

© Copyright 2024

Jeffrey McCrea

Enhancement of Agent Performance with Q-Learning

Jeffrey McCrea

A whitepaper

submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Computer Science and Software Engineering

University of Washington

2024

Project Committee:

Munehiro Fukuda, Chair

Michael Stiber, Committee Member

Brent Lagesse. Committee Member

Program Authorized to Offer Degree:

Computer Science and Software Engineering

University of Washington

Abstract

Enhancement of Agent Performance with Q-Learning

Jeffrey McCrea

Chair of the Supervisory Committee:

Professor Munehiro Fukuda

Computer Science and Software Engineering

Graphs store data from various domains, including social networks, biological networks,

transportation systems, and computer networks. As these graphs grow in size and complexity,

single-machine solutions become impractical due to limitations in computational resources.

Distributed graph computing addresses these challenges by leveraging multiple machines to

process and analyze large-scale graphs collaboratively.

This capstone project investigates the enhancement of distributed graph computing performance

in the Multi-Agent Spatial Simulation (MASS) library by integrating Q-learning for computing

shortest path, closeness centrality, and betweenness centrality on distributed large-scale dynamic

graphs. This approach is compared to traditional and agent-based graph computing algorithms.

Previous approaches in the MASS framework relied on large populations of unintelligent agents

to exhaustively traverse graphs to compute solutions, making them inefficient when faced with

dynamic graph data. By leveraging Q-learning and the distributed agent-based graph capabilities

of MASS, we aim to optimize the decision-making processes of distributed agents, thus improving

computational efficiency and accuracy.

Experimental results demonstrate that the adaptive learning mechanism of Q-learning, coupled

with the MASS library, allows agents to dynamically adjust to changing graph structures, leading

to a more robust and scalable distributed graph computing solution. This research contributes to

the field of distributed systems and artificial intelligence by providing an innovative approach to

enhancing multi-agent intelligence for graph computing tasks.

 i

TABLE OF CONTENTS

List of Figures ... iv

List of Tables ..v

List of Algorithms ... vi

Chapter 1. Introduction ...1

Chapter 2. Background ..4

2.1 Graph Problems ...4

2.2 Conventional Approach ...5

2.3 Agent-based Approach...6

2.4 Reinforcement Learning ..8

Chapter 3. Related Work ... 11

3.1 Q-learning Shortest Path .. 11

3.2 Closeness & Betweenness Centrality ... 12

3.3 Dynamic Graphs .. 14

3.4 Differentiating MASS Q-learning .. 15

Chapter 4. Q-Learning Implementation in MASS .. 16

4.1 Algorithm Design .. 16

4.1.1 Optimal Path Training & Enumeration ... 17

4.1.2 Dynamic Hyperparameter Tuning .. 18

4.1.3 Suboptimal Path Enumeration .. 19

 ii

4.1.4 Closeness & Betweenness Centrality Extension ... 20

4.2 Implementation in MASS .. 21

4.2.1 Environment .. 21

4.2.2 Q-Learning Agent .. 21

4.2.3 Path Agent ... 24

4.2.4 MASS Performance Improvements .. 25

Chapter 5. Evaluation .. 27

5.1 Execution Environment ... 27

5.2 Input Datasets .. 28

5.2.1 Synthetic Shortest Path Graphs .. 28

5.2.2 Road Network Graphs .. 29

5.2.3 Synthetic Centrality Graphs ... 30

5.3 Shortest Path .. 30

5.3.1 Static Graphs ... 31

5.3.2 Dynamic Graphs .. 33

5.3.3 Discussion ... 36

5.4 Closeness Centrality .. 37

5.4.1 Static Graphs ... 38

5.4.2 Dynamic Graphs .. 40

5.4.3 Discussion ... 41

5.5 Betweenness Centrality .. 41

5.5.1 Static Graphs ... 42

5.5.2 Dynamic Graphs .. 43

 iii

5.5.3 Discussion ... 44

5.6 MASS Original & Updated Performance Comparison.. 44

5.6.1 Shortest Path Execution Performance ... 44

5.6.2 Closeness Centrality Execution Performance ... 45

5.6.3 Betweenness Centrality Execution Performance ... 46

5.6.4 Discussion ... 47

5.7 MASS Enabled Q-Learning Performance Improvements ... 47

5.7.1 Multi-Agent Training ... 47

5.7.2 Dynamic Hyperparameter Tuning .. 49

5.7.3 Distributed Reward Window .. 50

Chapter 6. Conclusion ... 51

6.1 Challenges ... 51

6.2 Future Work .. 52

Bibliography ... 55

APPENDIX .. 58

 iv

LIST OF FIGURES

Figure 2.1 Pregel Shortest Path Process ... 6

Figure 2.2 MASS Model[14] ... 7

Figure 2.3 RL Agent Grid Movement[16] ... 10

Figure 5.1 MASS QL Shortest Path Synthetic Training ... 31

Figure 5.2 MASS Updated vs MASS QL Synthetic Shortest Path Output 33

Figure 5.3 1 Vertex Removal MASS Updated vs MASS QL Retrain Synthetic 34

Figure 5.4 1 Vertex Removal MASS Updated vs MASS QL Retrain Road Network 35

Figure 5.5 5 Vertex Removal MASS updated vs MASS QL Retrain 36

Figure 5.6 MASS Updated vs MASS QL Closeness Centrality Performance 38

Figure 5.7 MASS QL Closeness Centrality Multi-Agent Scaling 39

Figure 5.8 1 Vertex Removal Closeness Centrality MASS Updated vs MASS QL 40

Figure 5.9 Betweenness Centrality MASS Updated vs MASS QL 42

Figure 5.10 Betweenness Centrality MASS Updated vs MASS QL Path Output 43

Figure 5.11 MASS Original vs MASS Updated Shortest Path Performance 44

Figure 5.12 MASS Original vs MASS Updated Closeness Centrality 45

Figure 5.13 MASS Original vs MASS Updated Betweenness Centrality 46

Figure 5.14 2000 Vertex MASS QL Multi-Agent Training Time 48

Figure 5.15 MASS QL Shortest Path Hyperparameter Tuning Performance 49

Figure 5.16 4000 Vertices MASS QL Reward Window Performance Comparison 50

Figure C.1 MASS Program Compilation ... 64

Figure C.2 MASS Updated Shortest Path Execution .. 65

Figure C.3 MASS Updated Closeness Centrality Execution .. 65

Figure C.4 MASS Updated Betweenness Centrality Execution 66

Figure C.5 MASS QL Shortest Path Execution.. 68

Figure C.6 MASS QL Closeness Centrality Execution .. 69

Figure C.7 MASS QL Betweenness Centrality Execution.. 70

 v

LIST OF TABLES

Table 5.1 Synthetic Graph Dataset .. 28

Table 5.2 Road Network Graph ... 29

Table 5.3 Synthetic Centrality Graphs ... 30

Table 5.4 Static MASS QL Hyperparameters .. 30

Table 5.5 MASS QL Shortest Path Training .. 31

Table 5.6 MASS QL Shortest Path Output .. 32

Table 5.7 MASS Updated Shortest Path .. 32

Table 5.8 MASS QL Closeness Centrality Hyperparameters ... 37

Table 5.9 MASS QL Betweenness Centrality Hyperparameters 41

 vi

LIST OF ALGORITHMS

Algorithm 4.1 chooseAction() Function in QLAgent ... 23

Algorithm 4.2. adjustAlphaEpsilon() Function in QLAgent ... 24

 vii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my professor and chair of my committee, Dr.

Munehiro Fukuda, for his patience and invaluable assistance on my project. Without his guidance

and support, I would not have accomplished a fraction of what I did.

I also want to extend my heartfelt thanks to my colleagues at the Distributed System Laboratory

for their assistance throughout this journey. In particular, I would like to thank Lilan Cao for the

significant time she spent helping debug and troubleshoot issues. Her support and collaboration

were instrumental in the completion of this project.

1

Chapter 1. INTRODUCTION

Graphs store data from various fields, including social networks, biological networks,

transportation systems, and computer networks. As these graphs grow in size and complexity,

single-machine solutions become impractical due to limitations in computational resources.

Distributed graph computing addresses these challenges by leveraging multiple machines to

process and analyze large-scale graphs collaboratively. Apache Spark GraphX [1] and Google’s

Pregel [2] are two prominent solutions for distributed graph computing.

GraphX integrates graph computation within a data-parallel framework, utilizing Resilient

Distributed Datasets (RDDs) for representing and processing graph data. Vertices are partitioned

across a cluster of computing nodes, and the Pregel API enables iterative algorithms for parallel

computing. Pregel follows a vertex-centric programming model, where computation proceeds in

parallel supersteps, and individual vertices perform local computations and message passing to

their neighbors. GraphX and Pregel offer large-scale graph data computation; however, while

these are robust solutions, intelligent agent-based approaches can offer superior flexibility and

adaptability for dynamic and complex graph structures, as they inherently can better handle real-

time changes and interactions within the graph.

Recently, the Distributed Systems Laboratory (DSL) at the University of Washington Bothell

has been developing agent-based approaches to large-scale distributed data analysis built on the

Multi-Agent Spatial Simulations (MASS) library [3]. Agent-based solutions have been

successfully applied to tasks such as biological network motif search [4], transportation

simulations [5], climate change analysis [6], and many traditional algorithms like breadth-first

search (BFS). In contrast to the previously mentioned SparkX and Pregul, agent-based data

2

analysis in MASS focuses on distributed graphs or arrays over a cluster system and dispatching a

large number of reactive agents to ramble over the data and compute efficient and accurate

solutions.

