executor service

may be able to improve performance for this reason, although my assumption is that the

overhead of shifting the computation from one machine to the next is larger than the overhead of

retrieving a vertices information. Implementation specifics can be found in appendix A and B.

3. Benchmark Results

3.1.1 Clustering Coefficient Performance

The Clustering Coefficient benchmark has been run on the CSSMPI cluster, for larger vertex

counts MASS generally outperforms the Hazelcast implementation slightly. The execution time

for a graph with forty-thousand vertices can be seen in figure 5.

0
20
40
60
80

100
120
140
160
180
200

1 2 4 8 12 16 20 24

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Computing Nodes

Clustering Coefficient (40k Vertices)

Hazelcast MASS

James Day CSS497: Winter 2025 term report

7

Figure 7 Articulation Points 1k Vertices

Figure 6 Clustering Coefficient 20k Vertices Partitioning results

The MASS implementation is slightly faster regardless of the node count, this is partly due to

optimizations in MASS like completing all of a vertex’s computation at once on the given place.

MASS is especially faster on a single node because MASS takes full advantage of local vertices.

This benchmark has been tested on other vertex counts with similar results and the data can be

found in appendix C. Interestingly MASS performs a bit slower when increasing from one to two

computing nodes. This increase in execution time is due to the overhead of communication

between computing nodes including MProcesses. The benefits gained from increasing the

number of computing nodes fall off for node counts larger than 16 nodes.

3.1.2 Clustering Coefficient Partitioning Algorithm Performance

The difference in runtime

performance is negligible for

the different partitioning

strategies, although this was

expected as clustering

coefficient was meant to show

MASS’s performance against

Hazelcast, and the articulation

points benchmark was meant

to show improvements from

the partitioning algorithms

better.

While the Hazelcast

partitioning seems to be a bit

better, it’s pretty marginal and becomes negligible with four or more compute nodes. All other

results seem to show that partitioning strategy does not largely impact the clustering coefficient

benchmark.

3.2.1 Articulation

Points Performance

The Articulation Points

benchmark was also run

on the CSSMPI cluster

and Hazelcast tends to

outperform MASS,

although there are some

instances where MASS

is a closer competitor.

The execution time of

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

1 2 4 8 12 16 20 24

R
U

N
TI

M
E

(M
S)

COMPUTE NODES

Clustering Coefficient (20k Vertices)

Round Robin Hazelcast METIS

0
50

100
150
200
250
300
350
400
450

1 2 4 8 12 16 20 24

EX
EC

U
TI

O
N

 T
IM

E
(S

)

OF NODES

Articulation Points (1k Vertices, 100k edges)

MASS Hazelcast

James Day CSS497: Winter 2025 term report

8

Figure 8 Articulation Points 3k Vertices

Figure 9 Articulation Points US Power Grid

this benchmark with 1k vertices and 100k edges can be seen in figure 7.

While MASS was a bit faster for clustering coefficient, it seems that for articulation points it

doesn’t fair as well. With very dense graphs the difference in runtime between Hazelcast and

MASS becomes negligible, but for less dense graphs Hazelcast beats MASS in runtime relatively

decently. MASS has high overhead for passing an agent, while Hazelcast can simply return the

data of a specific vertex which allows for smaller message sizes. As graph sizes get larger and

more dense MASS’s agent-based computation starts to scale better, while Hazelcast dominates

with smaller sparse graphs because of its low overhead.

3.2.2 Articulation Points Partitioning Algorithm Performance

With smaller amounts of

compute nodes, some

pretty reasonable

improvements could be

seen with METIS.

Initially benchmarks were

showing that the METIS

partitioning had

negligible benefits to run

time on most benchmarks

when the number of

compute nodes was

increased, as can be seen

in figure 8.

