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MASS Java Benchmarks for a Graph Database 

1. Overview 

Distributed graph databases play a critical role in modern computing, they power applications in 

social networks, transportation systems, and recommendation engines. Evaluating their 

performance and programmability is crucial to understanding the trade-offs between different 

approaches. MASS (Multi-Agent Spatial Simulation) is a parallel-computing library being 

developed by the Distributed Systems Laboratory (DSL). MASS is designed for distributed 

memory systems to simulate agent-based models for spatial computations. MASS has previously 

been used to implement a distributed graph database. 

The University of Washington Bothell DSL would like to compare the MASS-based graph 

database to alternative implementations of a distributed graph database such as Hazelcast. 

Hazelcast is a distributed in-memory computing platform that will be benchmarked against 

MASS’s agent-based approach to graph database computations. The Hazelcast distributed graph 

database has been implemented using Hazelcast’s distributed hashmap (Imap). Hazelcast has a 

wide range of configurability, including choices of consistency, replication of data, and 

functionality for continuing computation even if communication with a computing node is lost. 

The goal is to compare the performance, programmability, and scalability of both approaches for 

a distributed graph database. 

Atul Ahire, another member of the DSL, is implementing improvements to the MASS graph 

database including a new partitioning algorithm that improves data affinity of the database. 

Another improvement for MASS that is being made is improvements to the messaging system. 

Currently most of the messaging is done using TCP but a switch to Aeron is being tested which 

may reduce latency and increase performance. The first partitioning algorithm that was chosen 

was Hazelcast which uses hash-based partitioning and doesn’t take data locality into account. 

The second partitioning method that was chosen was METIS which is a partitioning algorithm 

that divides a graph into partitions while minimizing the number of edges that are cut between 

the partitions. The vertex partitioning improvements will likely increase load times for the graph 

but decrease execution time for graph benchmarks.  

For this capstone, I will implement two benchmark algorithms in MASS as well as in Hazelcast. 

The first goal is to evaluate these libraries including programmability and performance of the 

two libraries for a distributed graph database. The second goal of these benchmarks is to 

demonstrate the performance improvements made by Atul as mentioned above. The benchmarks 

are as follows: 

1. Clustering coefficient 

2. Articulation points 



James Day  CSS497: Winter 2025 term report 
 

2 
 

1.1 Background 

In MASS, places are distributed across the computing nodes and represent the data, while agents 

are execution entities that traverse and exchange information with these places. A graph database 

has been implemented with MASS where graph nodes are represented as places (GraphPlaces) 

and agents can traverse these nodes to perform graph operations such as triangle count, 

clustering computations (connected components), and connectivity analysis. The following is a 

breakdown of the clustering coefficient and articulation points benchmarks that I will implement 

in MASS and Hazelcast. 

1.2 Clustering Coefficient 

Clustering coefficient is a measure of the degree to which nodes in a graph tend to cluster 

together. Calculating the clustering coefficient of a graph can help you understand how tightly 

knit the groups in your graph are. In social networks, the clustering coefficient can help identify 

communities, while in transportation networks, it can highlight stations that may become 

bottlenecks. Clustering coefficients are on a scale from zero to one, where zero is a completely 

disconnected graph, and a coefficient of one is a graph with connections between every node. 

There are two types of clustering coefficients. The first is a local clustering coefficient of a given 

vertex that will tell you the portion of a vertex’s neighbors that are neighbors of each other. In 

other words, the local clustering coefficient tells you how connected a vertex’s neighbors are. 

The other form of clustering coefficient is a global clustering coefficient which is a measure of 

the clustering tendency of the entire graph. The global or average clustering coefficient of a 

graph helps bring understanding to the overall connectivity in a network. For example, in energy 

grids, the average clustering coefficient for a network could help determine the level of 

redundancy in the grid. 

To calculate the local clustering coefficient there are two methods the first is the number of 

triangles that the vertex is a part of, divided by the number of triplets that are centered at that 

vertex. Another method for calculating it is to count the number of connections between that 

vertex’s neighbors and divide it by the max possible number of connections between that vertex’s 

neighbor. The maximum number of connections for a given vertex is simply n choose two or 
𝑛(𝑛−1)

2
 (for an undirected graph). 

To gauge the clustering of the entire graph, there are two methods, first is the average of the local 

clustering coefficients, and the second is the number of closed triplets in the graph divided by the 

number of all triplets in the graph. These two approaches give different results with the latter 

putting more weight on high-degree nodes, and the former putting more weight on low-degree 

nodes. My implementation will simply take the average of the local clustering coefficients as it is 

a simpler calculation and still gives us an idea of the graph’s clustering. 
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1.3 Articulation Points 

Articulation points (or cut vertices) are vertices in a graph that if removed, would split the 

network into two or more components. Articulation points are valuable for network design when 

you are trying to identify single points of failure in a network. In a transportation network, 

knowing that a station is an articulation point would let you know that its removal would make 

certain routes impossible. This is very similar to a graph bridge which is an edge in a graph that 

if removed would disconnect the graph into more components. It is important to note that while 

all articulation points are connected to a bridge, not all vertices connected to a bridge are 

articulation points. 