While the approach with agent-based solutions in MASS has been demonstrated to be effective

in reducing execution time compared to traditional algorithms, agent-based solutions like BFS for

distributed graph computing require exhaustive graph traversals by large unintelligent agent

populations, making them inefficient when faced with dynamic graphs. Machine learning

solutions, like Q-learning, a popular reinforcement learning algorithm, allow agents to learn the

structure of a graph through interactions with the environment and dynamically respond to changes

in the graph structure. This adaptive learning capability enables agents to dynamically adjust their

behaviors based on real-time feedback, leading to more efficient and resilient graph processing.

Unlike the more rigid, predefined computation models in GraphX and Pregel, Q-learning agents

can continuously improve their strategies, making the system more robust to changes in graph

structure or workload. This approach can be particularly advantageous in scenarios with highly

dynamic or unpredictable graph topologies, where traditional methods might struggle to maintain

performance and efficiency. By leveraging Q-learning, we can enhance the performance of agent-

based solutions and offer a more intelligent and flexible alternative to conventional and agent-

based approaches for distributed graph computing.

The enhancement of agent performance with Q-learning project has had four main goals:

1. Design Agent-based Q-learning Algorithm Applications: The primary goal at the

inception of this project was to identify and implement intelligent agent-based solutions in

the form of Q-learning for graph computing problems previously implemented in the

MASS library.

3

2. Assess Agent Performance: To complement the primary goal, we sought to assess the

agent performance against the currently implemented MASS Java shortest path, closeness

centrality, and betweenness centrality applications against static and dynamic graph data.

3. Evaluate MASS Agent Machine Learning Capabilities: Examine the suitability of

MASS’s features for enabling performance improvements in Machine Learning algorithms

like Q-learning.

4. Update and Evaluate Previous MASS Application: The previous MASS Applications

were built on MASS Java 1.0. A secondary goal for this project was to update the previous

applications to the latest MASS Java version and evaluate the performance impact.

The end result of this project saw the goals met. The final version of the project designed and

implemented three Q-learning-based algorithms to address the shortest path, closeness centrality,

and betweenness centrality. The performance of the Q-learning implementations was assessed

against the current MASS implementations, comparing both the training and output performance

on static and dynamic graphs. The results demonstrated that a trained Q-learning agent presented

significant performance improvements on applications like the shortest path, with between 66%

and 99% performance increase on eight-node executions. Additionally, unique features in MASS

were utilized to enhance the performance of the Q-learning implementations, with features like

multi-agent training resulting in training time decreases of 190% on large-scale graphs. The results

of this project provide a unique perspective and improvement on past works and serve to motivate

future progress on machine learning in the MASS Java framework.

4

Chapter 2. BACKGROUND

This chapter provides a comprehensive overview of the graph problems addressed in this project

and the conventional methods used to solve them. It also reviews the MASS Java library and agent-

based approaches and explores the application of reinforcement learning to graph computing.

2.1 GRAPH PROBLEMS

In graph theory, the shortest path problem, closeness centrality, and betweenness centrality

constitute essential graph problems with significant practical applications. These problems are

crucial to domains such as network routing, social network analysis, and infrastructure

optimization. Understanding and optimizing solutions to these problems can lead to more efficient

and robust network designs, better resource allocations, and enhanced communication strategies.

The shortest path problem involves finding the most efficient route between vertices in a graph.

In this context, vertices represent points or locations, and edges present connections weighted by

distance, time, or cost. Formally, given a graph G = (V,E) with vertices V and edges E, the goal

is to find a path from a source vertex to a destination vertex such that the sum of the edges is

minimized. Traditional algorithms for solving the shortest path problem include Dijkstra’s

algorithm for non-negative weights, the Bellman-Ford algorithm for negative weights, and the

Floyd-Warshall algorithm for all-pairs shortest path problems.

Closeness centrality measures a vertex’s importance based on its proximity to all other vertices

in the network. It quantifies how close a vertex is to all other vertices in the network and helps

identify vertices that can spread information efficiently or quickly connect with different parts of

the network. The measure is particularly useful in social network analysis [7], communication

networks [8], and other scenarios where understanding transfer efficiency across the network is

5

important. Traditional methods for calculating closeness centrality include BFS for unweighted

graphs, Dijkstra’s for weighted graphs with non-negative weights, and Floyd-Warshall for all-pairs

shortest path.

Betweenness centrality quantifies a vertex’s importance based on its position as an intermediary

in the paths connecting other vertex pairs, highlighting central connectors or ‘bridges’ within the

network [9]. The measure is crucial to applications in social networks [9], protein interaction

networks[10], and optimization of computer network infrastructure [11]. Traditional approaches

to calculating betweenness centrality include Brandes’ algorithm, which computes exact centrality

scores using BFS for unweighted graphs, and Dijkstra's algorithms for weighted graphs.

Exploring these fundamental graph problems and their traditional solutions lays the groundwork

for applying advanced techniques to improve performance and robustness in different scenarios.

By implementing adaptive methods like Q-learning, we can address the complexity and dynamism

of real-world networks, potentially enhancing efficiency and adaptability in solving these complex

problems.

2.2 CONVENTIONAL APPROACH

As graphs grow in size, distributed platforms like Spark’s GraphX and Google’s Pregel become

necessary for handling large-scale graph computing. In Pregel, the shortest path problem is solved

using a vertex-centric approach, as shown in Figure 2.1. The master computing node partitions

the graph data across worker computing nodes for parallel computation. Beginning at the source

vertex, Pregel operates in iterative supersteps, where each vertex exchanges messages with its

neighbors containing potentially updated minimum distances from the source vertex [2]. GraphX

utilizes a similar vertex-centric message propagation approach, facilitated by the Pregel API and

6

enhanced through Spark’s Resilient Distributed Datasets (RDDs), enabling efficient in-memory

computation and fault tolerance [12].

Figure 2.1 Pregel Shortest Path Process

While GraphX and Pregel are robust for static graphs, they struggle with dynamic environments

where graph changes necessitate complete recomputation to respond to any graph changes.

Depending on the size of the graph, this can result in significant computational costs as the

frameworks have no native mechanism to respond incrementally to these changes. In this way,

adaptive solutions have a significant advantage over purely static implementations.

2.3 AGENT-BASED APPROACH

The Multi-Agent Spatial Simulations Library, developed by the Distributed System Laboratory at

the University of Washington Bothell, facilitates spatial simulations and big data analysis in a

parallel environment [13]. MASS Java is built on two primary components: Places and Agents.

Places represent individual data members of a larger dataset, while Agents comprise individual

agent entities that traverse the Place objects to perform computation. Individual Place objects are

distributed across a specified number of computing nodes within a cluster and can be referenced

7

using a globally known set of coordinates. An example of this is shown in Figure 2.2, where each

place is mapped using x and y coordinates.

Figure 2.2 MASS Model[14]

After mapping each Place across the cluster, they are assigned to threads and can communicate

with other Place objects and the agents residing on them. Agents are stored in groupings on each

computing node and can traverse between computing nodes through serialization and TCP

communication. In this way, MASS Java facilitates large-scale simulations and big data analysis

from the agent-based perspective.

The MASS library has been extended to support explicit graph structures in a multi-node

cluster. GraphPlaces, an extension of the original Places class, consists of VertexPlace objects

that store graph vertex information. Graphs can be manually created by invoking the addVertex()

and addEdge() methods, or users can load graph data from a supported graph format, including

Hippe, Matsim, or the DSL propriety formats DSL and SAR [15]. Loading data from one of the

supported file formats has been demonstrated to be incredibly efficient, as the data can be

processed in parallel, making graph creation more efficient than serial methods. Keeping with its

8

tradition of distributed cluster computing, vertices are balanced across the entire cluster in a round-

robin fashion to ensure an even distribution of graph data between all the cluster nodes.

Despite its effectiveness, the agent-based programming approach in MASS has some

drawbacks. In applications like BFS and triangle counting, the approach relies on brute-force

methods, distributing a large population of simple reactive agents that lack a structural

understanding of the underlying data. While this method is more efficient than serial and other

big-data computing frameworks, allowing agents to learn from their interactions with the graph

can lead to a more informed and efficient solution for agent-based data analysis.

This project focuses on blending reinforcement learning, specifically Q-learning, to develop

agents that can understand the graph's structural composition and, through training, learn to

navigate the underlying graph more intelligently.

2.4 REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a type of machine learning where agents learn through

interactions with their environment by receiving feedback based on their actions. Unlike

supervised learning, which uses labeled examples, or unsupervised learning, which discovers

patterns in unlabeled data, RL focuses on learning how agents should behave in a given

environment. The ability to train intelligent agents to act autonomously in dynamic environments

without complete visibility presents a powerful tool for solving problems in new and efficient

ways.

Reinforcement Learning can be formalized as a Markov Decision Process (MDP) [16], which

is characterized by several components pertinent to RL:

9

1. States (S): A set of unique situations that the given environment or system can take. In

finite environments, the states encompass all states an environment can be in at any given

timestep.

2. Actions (A): A set of possible actions or decisions that can be taken in the given

environment and can vary based on the state of the environment or system.

3. Transition Probabilities (P): This represents the probability of transitioning from one state

to another when a given action is selected.

4. Rewards (R): The numerical value of a given state-action pair. Rewards provide the agent

with feedback when taking a specific action in a given state.

5. Policy (π): Represents the agent’s strategy to determine each state's optimal action.

Much like human learning, MDPs occur over a set number of time steps. At each time step,

the agent assesses its current state, determines the action to take based on the defined policy, gains

experience from the action by transitioning to the associated state, and receives a reward or

punishment. For example, in the grid navigation task shown in Figure 2.3, the goal is for the RL

agent to navigate to the endpoint while avoiding potential obstacles. At any given state, the agent

has four actions to choose from, which can result in their own unique reward. In the agent's current

state, if it were to move down, it would encounter a bomb, and the training episode would end.