The benchmark in figure 8

was done with a

randomized dataset, and

after some more

benchmarking it was

found that METIS’s

performance benefits can

be seen much better with

real world datasets that

have more logical

groupings and clusters

within their graphs. More

logical groupings means

that there are less edges

0

200

400

600

800

1000

1200

1400

2 4 8 12 16 20 24

R
U

N
TI

M
E

(S
)

COMPUTE NODES

Articulation Points (3k Vertices)

METIS Round Robin

0

500

1000

1500

2000

2 4 8 12 16 20 24

R
U

N
TI

M
E

(S
)

COMPUTE NODES

Articulation Points Power Dataset

Hazelcast Round Robin METIS

James Day CSS497: Winter 2025 term report

9

cut between partitions. Figure 9 shows the performance improvements of the METIS partitioning

strategy with the articulation points benchmark run on a dataset based on the US power grid.

With lower numbers of compute nodes, the improvements from METIS can be seen with as

much as 80% reductions in run time for four compute nodes, and even with larger compute node

counts, there is still 1-5% performance improvements. Future testing is needed for larger real-

world datasets for different benchmarks with the Hazelcast and METIS partitioning strategies.

The raw data from these benchmarks can be found in Appendix D.

4. Programmability

Both MASS and Hazelcast allow for distributed and parallelized computing without much

knowledge of those concepts. I found the implementation in Hazelcast to be a bit more

straightforward as it feels similar to concepts like MapReduce and thinking about a problem

using agent-based modeling is a bit different to anything I’ve done. To tackle these benchmarks,

an Agent and a VertexPlace class had to be designed to act out the computation, while Hazelcast

only required one class to be designed. The aggregator for Hazelcast needed to be designed,

though the implementation is rather simple since you implement the aggregate class and then

override the methods you need. Technically the DistributedSharedGraph class also had to be

implemented since there is no built-in distributed graph storage class.

In Table 9 we can see that MASS overall had fewer lines of code and less lines of logic, however,

this is because Hazelcast does not have built-in data structures for a graph instead a distributed

HashMap must be used to store the graph data. Additionally, Hazelcast logic was necessary for

file I/O and graph initialization. If we account for these extra lines of code in Hazelcast, the

implementations come out to similar quantitative complexity. I assume in the future that

SmartAgents will continue to gain functionality, and if they had a migratePropogate function that

did not terminate agents on seen vertices, and a migrateSource function that didn’t kill agents

when there is no neighboring link, then my implementation in MASS could be quantitatively less

complex. As for articulation points, not much could easily be done to lower the quantitative

complexity in MASS as agents cause the benchmarks to require slightly more lines of code.

Table 9: MASS vs Hazelcast Clustering Coefficient Programmability data

Measurement (MASS) Count
Number of files 4
Number of methods 14
Number of Variables declared 51
Total Lines of Code 528
Lines of logic 224

Measurement (Hazelcast) Count
Number of files 3
Number of methods 30
Number of Variables declared 54
Total Lines of Code 707
Lines of logic 295

James Day CSS497: Winter 2025 term report

10

Table 10: MASS vs Hazelcast Articulation Points Programmability data

Measurement (MASS) Count
Number of files 4
Number of methods 20
Number of Variables declared 85
Total Lines of Code 714
Lines of logic 421

Measurement (Hazelcast) Count
Number of files 4
Number of methods 27
Number of Variables declared 65
Total Lines of Code 683
Lines of logic 328

5. Conclusion
Both the clustering coefficient and articulation point benchmarks have been successfully
implemented in both Hazelcast and mass, advancing DSL’s capability to compare the
MASS-based graph database with a distributed graph database in Hazelcast. This project
has shifted my way of thinking greatly, as I had no experience with distributed computing
beforehand. I underestimated the different mindset that is required for parallel and
distributed computing. Now that the benchmarks have been run for the different
partitioning strategies, we can now see the benefits and drawbacks of the different options.

Future work should continue to compare different distributed libraries in their use for a
graph database. This will give us more data points to decipher MASS’s strong suits. More
benchmarks should be made in MASS to test the partitioning strategies, and as new
changes are made to MASS, we should continue to benchmark the improvements that
partitioning has on performance. As Aeron is being used for more of MASS’s messaging,
future work should monitor if these partitioning strategies have more of an effect on
performance.