The naive approach to finding articulation points would be to remove them from the graph and 

then traverse the graph (BFS or DFS) to see how many components you have. If the number of 

components increased, then it was an articulation point. This approach can be improved with 

Tarjan’s Algorithm which is a DFS-based algorithm that also keeps track of each vertex’s 

discovery time and lowest reachable discovery time, which is used to track connectivity and back 

edges more efficiently. 

2. Implementation / Progress 

2.1 Clustering Coefficient 

2.1.1 MASS Implementation 

The MASS implementation of clustering coefficient starts 

by spawning one agent on every vertex. The agents have an 

originalPlaceId that is stored at this point. Then every agent 

spawns agents equal to the number of neighbors and they 

all migrate to their respective neighbors. The agents then 

use the originalPlaceId to migrate back to the source with 

the neighbor vertex’s neighbors list. This list of neighbor’s 

neighbors can be referred to as second-degree neighbors. 

The agent then stores the second-degree neighbor list on 

the source GraphPlace. The GraphPlace calculates the local 

clustering coefficient of itself by counting how many of the second-degree neighbors it is also 

neighbors with. To calculate the global clustering coefficient a function has been implemented 

for the places CallAll which returns all the place’s local clustering coefficients to the master node 

and then averages them for the network average clustering coefficient. More details are available 

in Appendix A. 

 

Figure 1 Local Clustering Coefficient 
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Figure 2: MASS Average Clustering Coefficient Implementation 

 1. private Object calculateCC() { 
 2.     ClusteringVertex place = (ClusteringVertex) getPlace(); 
 3.     Object[] placeNeighbors = place.getNeighbors(); 
 4.   

 5.     Set<Object> set1 = new HashSet<>(Arrays.asList(placeNeighbors)); 
 6.     Set<Object> set2 = new HashSet<>(Arrays.asList(secondDegreeNeighbors)); 
 7.     // Find intersection 

 8.     set2.remove(nextPlaceId); //remove self loops 
 9.     set1.retainAll(set2); 
10.     place.neighborLinkCount += set1.size(); 
11.   

12.     kill(); 
13.     return null; 
14. } 

2.1.2 Hazelcast Implementation 

The Hazelcast implementation of clustering coefficient uses the implementation of Hazelcast’s 

aggregator class which obfuscates all the parallel and distributes complexities into three simple 

functions. The first of which is the accumulate function which Hazelcast runs on every single 

vertex on that node. In this accumulate function the vertex’s neighbors’ vertices are retrieved. In 

Hazelcast we are able to retrieve the actual vertices that are neighbors which allows for the 

retrieval of second-degree neighbors easier programmatically. Then the accumulate function 

finds the size of the intersection of the second-degree neighbors and the neighbors of that vertex, 

this is the total number of connections between neighbors. To find the local clustering 

coefficient, the accumulate function calculates the maximum number of connections between 

neighbors and divides the actual number of connections by the maximum number of connections. 

The next function, the combine function adds the local clustering coefficients together. The last 

function, the aggregate function, divides the sum of the local clustering coefficients by the total 

number of vertices in the graph to give us our graph’s average clustering coefficient. 

Figure 3: Hazelcast Average Clustering Coefficient Implementation 

1. @Override 
 2. public void accumulate(final Entry<I, Vertex<I, V>> entry) { 
 3.     final var vertex = entry.getValue(); 
 4.     final var u      = vertex.getVertexID(); 
 5.     final Set<I> uNeighbors = vertex.getNeighbors().keySet(); 

 6.   
 7.     Map<I, Vertex<I,V>> uNeighborVertices = dsg.graph.getAll(uNeighbors); 
 8.   
 9.     uNeighbors.forEach(v -> { 

10.         if (Objects.equals(v, u)) return;  // Skip if the neighbor is the vertex itself 
11.         Set<I> vNeighbors = uNeighborVertices.get(v).getNeighbors().keySet(); 
12.   

13.         //retain elements in intersection 
14.         vNeighbors.retainAll(uNeighbors); 
15.         vertex.setLinkCount(vertex.getLinkCount() + vNeighbors.size()); 
16.     }); 

17.     vertex.setLocalClusteringCoefficient((uNeighbors.size() != 1 && !uNeighbors.isEmpty()) 
18.          (double) vertex.getLinkCount() / (uNeighbors.size() * (uNeighbors.size() - 1)) : 0.0); 
19.     globalClusteringCoefficient += vertex.getLocalClusteringCoefficient(); 
20. } 
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Because file sizes are currently a bit smaller, an improvement could be made by using 

Hazelcast’s project method which could return all vertex’s neighbor IDs to each node when 

doing its computations. This method likely would not work as the graph size continues to grow 

and disregards the purpose of distributed storage (this is also how triangle count was 

implemented in Hazelcast). 