While that individual training episode may end, the reward, or in this case, punishment, the agent

receives for encountering that negative state will inform that agent to avoid taking the action that

resulted in it encountering the bomb. Over a number of episodes, the agent will learn the optimal

policy for navigating the grid and finding the path to the end square.

10

Figure 2.3 RL Agent Grid Movement [16]

The process illustrated in the previous example can be easily adapted to a number of different

environments, including graphs. In this context, the graph’s vertices represent states, and the edges

represent actions an agent can take to move from one state to another. Each state transition comes

with a cost represented by the edge weight. As the agent explores different paths through the

graphs, it receives positive rewards for finding the end vertex or negative rewards for encountering

dead ends. By repeatedly interacting with the environment and using RL algorithms like Q-

learning, the agent can store and update its knowledge about the value of each state-action pair,

leading to a gradual learning process where objectives like finding the shortest path can be

effectively solved without an explicit model of the environment.

A notable aspect of reinforcement learning algorithms, like Q-learning, is their ability to tackle

dynamic environments in graph computing. Traditional algorithms, such as Dijkstra’s or A*, are

optimized for static structures and will require complete recomputation when faced with graph

changes. In contrast, Q-learning continually updates its policy as the agent explores the

environment, making it inherently adaptable to any changes in the graph structure. In this way, a

Q-learning agent can incrementally adapt to changes in the environment without starting from

11

scratch. The adaptability of Q-learning agents makes them uniquely suitable to environments

where changes occur, such as transportation or social networks. For dynamic environments, the

agent can leverage previously gained knowledge to train only a fraction of its initial training,

thereby improving efficiency and offering a robust solution for dynamic graph computing.

Chapter 3. RELATED WORK

3.1 Q-LEARNING SHORTEST PATH

Q-learning has seen wide adoption in reinforcement learning due to its ability to learn and adapt

to unknown environments and derive optimal policies for navigating them. This is particularly

important for the shortest path problem, which is utilized in various fields, including robotics [17],

navigation [18], and computer network optimization [19].

In the Q-learning shortest path algorithm, graph vertices represent states, and edges represent

possible actions. Rewards are constructed around the edge weights, with positive rewards for

reaching the destination and negative rewards for arriving at dead ends. As the Q-learning agent

navigates the graph, it populates the Q-table, forming a learned understanding of the environment

and the optimal navigation strategy. Q-learning’s model-free approach makes it a compelling

method for dynamic or unknown environments, as it can adapt to the environment as it continues

to navigate the graph.

In literature, Q-learning has successfully addressed the shortest path problem. Sun [18] utilized

Q-learning to navigate a static city graph city graph, demonstrating its effectiveness in road

network-like graph structures. Wang et al. [17], applied Q-learn to autonomous robots in a grid-

like environment, prioritizing the shortest path and obstacle avoidance. The study highlighted Q-

learning’s ability to enable intelligent decision-making in uncertain environments driven by

12

learned agent intelligence. Nannapaneni [19] introduced a novel path-routing algorithm based on

a modified Q-learning algorithm for dynamic network packet routing, highlighting its adaptability

to changing environments.

While these previously mentioned studies demonstrate Q-learning as an effective tool for

enabling intelligent agent-based navigation of unknown environments, they often focus on small,

static graphs with fixed hyperparameters on single computing nodes. This project seeks to expand

on these studies by exploring a diverse range of graph sizes, assessing the performance of Q-

learning on dynamic graphs using the MASS framework, and improving the algorithm’s efficiency

through performance-based hyperparameter tuning and MASS-enabled agent features.

3.2 CLOSENESS & BETWEENNESS CENTRALITY

Closeness centrality is an important measure used in the field of network analysis to determine the

importance of a vertex within a network based on its proximity to all other vertices [20]. Closeness

centrality is particularly useful in social network analysis [7], communication networks[8], and

other scenarios where transfer efficiency across the network is important.

Traditional approaches to calculating closeness centrality involve three steps [9]: computing the

shortest path from each vertex u to all to all other vertices v in the network typically with algorithms

such as Dijkstra, summing all the path lengths from vertex u to all other reachable vertices in the

network, and calculating closeness centrality of a vertex u by taking the reciprocal of the sum of

the shortest path distances with Equation (1):

𝐶(𝑢) =
𝑁 − 1

𝑆𝑃_𝑆𝑢𝑚(𝑢)

(1)

Where N is the total number of vertices in the network

13

Similar to closeness centrality, betweenness centrality is another measure popular in network

analytics. It quantifies the importance of a vertex based on its position as an intermediary in the

paths connecting other pairs of vertices. Simplistically, it measures how often a vertex appears on

the shortest path between pairs of other vertices in the network [9]. Betweenness centrality is

particularly useful for identifying vertices positioned in such a way that they are central connectors

or ‘bridges’ within a network. Betweenness centrality is widely used in various applications such

as social networks [9], protein interaction networks [10], and optimization of computer network

infrastructure [11].

Calculating betweenness centrality involves determining all shortest paths between each pair of

vertices u and v in the network using algorithms like Dijkstra’s, Bellman-Ford, Floyd-Warshall,

and A*, counting how many paths pass through a given vertex, and determining betweenness

centrality using the Equation (2):

𝐵𝐶(𝑠) = ∑
𝜎𝑢𝑣(𝑠)

𝜎𝑢𝑣
u≠s≠v

(2)

Where σuv is the total number of the shortest paths from vertex u to vertex v, and σuv(s) is

the number of those paths passing through s.

While these metrics are vital, computation can be time-consuming, especially for dynamic

graphs, where metrics must be recalculated with each change. Parallel approaches have been

presented to tackle the computational complexity of closeness and betweenness centrality,

particularly related to dynamic graphs. Cohen et al. [20] utilize a hybrid estimator to randomly

sample vertices to approximate the closeness centrality for all vertices. Estimator-based methods,

14

like the one presented in Cohen, typically use landmark-type techniques, where pivotal vertices

are identified and used to base distance calculations to help mitigate skewed distance distributions.

Shukla et al. [21] developed a parallel method for determining closeness and betweenness

centrality, focusing on bi-connected components for efficient centrality calculation.

The methods presented in the previous studies were effective in reducing the computational

burden associated with producing closeness and betweenness centrality, but they come with

significant caveats. The landmarking technique employed by Cohen demonstrated that the random

selection of landmark vertices was ineffective and that an intensive search for accurate landmark

vertices required significant preprocessing. The biconnected component technique in Shukla

required the use of high-end GPUs to accelerate the batch processing of graph vertices and a

preexisting understanding of the structural properties of the graph to enhance performance. This

work focuses on centrality calculations without preprocessing the graph data or specialized

hardware.

3.3 DYNAMIC GRAPHS

Dynamic graphs, where changes to the graph’s vertices or edges occur over time, better emulate

real-world situations, like traffic networks where changes occur often and randomly. Changes to

the graph can be incremental, adding vertices and edges or increasing weights, or decremental,

removing vertices and edges or decreasing weights [22]. Traditional algorithms like Dijkstra’s or

Bellman-Ford are designed for static graphs as they require complete recomputation for each

change that occurs. Recomputation for repeated changes can make traditional algorithms

computationally expensive for repeated updates.

15

Several approaches have been studied to address the challenges of dynamic graphs. Early efforts

adapted traditional algorithms like A* for incremental changes. Algorithms like dynamic

Dijkstra’s [23] and D* [24] were proposed, which utilized incremental search strategies focusing

on recomputing only the changed parts of the graph. Subsequent methods used landmark-based

techniques [25] for real-time shortest path approximation and distributed techniques [26] to

partition the graph data and subgraph computation across a distributed cluster of computing nodes.

While these previous methods improved performance, they often rely on knowing where changes

occur, which is impractical in real-world applications where changes can occur suddenly and

randomly. Additionally, landmarking requires extensive preprocessing to select landmark vertices

accurately. This work focuses on measuring dynamic performance without prior knowledge of

graph changes or the underlying structure of the graph.

3.4 DIFFERENTIATING MASS Q-LEARNING

1. Adaptive Q-Learning

This paper examines numerous graph sizes, distributed dynamic graphs, and adaptive

hyperparameters to optimize the learning process and execution time. It aims to provide a holistic

and realistic study of Q-learning applied to agent-based programming, improving on the previously

mentioned implementations.

2. Multi-Agent Training

The aforementioned studies on Q-learning for the shortest path problem primarily focus on a single

Q-learning agent for the training process. While a single agent simplifies the implementation

process, employing multiple agents in the training process can reduce training time and enhance

learning processes. This project aims to quantify the effect multiple agents, implemented through

the MASS multi-agent framework, can have on the Q-learning process.

16

3. Agent Adaptability

While works on agent-based shortest path calculations focus on leveraging agents to learn how to

properly navigate and determine optimal policies for applications like shortest path, these works

fail to quantify how adaptable agents are to changes in their environment. The Q-learning

algorithm is inherently adaptable, and we seek to quantify how the Q-learning agents adapt to

changes in the environment, what level of retraining is required to adapt to specific changes in the

environment, and how the agent responds to these changes in distributed dynamic graphs.

Chapter 4. Q-LEARNING IMPLEMENTATION IN MASS

This chapter describes the Q-learning algorithm design for the shortest path problem and its

application to closeness and betweenness centrality. It also covers the implementation details for

the Q-learning shortest path, closeness centrality, and betweenness centrality in MASS, including

MASS-specific performance improvements.

4.1 ALGORITHM DESIGN

In the Q-learning shortest path algorithm, the environment is represented as a graph G = (V ,E)

where V represents the graph vertices and E represents the set of edges connecting the vertices.

Formulated as a reinforcement learning problem, each vertex corresponds to a state, and edges

represent an action leading to a neighboring state.

An agent learns the optimal path through the graph through trial and error, storing knowledge in

a Q-table Q(s ,a). At each state transition, the Q-value for taking action a in state s is updated.