James Day CSS497: Winter 2025 term report

11

Appendix A: More Implementation Details for MASS

Clustering Coefficient

Figure 10: Propagation logic

 1. private Object propagate() {
 2. MASS.getLogger().debug("===================== PROPAGATE =====================");
 3.
 4. ClusteringVertex place = (ClusteringVertex) getPlace();

 5. Object[] placeNeighbors = place.getNeighbors();
 6. int placeId = place.getIndex()[0];
 7. int availableEdges = placeNeighbors.length;
 8.

 9. // case 1. no neighbors, kill the agent!
10. // or case 2. only one neighbor and that's itself, kill the agent! (self-loops not counted)
11. // or case 3. one neighbor and that's the origin, kill the agent!
12. if (availableEdges == 0 || (availableEdges == 1 && placeId == (int) placeNeighbors[0])

13. || ((int) placeNeighbors[0] == originalPlaceId && availableEdges == 1)) {
14. kill();
15. return null;

16. }
17.
18. //it's ok to assume there is at least one neighbor because we've
19. // already shown that if there's only one neighbor, then it's no the origin

20. nextPlaceId = ((int) placeNeighbors[0] != originalPlaceId) ?
21. (int) placeNeighbors[0] : (int) placeNeighbors[1];
22.
23. int index = 0;

24. if (placeNeighbors.length > 1 + ((nextPlaceId == (int) placeNeighbors[0]) ? 0 : 1)) {
25. ArgsToAgent[] argsArr = new ArgsToAgent[placeNeighbors.length - 1];
26.

27. for (int i = (nextPlaceId == (int) placeNeighbors[0])
28. ? 1 : 2; i < placeNeighbors.length; i++) {
29. if ((int) placeNeighbors[i] == originalPlaceId) {
30. continue;

31. }
32. // (originalPlaceId, nextPlaceId)
33. argsArr[index++] = new ArgsToAgent(originalPlaceId, (int) placeNeighbors[i]);
34. }

35.
36. //it's ok if argsArray is not completely full.
37. spawn(index, argsArr);
38. }

39. return null;
40. }

Figure 11: MigrateSource Logic

1. private Object migrateSource() {
2. MASS.getLogger().debug("===================== BACKTRACKING =====================");
3. ClusteringVertex place = (ClusteringVertex) getPlace();

4. secondDegreeNeighbors = place.getNeighbors();
5. migrate(originalPlaceId);
6. return null;

7. }

James Day CSS497: Winter 2025 term report

12

Figure 12: Main Crawler Logic

1. crawlers.callAll(MyAgent.init_);
 2. for (int i = 0; i < 2; i++) {

 3. if (i < 1) {
 4. crawlers.callAll(MyAgent.propagate_);
 5. crawlers.manageAll();

 6. crawlers.callAll(MyAgent.migrate_);
 7. }
 8. else {
 9. crawlers.callAll(MyAgent.migrateSource_);

10. }
11. crawlers.manageAll();
12. }
13. crawlers.callAll(MyAgent.calculateCC_);

14. String[][] dummyArgs = new String[graphPlaces.size()][1];
15. return graphPlaces.callAll(ClusteringVertex.returnLocalCC_, dummyArgs);

Articulation Points

Figure 13: DFS logic logic

1. private Object onArrival() {
2. if(wait) { wait = false;

3. return null;
4. }
5. MyVertex place = (MyVertex) getPlace();
6. int placeId = place.getIndex()[0];

7. Object[] placeNeis = place.getNeighbors();
8. if(neighborLowLinkCheck){
9. low = place.low;
10. lowLinkNeiCheckId = this.parentID;

11. neighborLowLinkCheck = false;
12. return null; }
13. if(lowLinkNeiCheckId != -1){
14. place.low = Math.min(low, place.low);