2.2 Articulation Points 

2.2.1 MASS Implementation 

The implementation for articulation points for MASS 

initially built upon Caroline Tsui’s prior work for finding 

graph bridges. Her implementation uses a variation of 

Tarjan’s algorithm where each vertex will store its 

discovery time and low link value. The low link value is the 

smallest vertex ID reachable from that vertex including 

itself. Caroline used an approach where agents propagate 

and migrate and essentially conduct Tarjan’s algorithm but 

in a BFS manner. The problem with this approach is that it 

ends up missing certain bridges and articulation points and 

has very explosive agent growth. This means that this initial approach only could complete with 

graph files smaller than 30 vertices.  

The approach that was taken to address this problem was to make a sequential implementation of 

this algorithm which essentially works just like the normal Tarjan’s algorithm. If the user is 

attempting to find articulation points in file sizes with one hundred to one million edges, this 

sequential approach is better. But if the user is simply trying to use a benchmark that better 

shows the computational performance of MASS (albeit on a very small graph) then the standard 

articulation points benchmark is better. I will skip over implementation details of the original 

articulation points / graph bridge approach because as previously mentioned, the performance is 

non-optimal.  

The sequential approach in MASS simply uses one agent that traverses the graph in a DFS 

manner. In MASS there is no way to simply check the attributes of a vertices neighboring places; 

to address this issue, child agents are spawned during the backtracking phase that traverse to the 

neighbors and return with the neighboring low link values. The DFS agent waits at this vertex 

until the children return to avoid race conditions, then the child agents call kill() on themselves. 

Initially the determination of a vertex being an articulation point was done during the 

backtracking phase and then a places call all was used to return all articulation points 

information. This had to be changed because the METIS and Hazelcast partitioning algorithms 

did not have the places call all function implemented yet. To address this a change was made to 

determine if each vertex was an articulation point at the end of the program with a separate set of 

Figure 4 Articulation Points 
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Figure 5 Clustering Coefficient 40k Vertices 

agents. This is slightly slower but should be valuable for comparing partitioning strategies for 

now. In the future this change should be reversed to calculate articulation points in the 

backtracking. It’s also important to mention that this algorithm doesn’t work on disconnected 

graphs currently. This is because MASS does not have the capability to spawn agents on a vertex 

based on a condition. For example, in DFS, a for loop iterates over all vertices and conducts a 

DFS starting at that vertex if it is not visited yet. There is currently no way to spawn an agent on 

a given vertex if it is unvisited. There are talks of changes that would allow for this, and the 

benchmark would just need to add the standard DFS loop to allow for disconnected graphs. 

2.2.2 Hazelcast Implementation 

The sequential implementation in Hazelcast is a bit simpler and mostly follows Tarjan’s 

algorithm. The only difference is that information about neighbors must be retrieved from other 

compute nodes dropping the performance of the algorithm. Hazelcast does have a method for 

returning information about all neighboring vertices, but this data becomes stale as the DFS 

continues, and ends up with most of the databases data on one machine, defeating the purpose of 

a distributed database. This means each time the low link value of a neighbor is needed, a request 

is made to get that value and the process waits for the messaging. Hazelcasts executor service 

may be able to improve performance for this reason, although my assumption is that the 

overhead of shifting the computation from one machine to the next is larger than the overhead of 

retrieving a vertices information. Implementation specifics can be found in appendix A and B. 

3. Benchmark Results  

3.1.1 Clustering Coefficient Performance 

The Clustering Coefficient benchmark has been run on the CSSMPI cluster, for larger vertex 

counts MASS generally outperforms the Hazelcast implementation slightly. The execution time 

for a graph with forty-thousand vertices can be seen in figure 5. 
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Figure 7 Articulation Points 1k Vertices 

Figure 6 Clustering Coefficient 20k Vertices Partitioning results  

The MASS implementation is slightly faster regardless of the node count, this is partly due to 

optimizations in MASS like completing all of a vertex’s computation at once on the given place. 

MASS is especially faster on a single node because MASS takes full advantage of local vertices. 

This benchmark has been tested on other vertex counts with similar results and the data can be 

found in appendix C. Interestingly MASS performs a bit slower when increasing from one to two 

computing nodes. This increase in execution time is due to the overhead of communication 

between computing nodes including MProcesses. The benefits gained from increasing the 

number of computing nodes fall off for node counts larger than 16 nodes.  

3.1.2 Clustering Coefficient Partitioning Algorithm Performance 

The difference in runtime 

performance is negligible for 

the different partitioning 

strategies, although this was 

expected as clustering 

coefficient was meant to show 

MASS’s performance against 

Hazelcast, and the articulation 

points benchmark was meant 

to show improvements from 

the partitioning algorithms 

better. 

While the Hazelcast 

partitioning seems to be a bit 

better, it’s pretty marginal and becomes negligible with four or more compute nodes. All other 

results seem to show that partitioning strategy does not largely impact the clustering coefficient 

benchmark. 

3.2.1 Articulation 

Points Performance 

The Articulation Points 

benchmark was also run 

on the CSSMPI cluster 

and Hazelcast tends to 

outperform MASS, 

although there are some 

instances where MASS 

is a closer competitor. 

The execution time of 
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Figure 8 Articulation Points 3k Vertices 

Figure 9 Articulation Points US Power Grid 

this benchmark with 1k vertices and 100k edges can be seen in figure 7. 