Rewards serve to guide the agent towards the optimal policy, with rewards set to the negative edge

cost for non-terminal states, 100 for reaching the destination, and -100 for reaching a dead end.

17

In Q-learning, hyperparameters are crucial for learning efficiency and convergence. Q-learning

has three main hyperparameters: learning rate (α), discount factor (γ), and exploration rate (ε) [18].

The learning rate controls how new information is favored over old information. The discount

factor balances immediate and future rewards. Epsilon controls the tendency to explore new paths

versus exploiting the knowledge in the Q-table.

4.1.1 Optimal Path Training & Enumeration

The training process involves the agent iteratively interacting with the graph environment,

receiving rewards, and updating the values stored in the Q-table until the agent has completed the

specified number of training iterations or the change in the Q-values reaches convergence. The

process includes:

1. Initialization: The agent is initialized at the source vertex with a Q-table consisting of all

zero values

2. Action Selection: Using an epsilon-greedy action selection policy, the agent selects an

action based on a random value compared to ε. The agents explore if the value is less than

ε; otherwise, it exploits the highest Q-value action.

3. Transition and Reward: The agent moves to the next state s’ dictated by the action and

receives the rewards r

4. Q-Table Update: Using the reward it received for the state transition, the agent updates the

Q-table with a new Q-value using the Q-learning update rule shown in Equation (3):

Q(s,a) ← Q(s,a) +α[r + γmaxa Q(s′,a)−Q(s,a)] (3)

where α is the learning rate, γ is the discount factor, and r is the reward received for transitioning

from state s to s’ with action a.

18

5. Iteration: The agent updates its state to s’, and the process repeats until the agent reaches a

terminal state in the form of a dead end or destination vertex. At that point, training

terminates if the maximum change in Q-values for the episode reaches convergence or the

maximum number of training episodes is completed. If those conditions are not met, the

agent returns to the source vertex and repeats steps two to four.

After training, the Q-table reflects the agent’s knowledge of the relationship between vertices in

the graph. The agent exploits this knowledge to find the shortest path by setting its ε value to 0.0

and navigating from the source to the destination.

4.1.2 Dynamic Hyperparameter Tuning

In our Q-learning implementation, we enhance the learning process by incorporating dynamic

hyperparameter tuning facilitated by a distributed reward window. The distributed reward is a

LinkedList that stores the cumulative reward received by an agent over the course of a training

episode. This mechanism allows multiple Q-learning agents to communicate and adjust their

hyperparameters based on the collective training progress.

When the reward window reaches its capacity, the agents use this cumulative data to adjust their

hyperparameters alpha and epsilon. If the current average reward of any episode is lower than the

previous average stored in the reward window, it indicates that the agent’s performance is

degrading. Consequently, alpha and epsilon are increased to encourage more exploration and

learning from new experiences. Conversely, if the average reward is higher, indicating improved

performance, alpha and epsilon are decreased to stabilize learning and promote the exploitation of

the knowledge stored in the Q-table.

By utilizing dynamic hyperparameter tuning, agents can adapt their learning strategies based on

the progress of the entire agent population, promoting more effective and efficient learning. Unlike

19

methods that employ the fixed decay of hyperparameters, the collective experiences stored in the

reward window create more adaptable agents that balance exploration and exploitation to improve

convergence and the overall performance of the Q-learning algorithm.

4.1.3 Suboptimal Path Enumeration

The Q-table captures comprehensive knowledge of the graph, including multiple optimal and

suboptimal paths. This comprehensive knowledge allows for solving problems like closeness and

betweenness centrality. By deploying multiple agents and controlling their navigation through

control parameters for Q-value and path threshold, the agents can explore paths within a certain

percentage of the optimal Q-value and path length, enabling them to find viable routes beyond the

optimal path.

The knowledge stored in the Q-table can be further extended to enumerate suboptimal paths

beyond just the shortest path. As the agent iteratively explores the graph, it updates the Q-table

not only in optimal state transitions but also in suboptimal state transitions. While many of the

paths the agents will explore will be well outside of the optimal path, there are many suboptimal

paths that can present promising routes if the graph’s structure or conditions were to change. When

sufficiently trained, the Q-table’s values can be considered a holistic view of the graph's

navigational options, providing many potentially viable routes beyond the optimal path. To enable

the enumeration of the suboptimal path, we define two control parameters: Q-value threshold and

path threshold. In any given state, the Q-value threshold controls the agent's tendency to explore

Q-values within a percentage of the optimal Q-value in that state. A larger threshold allows for

more potential paths to be explored. The path threshold controls the percentage length away from

the already determined optimal path. While the Q-value for a given state transition may be within

a percentage of the optimal Q-value, the path produced in subsequent states may not be worth

20

exploring. The path threshold allows us to control how deep an agent will explore before

determining the path to be not viable.

The comprehensive knowledge provided in the Q-table provides a significant benefit in dynamic

graph environments. If the shortest path becomes unsuitable, the agent can adapt to the change by

selecting an alternative route from the Q-table. The holistic knowledge of the graph ensures the

agent can reach its goal even when it must depart from the optimal path in response to changes in

the environment.

4.1.4 Closeness & Betweenness Centrality Extension

Utilizing the Q-learning approach to find the shortest path outlined in the previous section, a

similar approach can be implemented to find closeness centrality and betweenness centrality.

Closeness centrality requires finding the shortest path between each vertex in the graph. To do

this with Q-learning, we deploy a Q-learning agent for each vertex-to-vertex pair to find the

shortest path. This would present an issue in a typical Q-learning scenario as it would require the

storage and maintenance of multiple different Q-tables for each vertex-to-vertex pairing. By

leveraging the MASS library's distributed capacity, we can store multiple distributed Q-tables at

each vertex. This is accomplished by storing a two-dimensional array of HashMaps at each vertex,

which can be accessed by the source and destination pairing for each agent. After all agents have

completed training, they enumerate the final path and return it to the main program for individual

vertex closeness centrality calculation.

Building off the approach of closeness centrality, betweenness centrality operates in a similar

way but requires all the shortest paths between each vertex-to-vertex pairing in the graph. After

the agents have completed training and populated their respective Q-tables for their source and

destination vertex pairing, we are left with the information necessary to enumerate the optimal

21

path and all optimal paths in the graph. By leveraging the threshold pathing extension mentioned

in Section 4.1.2, we can enumerate all the optimal paths by deploying a path agent for each source-

to-destination vertex pair with a Q-value threshold of 25% and a path threshold of 0%, indicating

we are only looking for optimal paths. After all PathAgents complete enumeration, we will be left

with all the optimal paths for each source-to-destination vertex pairing. With this information, we

can then calculate the betweenness centrality for each vertex in the graph.

4.2 IMPLEMENTATION IN MASS

4.2.1 Environment

The fundamental building blocks of programs in MASS are Places and Agents, with GraphPlaces

being particularly relevant for graph environments. As mentioned in Section 2.3, GraphPlaces

extends the traditional Placess object in MASS, consisting of VertexPlace objects for graph-based

computing. For the Q-learning shortest path in MASS, the VertexPlace class is further extended

by the Node class to enable specific Q-learning functionalities. Beyond the traditional elements

provided by VertexPlace, such as neighbors and their associated edge weights, the Node class

includes a sparse Q-table representation for the neighbors at each graph vertex and hosts the

distributed reward window at the destination vertex. Node, and by extension MASS, plays a crucial

role in facilitating communication between agents in multi-agent training.

4.2.2 Q-Learning Agent

The Q-learning agent, dubbed QLAgent in MASS, is the primary agent class used in the Q-learning

shortest path process. The goal of the agent is to iteratively navigate the graph and population the

Q-table based on the previously mentioned Q-value update function. The QLAgent trains until

the Q-values have reached convergence or the specified number of training iterations has been

22

completed. Once training is complete, its job is to derive the optimal path based on the knowledge

it gained during training. The QLAgent is designed to operate autonomously from the main

program and learn which sequence of vertices constitutes the optimal path.

On inception, the QLAgent is provided with seven key pieces of information needed to conduct

the Q-learning process: source vertex, destination vertex, alpha, gamma, epsilon, number of

training episodes, and the sliding window size. The source vertex and destination vertex provide

the agent with its start and end goal as it navigates the graph; alpha, gamma, and epsilon are the

hyperparameters used in the Q-learning update process and for controlling navigation; training

episodes are used to define the maximum length of training; and the sliding window size is used

to control the size of the reward window used to tune the hyperparameters alpha and epsilon.

The QLAgent operates on two main functions typical of MASS agent implementations:

departure and onArrival. The departure is used for the action selection process. Here, the agent

pulls its current vertex from MASS using the getPlace() function, which gives the agent access to

the information stored at the current vertex, including the neighboring vertices, their edge weights,

and associated Q-values. The QLAgents then adds the current vertex to its list of visited vertices

and invokes the chooseAction() function shown in Algorithm 4.1. The chooseAction() function

utilizes the epsilon hyperparameter to choose between random exploration or Q-table exploitation.

After the action is selected, the agent moves to the next vertex with the MASS migrate() function.

23

Algorithm 4.1 chooseAction() Function in QLAgent

After migration, the QLAgent moves to the onArrival() function, which updates the Q-value for

the state transition and evaluates current agent performance. To update the Q-value, the QLAgent

calls the updateQValue(), passing the reward, its neighbors, and the previous Q-value. The

updateQValue() function utilizes the Q-value update function to generate a new Q-value. Since

the Q-table is distributed across the Node Place objects, the agent then spawns a child agent to

traverse back to the previous vertex and update the Q-value stored for the vertex the QLAgent

currently resides on. After spawning the update agent, the agent then evaluates its current position.