15. kill();
16. return null;
17. }

18. if(!place.getVisited()) {
19. disc++;
20. low = disc;
21. place.disc = disc;

22. place.low = disc;
23. place.parentId = (itinerary.isEmpty()) ? -1 :itinerary.getInt(itinerary.size()-1);
24. }
25. place.setVisited(true);

26. for (Object obj : placeNeis) {
27. int nei = (int) obj;
28. if(!visited.contains(nei)){

29. place.children++;
30. nextPlaceId = nei;
31. if(!itinerary.contains(placeId)) {
32. itinerary.add(placeId);

33. }
34. visited.add(placeId);
35. return null;
36. }

37. }
38. int isRoot = (place.parentId == -1) ? 1 : 0;
39. int arraySize = (placeNeis.length > 0) ? placeNeis.length - 1 + isRoot : 0;

40. ArgsToAgent[] argsArr = new ArgsToAgent[arraySize];
41.
42. int i = 0;
43. for (Object obj : placeNeis) {

James Day CSS497: Winter 2025 term report

13

44. int nei = (int) obj;
45. if(place.parentId == nei) continue;

46. argsArr[i] = new ArgsToAgent(nei, null, -1, -1, placeId, true);
47. i++;
48. }
49.

50. if(argsArr.length > 0){
51. wait = true;
52. spawn(argsArr.length, (Object[]) argsArr);
53. }

54. if(!itinerary.contains(placeId)) itinerary.add(placeId);
55. visited.add(placeId);
56. itinerary.removeInt(itinerary.size() - 1);

57. if(itinerary.isEmpty()){
58. kill();
59. return null;
60. }

61. nextPlaceId = itinerary.getInt(itinerary.size() - 1);
62. return null;
63.}

Appendix B: More Implementation Details for Hazelcast

Articulation Points

Figure 14: Hazelcast Articulation Points DFS implementation.

1. private Vertex<I,V> dfs(int nodeId, int parent, int time) {
2. Vertex<I,V> v = graph.get(nodeId);
3. Integer vertexId = (Integer) v.getVertexID();

4. visited.add(vertexId);
5.
6. v.setDisc(time);
7. v.setLow(time);

8. graph.put((I) vertexId, v);
9. time++;
10. Set<I> neighborsKeySet = v.getNeighbors().keySet();

11. int children = 0;
12. for (I neighborKey : neighborsKeySet) {
13. int neighborId = (Integer) neighborKey;
14. if (neighborId == parent) continue;

15. Vertex<I,V> neighbor = graph.get(neighborId);
16.
17. if (neighbor.getDisc() == -1) {
18. children++;

19. neighbor = dfs(neighborId, nodeId, time);
20. v.setLow(Math.min(v.getLow(), neighbor.getLow()));
21. graph.put((I) vertexId, v);

22.
23. if (parent != -1 && neighbor.getLow() >= v.getDisc()) {
24. if (neighborsKeySet.size() > 1) {
25. ArticulationPoints.add(nodeId);

26. }
27. }
28. }else{
29. v.setLow(Math.min(v.getLow(), neighbor.getDisc()));

30. graph.put((I) vertexId, v);
31. }
32. }
33. if(parent == - 1 && children > 1) ArticulationPoints.add(nodeId);

34. return v;
35. }

James Day CSS497: Winter 2025 term report

14

Appendix C: Clustering Coefficient Execution Results

The following are the results for an average of 3 runs, for each node and vertex combination

running the Clustering Coefficient benchmark.