While MASS was a bit faster for clustering coefficient, it seems that for articulation points it 

doesn’t fair as well. With very dense graphs the difference in runtime between Hazelcast and 

MASS becomes negligible, but for less dense graphs Hazelcast beats MASS in runtime relatively 

decently. MASS has high overhead for passing an agent, while Hazelcast can simply return the 

data of a specific vertex which allows for smaller message sizes. As graph sizes get larger and 

more dense MASS’s agent-based computation starts to scale better, while Hazelcast dominates 

with smaller sparse graphs because of its low overhead. 

3.2.2 Articulation Points Partitioning Algorithm Performance 

With smaller amounts of 

compute nodes, some 

pretty reasonable 

improvements could be 

seen with METIS. 

Initially benchmarks were 

showing that the METIS 

partitioning had 

negligible benefits to run 

time on most benchmarks 

when the number of 

compute nodes was 

increased, as can be seen 

in figure 8. 

The benchmark in figure 8 

was done with a 

randomized dataset, and 

after some more 

benchmarking it was 

found that METIS’s 

performance benefits can 

be seen much better with 

real world datasets that 
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logical groupings means 
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cut between partitions. Figure 9 shows the performance improvements of the METIS partitioning 

strategy with the articulation points benchmark run on a dataset based on the US power grid. 

With lower numbers of compute nodes, the improvements from METIS can be seen with as 

much as 80% reductions in run time for four compute nodes, and even with larger compute node 

counts, there is still 1-5% performance improvements. Future testing is needed for larger real-

world datasets for different benchmarks with the Hazelcast and METIS partitioning strategies. 

The raw data from these benchmarks can be found in Appendix D. 

4. Programmability 

Both MASS and Hazelcast allow for distributed and parallelized computing without much 

knowledge of those concepts. I found the implementation in Hazelcast to be a bit more 

straightforward as it feels similar to concepts like MapReduce and thinking about a problem 

using agent-based modeling is a bit different to anything I’ve done. To tackle these benchmarks, 

an Agent and a VertexPlace class had to be designed to act out the computation, while Hazelcast 

only required one class to be designed. The aggregator for Hazelcast needed to be designed, 

though the implementation is rather simple since you implement the aggregate class and then 

override the methods you need. Technically the DistributedSharedGraph class also had to be 

implemented since there is no built-in distributed graph storage class.  

In Table 9 we can see that MASS overall had fewer lines of code and less lines of logic, however, 

this is because Hazelcast does not have built-in data structures for a graph instead a distributed 

HashMap must be used to store the graph data. Additionally, Hazelcast logic was necessary for 

file I/O and graph initialization. If we account for these extra lines of code in Hazelcast, the 

implementations come out to similar quantitative complexity. I assume in the future that 

SmartAgents will continue to gain functionality, and if they had a migratePropogate function that 

did not terminate agents on seen vertices, and a migrateSource function that didn’t kill agents 

when there is no neighboring link, then my implementation in MASS could be quantitatively less 

complex. As for articulation points, not much could easily be done to lower the quantitative 

complexity in MASS as agents cause the benchmarks to require slightly more lines of code. 

Table 9: MASS vs Hazelcast Clustering Coefficient Programmability data  

Measurement (MASS) Count 
Number of files 4 
Number of methods 14 
Number of Variables declared 51 
Total Lines of Code 528 
Lines of logic 224 

 

Measurement (Hazelcast) Count 
Number of files 3 
Number of methods 30 
Number of Variables declared 54 
Total Lines of Code 707 
Lines of logic 295 
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Table 10: MASS vs Hazelcast Articulation Points Programmability data 

Measurement (MASS) Count 
Number of files 4 
Number of methods 20 
Number of Variables declared 85 
Total Lines of Code 714 
Lines of logic 421 

 

Measurement (Hazelcast) Count 
Number of files 4 
Number of methods 27 
Number of Variables declared 65 
Total Lines of Code 683 
Lines of logic 328 

 

5. Conclusion 
Both the clustering coefficient and articulation point benchmarks have been successfully 
implemented in both Hazelcast and mass, advancing DSL’s capability to compare the 
MASS-based graph database with a distributed graph database in Hazelcast. This project 
has shifted my way of thinking greatly, as I had no experience with distributed computing 
beforehand. I underestimated the different mindset that is required for parallel and 
distributed computing. Now that the benchmarks have been run for the different 
partitioning strategies, we can now see the benefits and drawbacks of the different options.  

Future work should continue to compare different distributed libraries in their use for a 
graph database. This will give us more data points to decipher MASS’s strong suits. More 
benchmarks should be made in MASS to test the partitioning strategies, and as new 
changes are made to MASS, we should continue to benchmark the improvements that 
partitioning has on performance. As Aeron is being used for more of MASS’s messaging, 
future work should monitor if these partitioning strategies have more of an effect on 
performance. 
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Appendix A: More Implementation Details for MASS 

Clustering Coefficient 

Figure 10: Propagation logic 

 1. private Object propagate() { 
 2.     MASS.getLogger().debug("===================== PROPAGATE ====================="); 
 3.   
 4.     ClusteringVertex place = (ClusteringVertex) getPlace(); 

 5.     Object[] placeNeighbors = place.getNeighbors(); 
 6.     int placeId = place.getIndex()[0]; 
 7.     int availableEdges = placeNeighbors.length; 
 8.   