If the agent is in a terminal state, either at the destination vertex or a dead end, the episode is over,

and the agent evaluates its current performance. To do this, it adds the total of all the rewards for

the episode to the reward window and invokes the adjustAlphaEpsilon() function to tune the

hyperparameters. The adjustAlphaEpsilon() function shown below in Algorithm 4.2 adjusts the

alpha and epsilon parameters based on the average rewards the agent received over the episode

compared to the previous episodes. If the current average reward is less than the previous average

reward, agent performance is degrading, and alpha and epsilon are increased by 3.5% to ensure

more exploration and long-term planning. If it is less, alpha and epsilon are decreased by 5% to

encourage the agent to exploit its knowledge and focus on immediate rewards.

24

Algorithm 4.2. adjustAlphaEpsilon() Function in QLAgent

4.2.3 Path Agent

In MASS, we utilize the PathAgent to enumerate optimal and suboptimal paths. The PathAgent is

a simplified version of the QLAgent, whose main goal is multiagent path enumeration. On

initialization, the PathAgent takes in the source vertex, destination, optimal path length, Q-value

threshold, and path threshold.

Path enumeration begins with an initial PathAgent at the source vertex. The PathAgent first

invokes the departure function to begin navigation. In the departure method, the PathAgent first

checks if its current path length is within the defined path threshold. If the path is within the

threshold, the agent gets its current vertex and its neighbors. The PathAgent then invokes the

largestQValueThresold() function, which returns a list of neighbors within the Q-value threshold

in descending order. The parent agent sets its migration destination to the first value, which is the

destination with the largest Q-value. If there is more than one neighbor in the list, the PathAgent

spawns additional child PathAgents with their next vertex set to the potential other paths.

25

In the onArrival function, the PathAgent gets its current vertex and checks if its next vertex ID

is equal to the vertex ID it currently resides on. This check is necessary, as the child agent will

still reside at the previous vertex and will need to migrate to the next vertex. If the PathAgent is

on the correct vertex, it adds the vertex to its path and checks if it is within the path threshold. If

the agent is outside the path threshold, it immediately terminates with the kill() function. If it is

within the threshold, it checks if it is at the destination, where it will return the path to the main

program, or it will wait for the next time step.

In the end, only PathAgents with paths that are within the path threshold will return their path to

the main program. The return from the agents constitutes the enumeration of all optimal paths and

suboptimal paths within the defined threshold stored in the Q-table. The multi-agent approach,

coupled with the knowledge from the Q-table, allows us to enumerate available paths in the graph

intelligently.

4.2.4 MASS Performance Improvements

1. Distributed & Sparse Q-table:

A notable limitation of Q-learning on large graphs is the creation and maintenance of a large Q-

table. In Q-learning, the Q-table needs to store the value for every possible state-action pair, which

is typically stored in a 2D double array sized for two times the number of vertices. When the graph

has a large number of vertices and edges, this results in an exponentially growing Q-table, which

requires a considerable amount of memory and computational resources to store.

To address this challenge, we leverage the distributed memory capabilities of MASS to distribute

the Q-table across the Node Place objects, effectively sharing the capacity load across all

computing nodes in the cluster. The distributed approach also enables multiple agents to access

and make parallel updates, significantly speeding up the training process. In addition, by utilizing

26

a HashMap linked to the neighbors at the given vertex and their associated Q-values, we create a

sparse representation of the Q-table to enhance efficiency further. The combination of distributed

computing and the sparsity of the Q-table ensures that the Q-learning algorithms remain practical

and efficient for large-scale graphs.

2. Multi-Agent Training:

As the name implies, MASS is designed and particularly adept at facilitating multi-agent

applications. Given this feature, we leveraged MASS's easy-to-use multi-agent functionality to add

multiple agents to the training process. By utilizing multiple agents, we can populate the Q-table

more efficiently, reducing training time and exploring the graph more thoroughly than with a single

agent.

3. Optimized Agent Data Structures:

An important aspect of developing agent applications in MASS is ensuring that the agents are as

memory-efficient as possible. When agents move between computing nodes in the cluster, they

must be serialized and sent over the network to access data stored on those remote computing

nodes. As the Q-learning process is an iterative and in-depth exploration process, agents must

frequently move between remote computing nodes. The initial version of the Q-learning shortest

path in MASS demonstrated that native Java data structures proved inefficient when multiple

serialization and network transportation operations were required. To improve the efficiency of

agent movement, all native Java data structures were converted to FastUtil structures, which are

significantly more efficient in terms of their memory footprint.

27

Chapter 5. EVALUATION

This chapter presents the experimental results of the updated MASS and Q-learning-based shortest

path, closeness centrality, and betweenness centrality applications. All implementations were

tested on the CSSMPI cluster detailed in Section 5.1. This chapter follows the naming convention

where “MASS Original” refers to the previous MASS applications utilizing an emulated graph

distributed evenly over a distributed array, and “MASS Updated” refers to the updated previous

MASS applications that utilize the latest version of MASS with GraphPlaces and GraphAgent, and

MASS QL refers to the Q-learning-based applications introduced in Section 4.

The results for the MASS QL applications are divided into individual sections for each of the

applications and include two subsections for static and dynamic benchmarking. Static

benchmarking assesses performance with an unchanged graph, while dynamic benchmarking

involves two different vertex removal operations. For the shortest path, we assess the performance

of the application when faced with a single vertex and five-vertex removal from the previous

shortest path. Static benchmarking is performed on the synthetic dataset, while dynamic

benchmarking is performed on the synthetic with one-vertex removal and on the road network

datasets with one and five-vertex removals.

5.1 EXECUTION ENVIRONMENT

Experiments were conducted on the CSSMPI cluster of 8 computing nodes provided by the

University of Washington Bothell. Each computing node is a virtual machine allocated four cores

at 2.10GHz from the 16 cores available on an Intel Xeon Gold 6130, with 16GB of system memory.

The “MASS Original” applications utilize MASS Java core version 1.0, the “MASS Updated”

28

applications utilize MASS Java core version 1.4.3, and the MASS Q-learning applications utilize

MASS Java core version 1.4.3 and Fastutil version 8.5.8.

5.2 INPUT DATASETS

This section outlines the unweighted graph utilized in testing all applications included in this paper

and how it is created. The graphs are divided into three distinct sets: synthetic shortest path, road

network, and synthetic centrality graphs.

5.2.1 Synthetic Shortest Path Graphs

Table 5.1 lists six unweighted and undirected graphs used to conduct experiments on the shortest

path applications. The synthetic graphs are generated using the GraphGen and Map class present

in the “MASS Original” shortest path application, which is detailed in Appendix A. The random

graph generator creates vertices and edges based on the specified number of vertices, with each

vertex having up to 30% of the total vertices as neighbors. The generator includes functionality to

ensure that self-loops and duplicated edges are avoided. This results in densely populated graphs

with linear growth of edges compared to vertices and is useful for evaluating the performance of

the applications when faced with large and dense networks.

Table 5.1 Synthetic Graph Dataset

Vertices Edges Avg Degree Max Degree Minimum Degree

500 63300 126.6 189 57

1000 250638 250.6 383 110

2000 1020496 510.25 747 248

4000 4018172 1004.5 1470 500

8000 16442720 2055.3 2951 1044

16000 64599688 4037.5 5833 2072

29

5.2.2 Road Network Graphs

To evaluate the shortest path applications in realistic settings, we consider five road network

graphs. Table 5.2 outlines the five road network graphs, which include generated graphs of the

four Washington cities and the Rome99 graph modeled after the Roman road network. Compared

to the synthetic graphs presented in section 5.2.1, these graphs are far less dense and significantly

less connected.

With the exception of the Rome road network graph, the city graphs are created using the Python

‘osmnx’ library[27] to download and process real network information for the desired cities. The

data is sourced from OpenStreetMap[28], which provides geographic data and mapping. ‘osmnx’

queries the specific city data from OpenStreetMap API and retires drivable road network

information. While the data originally comes with labeled vertex IDs from OpenStreetMap, the

downloaded graph is remapped to sequential IDs starting from 0 to ease in use and importation

into MASS. Edges are assigned a uniform weight of one and made bidirectional, and graph data

is written to file in the DSL format. The full script is provided in Appendix B.

The Rome99 graph originates from the 9th DIMACS Implementation Challenge and serves as a

benchmark for evaluating network analysis algorithms, specifically the shortest path [29]. The

graph represents a large portion of the road network in Rome, Italy, and helps diversify the road

network graphs featured in this paper.

Table 5.2 Road Network Graph

City Vertices Edges Avg Degree Max Degree Min Degree

Bothell 1861 4293 2.35 5 1

Rome 3352 17740 5.3 10 2

Tacoma 6801 19786 3.01 6 1

Spokane 8899 25991 3.15 6 1

Seattle 19096 50331 3 7 1

30

5.2.3 Synthetic Centrality Graphs

Table 5.3 lists the six unweighted and undirected synthetic graphs used for benchmarking the

closeness and betweenness centrality applications. The centrality graphs are generated with the

same graph generator outlined in Section 5.2.1.

Table 5.3 Synthetic Centrality Graphs

Vertices Edges Avg Degree Max Degree Min Degree

8 16 2 3 1

16 52 3.25 5 2

32 208 6.5 13 2

64 960 15 24 6

128 3912 30.56 50 10

256 16270 63.55 97 29

5.3 SHORTEST PATH

The Q-Learning shortest path performance was measured using the synthetic graph dataset

consisting of 500 to 16,000 vertices for the static benchmarking and the road network graph dataset

consisting of 1861 to 19,096 vertices for the dynamic benchmarking. The performance was

gauged over eight computing nodes, and the hyperparameters outlined in Table 5.4 were used. For

the static benchmarking, the evaluation is divided into training time performance and the optimal

output performance compared to the MASS Updated shortest path performance.