Hazelcast Results

Table 1: Hazelcast Clustering Coefficient Performance

Computing
Nodes # Vertices # Edges Load Time Execution Time

1 1000 93480 528 6567
2 1000 93480 635 5012
4 1000 93480 466 3078
8 1000 93480 530 2914

12 1000 93480 520 2491
16 1000 93480 998 2025
20 1000 93480 523 1951
24 1000 93480 986 1853

1 10000 989990 1738 46796
2 10000 989990 1869 37691
4 10000 989990 1434 20012
8 10000 989990 1236 13530

12 10000 989990 1210 12701
16 10000 989990 1175 12650
20 10000 989990 1698 12604
24 10000 989990 1684 12205

1 40000 3994424 3439 185808
2 40000 3994424 4042 146529
4 40000 3994424 3308 68860
8 40000 3994424 2932 43786

12 40000 3994424 2767 41499
16 40000 3994424 2831 36450
20 40000 3994424 2521 31120
24 40000 3994424 2528 32079

James Day CSS497: Winter 2025 term report

15

MASS Result

Table 2: MASS Clustering Coefficient Performance

Computing
Nodes # Vertices # Edges Load Time Execution Time

1 1000 93480 175 3714
2 1000 93480 145 3719
4 1000 93480 126 2711
8 1000 93480 158 2337

12 1000 93480 120 2121
16 1000 93480 102 2197
20 1000 93480 141 2267
24 1000 93480 141 2699
1 10000 989990 729 25863
2 10000 989990 542 25182
4 10000 989990 773 15726
8 10000 989990 916 13374

12 10000 989990 598 10703
16 10000 989990 477 7300
20 10000 989990 449 7461
24 10000 989990 639 8033
1 40000 3994424 1773 108073
2 40000 3994424 1435 116552
4 40000 3994424 1106 56930
8 40000 3994424 890 35081

12 40000 3994424 960 28096
16 40000 3994424 789 20336
20 40000 3994424 690 19352
24 40000 3994424 1007 22982

Table 3: MASS Clustering Coefficient Performance with Partitioning (20k Vertices)

Partitioning
Strategy

MASS Hazelcast METIS

1 28016 23873 30815

2 40337 34148 38851

4 20457 20036 22106

8 14900 15087 15197

12 13064 12896 13476

16 11963 10644 11268

20 10230 10688 9894

24 11062 10360 9163

James Day CSS497: Winter 2025 term report

16

Appendix D: Articulation Points Execution Results

Hazelcast Results
Table 4: Hazelcast Articulation Points 1k Vertices

Nodes # Vertices Load Time Run Time
1 1000 479 31549
2 1000 900 73550
4 1000 522 117840
8 1000 900 235450

12 1000 571 206888
16 1000 1068 221153
20 1000 632 289307
24 1000 527 229947

MASS Result

Table 5: MASS Articulation Points (Round Robin)

Nodes # Vertices Load Time Run Time
1 1000 1277 3447
2 1000 2989 98132
4 1000 5485 153165
8 1000 10376 283612

12 1000 15905 295073
16 1000 21948 321770
20 1000 27699 326961
24 1000 32840 365805

1 3000 1446 9750
2 3000 3267 547057
4 3000 5770 646419
8 3000 10598 1009576

12 3000 16357 976260
16 3000 22151 995574
20 3000 27896 1106928
24 3000 34281 1233555

James Day CSS497: Winter 2025 term report

17

Table 6: More MASS Articulation Points with Round Robin Partitioning

Nodes # Vertices Load Time Run Time
1 3000 1446 9750
1 4941 1218 5274
2 3000 3267 547057
2 4941 2859 221600
4 3000 5770 646419
4 4941 5650 770713
8 3000 10598 1009576
8 4941 11070 1250189

12 3000 16357 976260
12 4941 15966 1311934
16 3000 22151 995574
16 4941 21791 1359199
20 3000 27896 1106928
20 4941 28461 1406847
24 3000 34281 1233555
24 4941 43196 1580488

Table 7: MASS Articulation Points with METIS Partitioning

Nodes # Vertices Load Time Run Time
1 3000 1528 9904
1 4941 1163 9072
2 3000 3507 422055
2 4941 3100 44825
4 3000 6575 616976
4 4941 5782 77675
8 3000 12828 994508
8 4941 11230 1081067