 9.     // case 1. no neighbors, kill the agent! 
10.     // or case 2. only one neighbor and that's itself, kill the agent! (self-loops not counted) 
11.     // or case 3. one neighbor and that's the origin, kill the agent!  
12.     if (availableEdges == 0 || (availableEdges == 1 && placeId == (int) placeNeighbors[0]) 

13.             || ((int) placeNeighbors[0] == originalPlaceId && availableEdges == 1)) { 
14.         kill(); 
15.         return null; 

16.     } 
17.   
18.     //it's ok to assume there is at least one neighbor because we've  
19.     // already shown that if there's only one neighbor, then it's no the origin  

20.     nextPlaceId = ((int) placeNeighbors[0] != originalPlaceId) ?  
21.         (int) placeNeighbors[0] : (int) placeNeighbors[1]; 
22.   
23.     int index = 0; 

24.     if (placeNeighbors.length > 1 + ((nextPlaceId == (int) placeNeighbors[0]) ? 0 : 1)) { 
25.         ArgsToAgent[] argsArr = new ArgsToAgent[placeNeighbors.length - 1]; 
26.   

27.         for (int i = (nextPlaceId == (int) placeNeighbors[0])  
28.             ? 1 : 2; i < placeNeighbors.length; i++) { 
29.             if ((int) placeNeighbors[i] == originalPlaceId) { 
30.                 continue; 

31.             } 
32.             // (originalPlaceId, nextPlaceId) 
33.             argsArr[index++] = new ArgsToAgent(originalPlaceId, (int) placeNeighbors[i]); 
34.         } 

35.   
36.         //it's ok if argsArray is not completely full. 
37.         spawn(index, argsArr); 
38.     } 

39.     return null; 
40. } 

 
Figure 11:  MigrateSource Logic 

1. private Object migrateSource() { 
2.     MASS.getLogger().debug("===================== BACKTRACKING ====================="); 
3.     ClusteringVertex place = (ClusteringVertex) getPlace(); 

4.     secondDegreeNeighbors = place.getNeighbors(); 
5.     migrate(originalPlaceId); 
6.     return null; 

7. } 
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Figure 12: Main Crawler Logic 

1. crawlers.callAll(MyAgent.init_); 
 2. for (int i = 0; i < 2; i++) { 

 3.     if (i < 1) { 
 4.         crawlers.callAll(MyAgent.propagate_); 
 5.         crawlers.manageAll(); 

 6.         crawlers.callAll(MyAgent.migrate_); 
 7.     } 
 8.     else { 
 9.         crawlers.callAll(MyAgent.migrateSource_); 

10.     } 
11.     crawlers.manageAll(); 
12. } 
13. crawlers.callAll(MyAgent.calculateCC_); 

14. String[][] dummyArgs = new String[graphPlaces.size()][1]; 
15. return graphPlaces.callAll(ClusteringVertex.returnLocalCC_, dummyArgs); 

Articulation Points 

Figure 13: DFS logic logic 

1. private Object onArrival() { 
2.    if(wait) {          wait = false; 

3.        return null; 
4.    } 
5.    MyVertex place = (MyVertex) getPlace(); 
6.    int placeId = place.getIndex()[0]; 

7.    Object[] placeNeis = place.getNeighbors(); 
8.    if(neighborLowLinkCheck){           
9. low = place.low;           
10. lowLinkNeiCheckId = this.parentID; 

11.        neighborLowLinkCheck = false; 
12.        return null;      } 
13.    if(lowLinkNeiCheckId != -1){ 
14.        place.low = Math.min(low, place.low); 

15.        kill(); 
16.        return null; 
17.    } 

18.    if(!place.getVisited()) { 
19.        disc++; 
20.        low = disc; 
21.        place.disc = disc; 

22.        place.low = disc; 
23.        place.parentId = (itinerary.isEmpty()) ? -1 :itinerary.getInt(itinerary.size()-1); 
24.    } 
25.    place.setVisited(true); 

26.    for (Object obj : placeNeis) { 
27.        int nei = (int) obj; 
28.        if(!visited.contains(nei)){ 

29.            place.children++; 
30.            nextPlaceId = nei; 
31.            if(!itinerary.contains(placeId)) {  
32.                itinerary.add(placeId); 

33.            } 
34.            visited.add(placeId); 
35.            return null; 
36.        } 

37.    } 
38.    int isRoot = (place.parentId == -1) ? 1 : 0; 
39.    int arraySize = (placeNeis.length > 0) ? placeNeis.length - 1 + isRoot : 0; 

40.    ArgsToAgent[] argsArr =  new ArgsToAgent[arraySize]; 
41. 
42.    int i = 0; 
43.    for (Object obj : placeNeis) { 
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44.        int nei = (int) obj; 
45.        if(place.parentId == nei) continue; 

46.        argsArr[i] = new ArgsToAgent(nei, null, -1, -1, placeId, true); 
47.        i++; 
48.    } 
49. 