Table 5.4 Static MASS QL Hyperparameters

Graph

Size

Alpha Gamma Epsilon Window

Size

Max

Iterations

Agents - 1

Computing

Node

Agents - 2

Computing

Nodes

Agents - 4

Computing

Nodes

Agents - 8

Computing

Nodes

500 0.5 0.9 1 12 10000 2 50 150 400

1000 0.5 0.9 1 20 10000 12 25 100 400

2000 0.5 0.9 1 40 10000 8 100 125 400

4000 0.5 0.9 1 80 10000 8 150 600 800

8000 0.5 0.9 1 120 10000 25 150 200 1750

31

16000 0.5 0.9 1 200 10000 50 150 250 1750

5.3.1 Static Graphs

Table 5.5 MASS QL Shortest Path Training

Vertices 1 Computing Node 2 Computing Nodes 4 Computing Nodes 8 Computing Nodes

500 1130 13595 26391 30829

1000 2456 34816 56556 66320

2000 6916 81840 88763 87398

4000 55230 681969 581240 371308

8000 264130 3542149 3141897 1131391

16000 OOM 4739915 3945661 1760854

Figure 5.1 MASS QL Shortest Path Synthetic Training

The MASS QL shortest path application consists of two phases: training and path output. Figure

5.1 and Table 5.5 show the application's training performance over eight computing nodes. The

32

application performs best on a single computing node up to the 8000-vertex synthetic graph,

beyond which system memory is exhausted. The single computing node performs best because

all MASS Node objects reside on a single computing node, and agents do not have to serialize and

transmit over the network to migrate to remote computing nodes. For the 16,000-vertex graph

where only multi-node executions are feasible, eight computing node executions are optimal. With

more computing nodes in the cluster, we can add more training agents before seeing a performance

decrease. On eight computing nodes, we were able to scale up to 1750 training agents compared

to 150 on two computing nodes and 200 on four computing nodes. The multi-agent training on

eight computing nodes represents a performance increase of ~63% compared to two-node

performance and ~55% compared to four-node execution.

Table 5.6 MASS QL Shortest Path Output

Vertices 1 Computing Node 2 Computing Nodes 4 Computing Nodes 8 Computing Nodes

500 1 156 302 459

1000 1 186 343 477

2000 2 113 344 421

4000 3 189 322 409

8000 3 191 347 441

16000 OOM 231 391 476

Table 5.7 MASS Updated Shortest Path

Vertices 1 Computing Node 2 Computing Nodes 4 Computing Nodes 8 Computing Nodes

500 521 780 886 1391

1000 948 1337 1264 1438

2000 3791 4547 3680 3095

4000 9776 14061 13103 9286

8000 38703 32293 35407 42397

33

16000 OOM OOM 55584 67515

Figure 5.2 MASS Updated vs MASS QL Synthetic Shortest Path Output

After the Q-learning algorithm completes the training phase and populates the Q-table, its

performance is extremely fast across all computing node executions. As shown in Figure 5.2 and

Table 5.6, when a trained Q-learning shortest path algorithm is compared to the MASS Updated

shortest path execution, shown in Table 5.7, the trained Q-learning agent can quickly migrate to

the graph vertices that constitute the shortest path between the trained source and destination graph

vertex.

5.3.2 Dynamic Graphs

For dynamic performance, we measure the Q-learning shortest path’s performance on single-

vertex removal and five-vertex removal. The single-vertex removal is designed to simulate a

minor traffic accident, and the five-vertex removal is designed to simulate a large traffic disruption.

34

The MASS Updated performance is gauged over two runs of the application: one to determine the

original optimal path and the second to respond to the change in the graph. The Q-learning shortest

path application utilizes a previously trained Q-table for the source vertex and destination vertex

and retrains to respond to the change in the graph.

Figure 5.3 1 Vertex Removal MASS Updated vs MASS QL Retrain Synthetic

Figure 5.3 details the performance of the Q-learning shortest path algorithm compared to the

MASS Updated shortest path algorithm with one vertex removal on the synthetic dataset. The

results here demonstrate that the MASS QL implementation can adapt quickly to a single vertex

removal in the synthetic graphs significantly quicker than a second run of the MASS Updated

algorithm. A primary reason for this lies in the nature of the graph. The synthetic graphs are

incredibly well connected. The Q-table has several different paths already trained, and the

QLAgent quickly adapts to the removal of a single vertex. As we will see in the road network

dataset dynamic testing, when the structure of the graph is different, the ability to adapt changes.

35

Figure 5.4 1 Vertex Removal MASS Updated vs MASS QL Retrain Road Network

Figure 5.4 details the performance of the Q-learning shortest path algorithm compared to the

MASS Updated shortest path algorithm for a single vertex removal on the road network dataset.

As the figure demonstrates on smaller graph sizes, the Q-learning shortest path algorithm can

leverage multi-agent training to quickly adapt to the change and produce a new optimal path

exceeding the performance of the MASS Updated shortest path application. As the graph grows

in size, the need for repeated training and more training agents increases the execution time,

leading to the MASS Updated shortest path application performing better than the Q-learning

implementation.

36

Figure 5.5 5 Vertex Removal MASS updated vs MASS QL Retrain

Figure 5.5 shows the performance of the MASS Updated compared to MASS QL with five

vertex removal. The results demonstrate that while MASS QL is able to adapt to one-vertex

removals fairly well and competitively, larger changes provide an issue as the values in the Q-

table become more affected by the change. Significant changes in the graph require far more

training to find a new optimal path in the modified graph. While the amount of training is

considerably less than the original training time, the retraining time still rises to the level where

rerunning the MASS Updated application is more appealing if execution time is the primary

concern. Given these results on the smallest road network graph, larger graphs were not tested.

5.3.3 Discussion

The MASS Q-learning shortest path application demonstrates the innate ability to quickly guide

agents to graph vertices that constitute the shortest path quickly once trained. The main challenge

with the application is that the training time in MASS can rise quickly as graph size increases. The

37

need for repeated traversal over the graph to understand its structure looms heavily over the total

execution time.

When faced with dynamic changes to the graph, Q-learning enables agents to retrain quickly to

adapt to small changes in the graph. The adaptation capabilities of Q-learning only appear to be

more worthwhile when the amount of change in the graph is small. As we saw from the road

network benchmarking, a single vertex change could be adapted to quickly. However, when five

vertices were changed, this required significantly more training, resulting in the MASS Updated

shortest path application being more efficient if run twice in response to the changes.

5.4 CLOSENESS CENTRALITY

Performance for closeness centrality was evaluated on the synthetic centrality graph dataset, which

has graphs with vertices ranging from 8 to 256. The performance of the MASS Updated and MASS

Q-learning closeness centrality applications was run over eight computing nodes, and the MASS

Q-learning application utilized the hyperparameters listed in Table 5.8.

Table 5.8 MASS QL Closeness Centrality Hyperparameters

Graph

Size

Alpha Gamma Epsilon Window

Size

Max

Iterations

Agents

8 0.5 0.9 1 5 10000 28

16 0.5 0.9 1 5 10000 120

32 0.5 0.9 1 5 10000 496

64 0.5 0.9 1 6 10000 2016

128 0.5 0.9 1 13 10000 8128

38

5.4.1 Static Graphs

Figure 5.6 MASS Updated vs MASS QL Closeness Centrality Performance

In Figure 5.6, we can see the performance of the MASS Q-learning closeness centrality

application compared to the MASS Updated closeness centrality application. The observation

made here is that while the Q-learning application achieves performance comparable to the MASS

Updated application initially, as the graph size increases, the performance of the MASS Updated

application outperforms the Q-learning application when training time is considered. A primary

reason for this performance difference comes from the need to train individual Q-tables for each

vertex-to-vertex pairing in the graph. As more graph vertices are added, there are more vertex

pairs to train on, driving up the overall execution time significantly.

39

Figure 5.7 MASS QL Closeness Centrality Multi-Agent Scaling

While the performance of the MASS QL closeness centrality application falls short of the current

MASS closeness centrality implementation, the multi-agent capabilities of MASS allowed us to

scale the application more effectively. Shown in Figure 5.7 of the one computing node MASS QL

closeness centrality application, the use of the multiple agents to simultaneously train all vertex

pairings in the graph demonstrated a 75% performance increase for the 8 vertices graph and a 69%

increase for the 16 vertices graph.

40

5.4.2 Dynamic Graphs

Figure 5.8 1 Vertex Removal Closeness Centrality MASS Updated vs MASS QL

Figure 5.8 shows the performance of the Q-learning closeness centrality application compared to

the MASS Updated closeness centrality application when faced with the removal of one graph

vertex. At eight to 16 graph vertices, the Q-learning application shows the ability to adapt to the

change at a faster rate than a complete return of the MASS Updated implementation. As the graph

sizes increase, the overhead associated with retraining all the vertex pairs causes the overall

execution time to fall short of simply rerunning the MASS Updated version. In this scenario,

because the graph change is unknown to the application, we are forced to retrain all the vertex

pairs to ensure that the graph changes are updated across all the potential shortest paths.

41

5.4.3 Discussion

When reviewing the MASS Q-learning closeness centrality application, the implementation shows

some issues as the graph size increases. The overhead associated with training all vertex pairings

in the graph causes the execution to rise dramatically as the number of vertices increases. While

the performance is acceptable in small graph sizes, the training time associated with all vertex

pairings makes it ill-suited to larger graph sizes, particularly when they are distributed across

multiple computing nodes. In addition, the ability of Q-learning to adapt to changes in the graph

is made difficult when the changes are unknown. When a vertex is removed, many of the previous

paths in the graph do not change and would not require retraining, but since these changes are

unknown, we are forced to retrain to ensure that the previous shortest path is correct.

5.5 BETWEENNESS CENTRALITY

The performance of the betweenness centrality application was evaluated on the synthetic

centrality dataset on graphs numbering from eight to 128 vertices. The performance of the MASS

Updated and MASS Q-learning betweenness centrality applications was run over eight computing

nodes, and the MASS Q-learning application utilized the hyperparameters listed in Table 5.9.