12 3000 19373 975802
12 4941 16843 1238748
16 3000 27063 1014947
16 4941 24833 1322420
20 3000 34070 1060479
20 4941 32035 1383808
24 3000 40861 1177949
24 4941 35283 1552246

James Day CSS497: Winter 2025 term report

18

Table 8: MASS Articulation Points with Hazelcast Partitioning

Nodes # Vertices Load Time Run Time

1 3000 1478 7158

1 4941 1198 1380

2 3000 3346 180030

2 4941 2993 184759

4 3000 5933 342293

4 4941 5789 666722

8 3000 10997 789128

8 4941 10853 1203308

12 3000 16550 830513

12 4941 16358 1271779

16 3000 22038 886839

16 4941 21990 1345644

20 3000 28298 926611

20 4941 28058 1441640

24 3000 33873 1088204

24 4941 35500 1628955

Appendix E: How To Run the Benchmark Programs

While I did run these programs with different partitioning strategies, I’m not going to list the
instructions for running with these partitioning strategies as it’s a very long process and they are still
in development so these steps may change. Currently running these benchmarks requires
modifications of the core to the agent mapping function.

Clustering Coefficient
MASS

1. Install the latest version of MASS core

A. git clone -b develop https://bitbucket.org/mass_library_developers/mass_java_core.git

B. cd mass_java_core

C. mvn clean package install

D. Return to the previous directory

2. Clone repo: (currently under jaday2/graphbenchmarks)

git clone -b jaday2/graph-benchmarks --single-branch

https://bitbucket.org/mass_application_developers/mass_java_appl.git

3. Navigate to the project directory

cd mass_java_appl/Graphs/ClusteringCoefficient

4. maven package

James Day CSS497: Winter 2025 term report

19

mvn clean package

cd target

5. Update node file

Change nodes.xml‘s mass home tag to point to the jar file, and to use the correct nodes

that you’d like to be in the compute cluster. Add the username tag with your username as

well.

6. Running the benchmark

java -jar ArticulationPoints-1.0-SNAPSHOT <Path to input file> <print graph places

boolean> <print articulation points boolean>

Hazelcast

1. Clone repo: (currently under jaday2/graphbenchmarks)

git clone -b jaday2/graph-benchmarks --single-branch

https://bitbucket.org/mass_application_developers/mass_java_appl.git

2. Navigate to project directory

cd mass_java_appl/Graphs/HAZELCASTClusteringCoefficient

3. maven package

Use included make file: make

4. Update run.sh

Currently the run.sh file has been designed for the CSSMPI cluster. You can simply

specify the number of compute nodes you would like to use. If you’d like you can switch

the addresses in the machines list to any machines you’d like.

5. Running the benchmark

Bash run.sh <path to input file> <node count>

If you’d like to print the local clustering coefficients you can use java -jar

ClusteringCoefficient.jar <input file> <print results> <sort results>

Ex: java -jar ClusteringCoefficient.jar graphInput.dsl true true

Extra arguments

1. Print results: print the local clustering coefficients to the console.

2. Sort results: because of the way Hazelcast results are returned, they are not in order

like they are in MASS, if you’d like to see the local clustering coefficients in order by

the vertex id, then type true, otherwise leave this argument blank or type false.

Sorting the results has a marginal impact on execution results even for vertex counts

up to 40k

James Day CSS497: Winter 2025 term report

20

Articulation Points
MASS

1. Install the latest version of MASS core

A. git clone -b develop https://bitbucket.org/mass_library_developers/mass_java_core.git

B. cd mass_java_core

C. mvn clean package install

D. Return to the previous directory

2. Clone repo: (currently under jaday2/graphbenchmarks)

git clone -b jaday2/graph-benchmarks --single-branch
https://bitbucket.org/mass_application_developers/mass_java_appl.git

3. Navigate to the project directory

cd mass_java_appl/Graphs/ArticulationPointsSequential

4. maven package

Use included make file: make

5. Update node file

Change nodes.xml‘s mass home tag to point to the jar file, and to use the correct nodes

that you’d like to be in the compute cluster. Add the username tag with your username as

well.