50.    if(argsArr.length > 0){ 
51.       wait = true; 
52.       spawn(argsArr.length, (Object[]) argsArr); 
53.   } 

54.   if(!itinerary.contains(placeId)) itinerary.add(placeId); 
55.   visited.add(placeId); 
56.    itinerary.removeInt(itinerary.size() - 1); 

57.    if(itinerary.isEmpty()){ 
58.        kill(); 
59.        return null; 
60.    } 

61.    nextPlaceId = itinerary.getInt(itinerary.size() - 1); 
62.    return null; 
63.} 

 

Appendix B: More Implementation Details for Hazelcast 

Articulation Points 

Figure 14: Hazelcast Articulation Points DFS implementation. 

1.  private Vertex<I,V> dfs(int nodeId, int parent, int time) { 
2.  Vertex<I,V> v = graph.get(nodeId); 
3.  Integer vertexId = (Integer) v.getVertexID(); 

4.  visited.add(vertexId); 
5. 
6.   v.setDisc(time); 
7.   v.setLow(time); 

8.   graph.put((I) vertexId, v); 
9.   time++; 
10.  Set<I> neighborsKeySet = v.getNeighbors().keySet(); 

11.  int children = 0; 
12.  for (I neighborKey : neighborsKeySet) { 
13.      int neighborId = (Integer) neighborKey; 
14.      if (neighborId == parent) continue;           

15.      Vertex<I,V> neighbor = graph.get(neighborId);  
16. 
17.      if (neighbor.getDisc() == -1) {               
18.    children++; 

19.          neighbor = dfs(neighborId, nodeId, time); 
20.          v.setLow(Math.min(v.getLow(), neighbor.getLow())); 
21.          graph.put((I) vertexId, v); 

22. 
23.          if (parent != -1 && neighbor.getLow() >= v.getDisc()) { 
24.              if (neighborsKeySet.size() > 1) { 
25.                  ArticulationPoints.add(nodeId); 

26.              } 
27.          } 
28.      }else{ 
29.            v.setLow(Math.min(v.getLow(), neighbor.getDisc())); 

30.            graph.put((I) vertexId, v); 
31.       } 
32.  } 
33.    if(parent == - 1 && children > 1) ArticulationPoints.add(nodeId); 

34.    return v; 
35. } 
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Appendix C: Clustering Coefficient Execution Results 

The following are the results for an average of 3 runs, for each node and vertex combination 

running the Clustering Coefficient benchmark. 

Hazelcast Results 

Table 1: Hazelcast Clustering Coefficient Performance 

Computing 
Nodes # Vertices # Edges Load Time Execution Time 

1 1000 93480 528 6567 
2 1000 93480 635 5012 
4 1000 93480 466 3078 
8 1000 93480 530 2914 

12 1000 93480 520 2491 
16 1000 93480 998 2025 
20 1000 93480 523 1951 
24 1000 93480 986 1853 

1 10000 989990 1738 46796 
2 10000 989990 1869 37691 
4 10000 989990 1434 20012 
8 10000 989990 1236 13530 

12 10000 989990 1210 12701 
16 10000 989990 1175 12650 
20 10000 989990 1698 12604 
24 10000 989990 1684 12205 

1 40000 3994424 3439 185808 
2 40000 3994424 4042 146529 
4 40000 3994424 3308 68860 
8 40000 3994424 2932 43786 

12 40000 3994424 2767 41499 
16 40000 3994424 2831 36450 
20 40000 3994424 2521 31120 
24 40000 3994424 2528 32079 
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MASS Result 

Table 2: MASS Clustering Coefficient Performance 

Computing 
Nodes # Vertices # Edges Load Time Execution Time 

1 1000 93480 175 3714 
2 1000 93480 145 3719 
4 1000 93480 126 2711 
8 1000 93480 158 2337 

12 1000 93480 120 2121 
16 1000 93480 102 2197 
20 1000 93480 141 2267 
24 1000 93480 141 2699 
1 10000 989990 729 25863 
2 10000 989990 542 25182 
4 10000 989990 773 15726 
8 10000 989990 916 13374 

12 10000 989990 598 10703 
16 10000 989990 477 7300 
20 10000 989990 449 7461 
24 10000 989990 639 8033 
1 40000 3994424 1773 108073 
2 40000 3994424 1435 116552 
4 40000 3994424 1106 56930 
8 40000 3994424 890 35081 

12 40000 3994424 960 28096 
16 40000 3994424 789 20336 
20 40000 3994424 690 19352 
24 40000 3994424 1007 22982 

 
Table 3: MASS Clustering Coefficient Performance with Partitioning (20k Vertices) 

Partitioning 
Strategy 

MASS Hazelcast METIS 

1 28016 23873 30815 

2 40337 34148 38851 

4 20457 20036 22106 

8 14900 15087 15197 

12 13064 12896 13476 

16 11963 10644 11268 

20 10230 10688 9894 

24 11062 10360 9163 
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Appendix D: Articulation Points Execution Results 