Table 5.9 MASS QL Betweenness Centrality Hyperparameters

Graph

Size

Alpha Gamm

a

Epsilo

n

Window

Size

Max

Iterations

Agents Q-value

Threshold

Path

Threshold

8 0.5 0.9 1 5 10000 28 25 0

16 0.5 0.9 1 5 10000 120 25 0

32 0.5 0.9 1 5 10000 496 25 0

64 0.5 0.9 1 6 10000 2016 25 0

42

128 0.5 0.9 1 13 10000 8128 25 0

5.5.1 Static Graphs

Figure 5.9 Betweenness Centrality MASS Updated vs MASS QL

In Figure 5.9, we can see the execution performance of the MASS Updated and MASS QL

betweenness centrality applications over eight computing nodes. The single-node performance of

the MASS Updated application remains dominant, while the multi-node executions are much more

comparable in performance. Both applications do not scale well under multi-node executions and

suffer from long execution times as the graph sizes scale up. The performance statistics for the

MASS QL betweenness centrality application and the MASS Updated two and four-node

executions at graph size 128 are omitted due to long run times.

The performance issues exhibited by the MASS QL betweenness centrality are similar to the

issue outlined in section 5.4.3 with the closeness centrality application. In the betweenness

centrality application, we have the added computational burden of not only training all vertex

43

pairings in the graph but also enumerating all shortest paths for those pairings. This added burden

drives a significant increase in execution time as the graph size increases.

Figure 5.10 Betweenness Centrality MASS Updated vs MASS QL Path Output

In Figure 5.10, we can see the output performance of the MASS QL betweenness centrality

application after training. With training complete, the MASS QL betweenness centrality

application outperforms the current MASS Updated betweenness centrality application in

producing the final betweenness centrality calculation. In this case, the single-node execution

provides the best performance largely due to the agents not needing to traverse to remote

computing nodes to produce the final paths.

5.5.2 Dynamic Graphs

Given the results presented in Section 5.4.2, dynamic testing was not conducted on betweenness

centrality. The results from the closeness centrality dynamic testing would indicate that dynamic

changes in a graph tested against the Q-learning betweenness centrality application would be

significantly longer and fall far short of the MASS Updated betweenness centrality.

44

5.5.3 Discussion

The MASS QL betweenness centrality application faces similar issues to those of the closeness

centrality application. In addition to the issues outlined in the closeness centrality application, the

added computation burden of enumerating all shortest paths for each vertex pair adds to the

execution time, making it ill-equipped to handle dynamic graph changes.

5.6 MASS ORIGINAL & UPDATED PERFORMANCE COMPARISON

5.6.1 Shortest Path Execution Performance

Figure 5.11 MASS Original vs MASS Updated Shortest Path Performance

Figure 5.11 outlines the execution performance of the MASS Original and MASS Updated shortest

path applications. As we can see from the output, both applications track similarly in performance

across all graph sizes. A notable element in this comparison is that as the graph size increases and

more computing nodes are added to the cluster, the MASS Original application performs better

45

compared to the MASS Updated. The performance difference is attributed to the added overhead

associated with new features added to MASS, like GraphPlaces and GraphAgent, and integrated

into the MASS Updated shortest path application. The new GraphPlaces vertex allocation method

distributes the vertices in a round-robin fashion over the cluster system, leading to a larger

overhead in graph navigation. While this data does indicate a performance decrease with these

new features, the slight difference is negligible compared to the quality-of-life improvements they

provide.

5.6.2 Closeness Centrality Execution Performance

Figure 5.12 MASS Original vs MASS Updated Closeness Centrality

In Figure 5.12, we can see the performance comparison of the MASS Original and MASS Updated

closeness centrality applications. The execution performance outlines an interesting trend when

comparing the impact of the updated MASS features on previous applications. Up to graph size

128, the performance of both applications across one to eight computing nodes is fairly

comparable. On the 256 vertex execution, the performance of the applications diverges drastically.

46

The MASS Updated application exhibits better performance on the single-node execution, while

the two to eight-node executions reduce performance.

5.6.3 Betweenness Centrality Execution Performance

Figure 5.13 MASS Original vs MASS Updated Betweenness Centrality

Figure 5.13 compares the execution performance of the MASS Original and MASS Updated

betweenness centrality applications. The performance exhibited by the different applications

reinforces the findings in the closeness centrality applications from the previous sections. The

performance of the two applications is largely consistent on the single computing node execution,

with the MASS Updated implementation exhibiting better performance as the graph size reaches

128. On the multi-node executions, the MASS Original application scales far better than the

MASS Updated application once the graph size reaches 32 vertices. The performance decrease

47

behavior is likely associated with the overhead attached to the MASS Updated graph features,

which do not scale as well to multi-node executions on small graph sizes.

5.6.4 Discussion

The overall performance of the MASS Original and MASS Updated applications indicates that the

feature additions associated with the new version of MASS have little impact on optimized MASS

applications. In scenarios like the shortest path problem where the MASS implementation is well

suited to addressing the underlying problem, the impact of new features like GraphPlaces and

GraphAgent do not significantly impact the program's overall performance. While there is a slight

performance decrease associated with the added overhead of these new features, the impact is

easily balanced with the improved user experience that comes with abstracting away some of the

more tedious parts of programming in MASS. Making MASS more accessible to people without

intimate knowledge of the library creates a more appealing tool for a broader audience and

encourages the adoption of the library in more academic fields.

5.7 MASS ENABLED Q-LEARNING PERFORMANCE IMPROVEMENTS

5.7.1 Multi-Agent Training

In most Q-learning shortest path scenarios, like the ones referenced in Section 3.1, there is a single

Q-learning agent that iteratively navigates the graph and populates the Q-table. One of the largest

performance improvements presented in this project is the ability to utilize multiple agents in the

training process. MASS enables the painless integration of multi-agent functionality, making it

innately suitable for multi-agent training scenarios.

48

Figure 5.14 2000 Vertex MASS QL Multi-Agent Training Time

Figure 5.14 demonstrates the training performance gain across all eight nodes on a 2000 vertex

graph with multi-agent training. While multi-agent training demonstrates performance increases

across all computing node executions, the largest performance increase is found on eight-node

executions, where we see a 190% training time decrease with 1750 training agents compared to a

single training agent. A large reason for the increased performance on multi-node execution is the

ability of the computing nodes to manage the agents in parallel, enabling agents to move and

update the Q-table simultaneously. Multi-agent training enables the Q-learning in MASS to

effectively reduce training time while exploring more of the graph structure and improving the

overall performance of the algorithm.

49

5.7.2 Dynamic Hyperparameter Tuning

Figure 5.15 MASS QL Shortest Path Hyperparameter Tuning Performance

In many Q-learning implementations, hyperparameters like the learning rate and exploration rate

are fixed throughout the training processes. While this does work, it tends to lead to longer training

times than what is necessary to produce the optimal path. To improve the performance of our Q-

learning implementation, we implemented a dynamic hyperparameter tuning process to reduce

training times and improve the algorithm's overall performance. As shown in Figure 5.15, the

dynamic hyperparameter tuning process allows our Q-learning implementation to modify the

hyperparameters during the training process and reduce the overall training time.

Tuning the hyperparameters has two benefits. First, it enables us to train only when necessary,

reducing the overall training time. Second, it enables the algorithm to better respond to dynamic

changes in the graph. Through the reward window, the agent is able to understand better how the

50

training process is going and can increase and decrease its hyperparameters in response to the

rewards it receives while navigating the graph.

5.7.3 Distributed Reward Window

In multi-agent Q-learning training scenarios, one of the large impediments to performance

improvements is the need for communication between the agents to share their training information

with other agents. This is typically done with costly synchronization methods that result in heavy

training time penalties. Initially, we implemented the reward window within each agent. This

resulted in each agent training independently, and while they did share information through the

distributed Q-table, additional agents resulted in increased training time.

Figure 5.16 4000 Vertices MASS QL Reward Window Performance Comparison

Figure 5.16 demonstrates the performance difference between the independent reward window

and the distributed reward window. The distributed reward window enables the agents to share

their collective experiences over the course of each episode and tune the hyperparameters more

51

quickly and efficiently. The MASS Node class enables a simple means for the Q-learning agent

to share their cumulative episodic reward progress and provides all training agents with a much

more holistic view of the aggregate training process. The distributed reward window underpins

the performance gains achieved by multi-agent training.

Chapter 6. CONCLUSION

This project was successful in demonstrating the ability of MASS to accelerate reinforcement

learning algorithms like Q-learning through its multi-agent programming paradigm. The ability

of MASS to facilitate distributed graph computing and seamlessly employ agents to learn from the

information presents a powerful tool for future work on multi-agent machine learning projects.

The trained performance of the Q-learning applications demonstrated great performance and

presented adaptive qualities when faced with dynamic data. While the results were positive

overall, the research indicated there is still room for improvement to better attune MASS for

machine learning, specifically reinforcement learning, based applications.

6.1 CHALLENGES

1. Generalized Q-learning Applications

One of the major caveats to the execution data presented is the highly tuned nature of the

parameters used to run the Q-learning application. To optimize the applications for the input

graphs mentioned in Sections 5.2.1 and 5.2.2, a comprehensive hyperparameter grid search

was performed to find the combination of parameters that would yield the correct results while

minimizing the overall execution time. While parameters proved effective for the graphs

utilized in this study, they may not bore the same results for graphs that are structurally

different. With that limitation noted, the parameters can be tuned in such a way that Q-learning

52

can be applied to most, if not all, graph types, but this may lead to longer training time as

parameters such as the reward window size and number of training agents may have to be set

high to ensure generalization. Unoptimized hyperparameters can lead to longer training times,

as demonstrated in Section 5.7.2.