6. Running the benchmark

java -jar ClusteringCoefficient-1.0.0-RELEASE.jar <Path to input file> <print boolean>

Hazelcast

1. Clone repo: (currently under jaday2/graphbenchmarks)

git clone -b jaday2/graph-benchmarks --single-branch

https://bitbucket.org/mass_application_developers/mass_java_appl.git

2. Navigate to project directory

cd mass_java_appl/Graphs/Hazelcast Graph Benchmarks/ArticulationPointsSequential

3. maven package

mvn clean package

cd target

4. Update run.sh

Currently the run.sh file has been designed for the CSSMPI cluster. You can simply

specify the number of compute nodes you would like to use. If you’d like you can switch

the addresses in the machines list to any machines you’d like.

5. Running the benchmark

James Day CSS497: Winter 2025 term report

21

Bash run.sh <path to input file> <node count>

Appendix F: Example Execution of Benchmarks

Clustering Coefficient
The following is an example execution of the clustering coefficient benchmark using 1000

vertices and roughly 100 edges per vertex.

Both programs give a clustering coefficient of roughly 0.1082 which makes sense because the

odds of an edge existing between 2 randomly selected nodes in this graph would be roughly 100

/ 1000 or 0.1 (10%).

MASS
java -jar ClusteringCoefficient-1.0.0-RELEASE.jar
"~/GITREPO/mass_java_appl/Graphs/HAZELCASTClusteringCoefficient/graph_1_000.dsl"

#alive-agent = 1000
#alive-agent = 93480
#alive-agent = 93480
Total number of agents used: 187960

Calculation Time: 844ms
Elapsed time = 3559ms
The average local clustering coefficient's of this graph is: 0.1081919281859751
MASS Shutdown Finished

Hazelcast

bash run.sh "~/GITREPO/mass_java_appl/Graphs/HAZELCASTClusteringCoefficient/graph_1_000.dsl" 7
running test:
test finished after 8.406 seconds
test result: 0.1082

Load Time: 1.057 seconds
Finished calculating global clustering coefficient...
Gathering benchmark results to clustering-coefficient-result.csv

Saved results to file...
Shutting down dsg cluster...
Finished dsg cluster shutdown...

Articulation Points
The following is an example execution of the articulation points benchmark using different

datasets. Both programs save the results to a file including the runtime, load time, articulation

points found and more.

MASS
java -jar ArticulationPointsSequential-1.0-SNAPSHOT.jar Dolphin.dsl
Start timer!
[Create places time] 1.108s

============= GO! FIND ARTICULATION POINT(S)! =============
Start the timer!

#alive-agent = 1
------------- TARJANS FINISHED ------------
------------- BEGIN SEARCH FOR ARTICULATION POINTS ------------
#alive-agent = 62

------------- STEP-1 PROPAGATE ------------
#alive-agent = 318

James Day CSS497: Winter 2025 term report

22

------------- STEP-2 MIGRATE ------------
#alive-agent = 318

------------- STEP-3 RETURN TO SOURCE ------------
#alive-agent = 318
------------- STEP-4 DETERMINE ARTICULATION POINTS ------------
#alive-agent = 9

Stop the timer!
====================== STATISTICS ======================
Elapsed time: 0.208 s

Total #place: 62
Total #agents: 1713

================= APPLICATION RESULTS! ==================
Gathering benchmark results to articulation-points-benchmark-result.csv
Saved results to file...

---------------- Finishing MASS Java ... ----------------
MASS Shutdown Finished

Hazelcast

bash run.sh graph_200.dsl 1
finished reading dsl file: 'graph_200.dsl'
Calculating articulation points (this might take some time)...
running test:
test finished after 1.832 seconds

Load Time: 0.215 seconds
Finished finding articulation points
Gathering benchmark results to articulation-points-benchmark-result.csv
Saved results to file...

Shutting down dsg cluster...
Finished dsg cluster shutdown...