Hazelcast Results 
Table 4: Hazelcast Articulation Points 1k Vertices 

# Nodes # Vertices Load Time Run Time 
1 1000 479 31549 
2 1000 900 73550 
4 1000 522 117840 
8 1000 900 235450 

12 1000 571 206888 
16 1000 1068 221153 
20 1000 632 289307 
24 1000 527 229947 

 

MASS Result 

Table 5: MASS Articulation Points (Round Robin) 

# Nodes # Vertices Load Time Run Time 
1 1000 1277 3447 
2 1000 2989 98132 
4 1000 5485 153165 
8 1000 10376 283612 

12 1000 15905 295073 
16 1000 21948 321770 
20 1000 27699 326961 
24 1000 32840 365805 

1 3000 1446 9750 
2 3000 3267 547057 
4 3000 5770 646419 
8 3000 10598 1009576 

12 3000 16357 976260 
16 3000 22151 995574 
20 3000 27896 1106928 
24 3000 34281 1233555 
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Table 6: More MASS Articulation Points with Round Robin Partitioning 

# Nodes # Vertices Load Time Run Time 
1 3000 1446 9750 
1 4941 1218 5274 
2 3000 3267 547057 
2 4941 2859 221600 
4 3000 5770 646419 
4 4941 5650 770713 
8 3000 10598 1009576 
8 4941 11070 1250189 

12 3000 16357 976260 
12 4941 15966 1311934 
16 3000 22151 995574 
16 4941 21791 1359199 
20 3000 27896 1106928 
20 4941 28461 1406847 
24 3000 34281 1233555 
24 4941 43196 1580488 

 

Table 7: MASS Articulation Points with METIS Partitioning 

# Nodes # Vertices Load Time Run Time 
1 3000 1528 9904 
1 4941 1163 9072 
2 3000 3507 422055 
2 4941 3100 44825 
4 3000 6575 616976 
4 4941 5782 77675 
8 3000 12828 994508 
8 4941 11230 1081067 

12 3000 19373 975802 
12 4941 16843 1238748 
16 3000 27063 1014947 
16 4941 24833 1322420 
20 3000 34070 1060479 
20 4941 32035 1383808 
24 3000 40861 1177949 
24 4941 35283 1552246 
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Table 8: MASS Articulation Points with Hazelcast Partitioning 

# Nodes # Vertices Load Time Run Time 

1 3000 1478 7158 

1 4941 1198 1380 

2 3000 3346 180030 

2 4941 2993 184759 

4 3000 5933 342293 

4 4941 5789 666722 

8 3000 10997 789128 

8 4941 10853 1203308 

12 3000 16550 830513 

12 4941 16358 1271779 

16 3000 22038 886839 

16 4941 21990 1345644 

20 3000 28298 926611 

20 4941 28058 1441640 

24 3000 33873 1088204 

24 4941 35500 1628955 

 

Appendix E: How To Run the Benchmark Programs 

While I did run these programs with different partitioning strategies, I’m not going to list the 
instructions for running with these partitioning strategies as it’s a very long process and they are still 
in development so these steps may change. Currently running these benchmarks requires 
modifications of the core to the agent mapping function. 

Clustering Coefficient 
MASS 

1. Install the latest version of MASS core 

A. git clone -b develop https://bitbucket.org/mass_library_developers/mass_java_core.git 

B. cd mass_java_core 

C. mvn clean package install 

D. Return to the previous directory 

2. Clone repo: (currently under jaday2/graphbenchmarks) 

git clone -b jaday2/graph-benchmarks --single-branch 

https://bitbucket.org/mass_application_developers/mass_java_appl.git 

3. Navigate to the project directory 

cd mass_java_appl/Graphs/ClusteringCoefficient 

4. maven package 
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mvn clean package 

cd target 

5. Update node file 

Change nodes.xml‘s mass home tag to point to the jar file, and to use the correct nodes 

that you’d like to be in the compute cluster. Add the username tag with your username as 

well. 

6. Running the benchmark 

java -jar ArticulationPoints-1.0-SNAPSHOT  <Path to input file> <print graph places 

boolean> <print articulation points boolean> 

Hazelcast 

1. Clone repo: (currently under jaday2/graphbenchmarks) 

git clone -b jaday2/graph-benchmarks --single-branch 

https://bitbucket.org/mass_application_developers/mass_java_appl.git 

2. Navigate to project directory 

cd mass_java_appl/Graphs/HAZELCASTClusteringCoefficient 

3. maven package 

Use included make file: make 

4. Update run.sh 

Currently the run.sh file has been designed for the CSSMPI cluster. You can simply 

specify the number of compute nodes you would like to use. If you’d like you can switch 

the addresses in the machines list to any machines you’d like. 

5. Running the benchmark 

Bash run.sh <path to input file> <node count>  

 

If you’d like to print the local clustering coefficients you can use java -jar 

ClusteringCoefficient.jar <input file> <print results> <sort results> 

Ex: java -jar ClusteringCoefficient.jar graphInput.dsl true true 

 

Extra arguments 

1. Print results: print the local clustering coefficients to the console. 

2. Sort results: because of the way Hazelcast results are returned, they are not in order 

like they are in MASS, if you’d like to see the local clustering coefficients in order by 

the vertex id, then type true, otherwise leave this argument blank or type false. 

Sorting the results has a marginal impact on execution results even for vertex counts 

up to 40k 
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Articulation Points 
MASS 

1. Install the latest version of MASS core 

A. git clone -b develop https://bitbucket.org/mass_library_developers/mass_java_core.git 

B. cd mass_java_core 

C. mvn clean package install 

D. Return to the previous directory 

2. Clone repo: (currently under jaday2/graphbenchmarks) 

git clone -b jaday2/graph-benchmarks --single-branch 
https://bitbucket.org/mass_application_developers/mass_java_appl.git 

3. Navigate to the project directory 

cd mass_java_appl/Graphs/ArticulationPointsSequential 

4. maven package 

Use included make file: make 

5. Update node file 

Change nodes.xml‘s mass home tag to point to the jar file, and to use the correct nodes 

that you’d like to be in the compute cluster. Add the username tag with your username as 

well. 

6. Running the benchmark 

java -jar ClusteringCoefficient-1.0.0-RELEASE.jar  <Path to input file> <print boolean> 

 

Hazelcast 

1. Clone repo: (currently under jaday2/graphbenchmarks) 

git clone -b jaday2/graph-benchmarks --single-branch 

https://bitbucket.org/mass_application_developers/mass_java_appl.git 

2. Navigate to project directory 

cd mass_java_appl/Graphs/Hazelcast Graph Benchmarks/ArticulationPointsSequential 

3. maven package 

mvn clean package 

cd target 

4. Update run.sh 

Currently the run.sh file has been designed for the CSSMPI cluster. You can simply 

specify the number of compute nodes you would like to use. If you’d like you can switch 

the addresses in the machines list to any machines you’d like. 

5. Running the benchmark 
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Bash run.sh <path to input file> <node count>  

Appendix F: Example Execution of Benchmarks 

Clustering Coefficient 
The following is an example execution of the clustering coefficient benchmark using 1000 

vertices and roughly 100 edges per vertex. 

Both programs give a clustering coefficient of roughly 0.1082 which makes sense because the 

odds of an edge existing between 2 randomly selected nodes in this graph would be roughly 100 

/ 1000 or 0.1 (10%). 

MASS 
java -jar ClusteringCoefficient-1.0.0-RELEASE.jar 
"~/GITREPO/mass_java_appl/Graphs/HAZELCASTClusteringCoefficient/graph_1_000.dsl"  

#alive-agent = 1000 
#alive-agent = 93480 
#alive-agent = 93480 
Total number of agents used: 187960 

Calculation Time: 844ms 
Elapsed time = 3559ms 
The average local clustering coefficient's of this graph is: 0.1081919281859751 
MASS Shutdown Finished 

Hazelcast 

bash run.sh "~/GITREPO/mass_java_appl/Graphs/HAZELCASTClusteringCoefficient/graph_1_000.dsl" 7 
running test: 
test finished after 8.406 seconds 
test  result: 0.1082  

Load Time:  1.057 seconds 
Finished calculating global clustering coefficient... 
Gathering benchmark results to clustering-coefficient-result.csv 

Saved results to file... 
Shutting down dsg cluster... 
Finished dsg cluster shutdown...   

Articulation Points 
The following is an example execution of the articulation points benchmark using different 

datasets. Both programs save the results to a file including the runtime, load time, articulation 

points found and more. 

MASS 
java -jar ArticulationPointsSequential-1.0-SNAPSHOT.jar Dolphin.dsl 
Start timer! 
[Create places time] 1.108s 

  
=============   GO! FIND ARTICULATION POINT(S)!   ============= 
Start the timer! 

#alive-agent = 1 
------------- TARJANS FINISHED ------------ 
------------- BEGIN SEARCH FOR ARTICULATION POINTS ------------ 
#alive-agent = 62 

------------- STEP-1 PROPAGATE ------------ 
#alive-agent = 318 
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------------- STEP-2 MIGRATE ------------ 
#alive-agent = 318 

------------- STEP-3 RETURN TO SOURCE ------------ 
#alive-agent = 318 
------------- STEP-4 DETERMINE ARTICULATION POINTS ------------ 
#alive-agent = 9 

  
Stop the timer! 
======================  STATISTICS ====================== 
Elapsed time: 0.208 s 

Total #place: 62 
Total #agents: 1713 
  

================= APPLICATION RESULTS! ================== 
Gathering benchmark results to articulation-points-benchmark-result.csv 
Saved results to file... 
  

---------------- Finishing MASS Java ... ---------------- 
MASS Shutdown Finished 
 

 

Hazelcast 

bash run.sh graph_200.dsl 1 
finished reading dsl file: 'graph_200.dsl' 
Calculating articulation points (this might take some time)... 
running test: 
test finished after 1.832 seconds 

Load Time:  0.215 seconds 
Finished finding articulation points 
Gathering benchmark results to articulation-points-benchmark-result.csv 
Saved results to file... 

Shutting down dsg cluster... 
Finished dsg cluster shutdown... 