2. Training Time

As mentioned in the previous section, training time comprised the most significant component

of the overall execution time of the MASS Q-learning applications. While training is explicitly

noted in the results for each of the applications, we also compare the output time after the

algorithm has completed training. This is an important component to note when overall

execution time is the primary area of concern. Except for some examples in small graph sizes,

it is incredibly difficult for applications that require extensive training to produce execution

times comparable to sequential or parallel solutions. While some machine learning

implementations have been able to achieve improved results through methods like GPU-based

acceleration, MASS Java lacks those methods in its current form.

6.2 FUTURE WORK

1. Diverse Machine Learning Subfields: While Reinforcement Learning algorithms are

powerful tools for modeling unknown environments and deriving optimal policies, the

need for repeated navigation presented a hurdle when comparing overall execution time

with the current MASS implementations. Future works on machine learning in MASS

should focus on strategies that minimize the need for repeated graph navigation operations.

Techniques like Graph Convolutional Networks, graph embedding methods like

Node2Vec, and probabilistic graphical models present an interesting area of study through

an agent-based paradigm and may result in overall better performance.

53

2. Agent Overhead: As demonstrated in the training results, the most computationally costly

component of all the Q-learning implementations is the repeated movement of training

agents over the distributed graph. Future research into reducing the overhead associated

with moving agents locally and across computing nodes could make agent-based MASS

solutions more appealing for reinforcement learning algorithms and other machine learning

implementations.

3. Improved Agent Communication: In this project, agents were able to communicate

through the distributed Q-table and reward window. While this approach worked, it

required agents to deposit data on a Node object to be read by other agents. This approach

was effective but rather crude, as the agents could only receive the update on their next

navigation cycle. Research into improved means for efficient agent communication

methods would allow a more diverse pool of applications outside of the options explored

in this paper.

4. Dynamic Graph Modification Methods: This project explored only one type of graph

modification in the form of vertex removals. Other modifications, such as edge weight

changes and vertex additions, would be worthwhile to explore and measure the adaptability

of Q-learning. In addition, this project only explored unknown changes to the graph. Q-

learning retraining could be optimized much more effectively by retraining only where

changes occur, leading to much better retraining performance than was produced in this

project.

5. Online Graph Modifications: While Q-learning demonstrated promise in terms of its

ability to adapt to changes that occur after training is complete, its ability to adapt to

54

changes is not exclusive to offline changes. Further research into changes that occur while

the algorithm is still in its training phase could demonstrate even more adaptability.

55

BIBLIOGRAPHY

[1] R. S. Xin, D. Crankshaw, A. Dave, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “GraphX:

Unifying Data-Parallel and Graph-Parallel Analytics,” Feb. 11, 2014, arXiv: arXiv:1402.2394.

Accessed: Jul. 19, 2024. [Online]. Available: http://arxiv.org/abs/1402.2394

[2] G. Malewicz et al., “Pregel: a system for large-scale graph processing,” in Proceedings of the

2010 ACM SIGMOD International Conference on Management of data, Indianapolis Indiana

USA: ACM, Jun. 2010, pp. 135–146. doi: 10.1145/1807167.1807184.

[3] M. Fukuda, MASS: A Parallelizing Library for Multi-Agent Spatial Simulation. [Online].

Available: https://depts.washington.edu/dslab/MASS/

[4] M. Kipps, W. Kim, and M. Fukuda, “Agent and Spatial Based Parallelization of Biological

Network Motif Search,” in 2015 IEEE 17th International Conference on High Performance

Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety

and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems,

New York, NY: IEEE, Aug. 2015, pp. 786–791. doi: 10.1109/HPCC-CSS-ICESS.2015.222.

[5] Zhiyuan Ma and M. Fukuda, “A multi-agent spatial simulation library for parallelizing

transport simulations,” in 2015 Winter Simulation Conference (WSC), Huntington Beach, CA,

USA: IEEE, Dec. 2015, pp. 115–126. doi: 10.1109/WSC.2015.7408157.

[6] J. Woodring, M. Sell, M. Fukuda, H. Asuncion, and E. Salathe, “A Multi-agent Parallel

Approach to Analyzing Large Climate Data Sets,” in 2017 IEEE 37th International Conference

on Distributed Computing Systems (ICDCS), Atlanta, GA, USA: IEEE, Jun. 2017, pp. 1639–1648.

doi: 10.1109/ICDCS.2017.106.

[7] J. Zhang and Y. Luo, “Degree Centrality, Betweenness Centrality, and Closeness Centrality in

Social Network,” in Proceedings of the 2017 2nd International Conference on Modelling,

Simulation and Applied Mathematics (MSAM2017), Bankog, Thailand: Atlantis Press, 2017. doi:

10.2991/msam-17.2017.68.

[8] B. Mullen, C. Johnson, and E. Salas, “Effects of communication network structure:

Components of positional centrality,” Social Networks, vol. 13, no. 2, pp. 169–185, Jun. 1991, doi:

10.1016/0378-8733(91)90019-P.

[9] J. Golbeck, “Network Structure and Measures,” in Analyzing the Social Web, Elsevier, 2013,

pp. 25–44. doi: 10.1016/B978-0-12-405531-5.00003-1.

[10] A. Soofi et al., “Centrality analysis of protein-protein interaction networks and molecular

docking prioritize potential drug-targets in type 1 diabetes,” IJPR, vol. 19, no. 4, Nov. 2020, doi:

10.22037/ijpr.2020.113342.14242.

[11] K. Wang, W. Quan, N. Cheng, M. Liu, Y. Liu, and H. A. Chan, “Betweenness Centrality

Based Software Defined Routing: Observation from Practical Internet Datasets,” ACM Trans.

Internet Technol., vol. 19, no. 4, pp. 1–19, Nov. 2019, doi: 10.1145/3355605.

[12] T. Phan and P. Do, “Improving the shortest path finding algorithm in apache spark graphX,”

in Proceedings of the 2nd International Conference on Machine Learning and Soft Computing,

Phu Quoc Island Viet Nam: ACM, Feb. 2018, pp. 67–71. doi: 10.1145/3184066.3184083.

[13] M. Sell and M. Fukuda, “Agent Programmability Enhancement for Rambling over a

Scientific Dataset,” in Advances in Practical Applications of Agents, Multi-Agent Systems, and

Trustworthiness. The PAAMS Collection, vol. 12092, Y. Demazeau, T. Holvoet, J. M. Corchado,

and S. Costantini, Eds., in Lecture Notes in Computer Science, vol. 12092. , Cham: Springer

International Publishing, 2020, pp. 251–263. doi: 10.1007/978-3-030-49778-1_20.

56

[14] J. Emau, T. Chuang, and M. Fukuda, “A multi-process library for multi-agent and spatial

simulation,” in Proceedings of 2011 IEEE Pacific Rim Conference on Communications,

Computers and Signal Processing, Victoria, BC, Canada: IEEE, Aug. 2011, pp. 369–375. doi:

10.1109/PACRIM.2011.6032921.

[15] J. Gilroy, S. Paronyan, J. Acoltzi, and M. Fukuda, “Agent-Navigable Dynamic Graph

Construction and Visualization over Distributed Memory,” in 2020 IEEE International

Conference on Big Data (Big Data), Atlanta, GA, USA: IEEE, Dec. 2020, pp. 2957–2966. doi:

10.1109/BigData50022.2020.9378298.

[16] A. Lamba, “An introduction to Q-Learning: reinforcement learning.” Accessed: Dec. 01,

2023. [Online]. Available: https://medium.com/free-code-camp/an-introduction-to-q-learning-

reinforcement-learning-14ac0b4493cc

[17] X. Wang, L. Jin, and H. Wei, “The Shortest Path Planning Based on Reinforcement

Learning,” J. Phys.: Conf. Ser., vol. 1584, no. 1, p. 012006, Jul. 2020, doi: 10.1088/1742-

6596/1584/1/012006.

[18] Z. Sun, “Applying Reinforcement Learning for Shortest Path Problem,” in 2022

International Conference on Big Data, Information and Computer Network (BDICN), Sanya,

China: IEEE, Jan. 2022, pp. 514–518. doi: 10.1109/BDICN55575.2022.00100.

[19] R. Nannapaneni, “Optimal Path Routing Using Reinforcement Learning,” Dell Technologies

Proven Professional Knowledge Sharing, 2020, Accessed: May 03, 2024. [Online]. Available:

https://education.dell.com/content/dam/dell-emc/documents/en-us/2020KS_Nannapaneni-

Optimal_path_routing_using_Reinforcement_Learning.pdf

[20] E. Cohen, D. Delling, T. Pajor, and R. F. Werneck, “Computing classic closeness centrality,

at scale,” in Proceedings of the second ACM conference on Online social networks, Dublin Ireland:

ACM, Oct. 2014, pp. 37–50. doi: 10.1145/2660460.2660465.

[21] K. Shukla, S. C. Regunta, S. H. Tondomker, and K. Kothapalli, “Efficient parallel algorithms

for betweenness- and closeness-centrality in dynamic graphs,” in Proceedings of the 34th ACM

International Conference on Supercomputing, Barcelona Spain: ACM, Jun. 2020, pp. 1–12. doi:

10.1145/3392717.3392743.

[22] D. Ferone, P. Festa, A. Napoletano, and T. Pastore, “SHORTEST PATHS ON DYNAMIC

GRAPHS: A SURVEY,” Pesqui. Oper., vol. 37, no. 3, pp. 487–508, Sep. 2017, doi: 10.1590/0101-

7438.2017.037.03.0487.

[23] E. P. F. Chan and Yaya Yang, “Shortest Path Tree Computation in Dynamic Graphs,” IEEE

Trans. Comput., vol. 58, no. 4, pp. 541–557, Apr. 2009, doi: 10.1109/TC.2008.198.

[24] A. Stentz, “Optimal and efficient path planning for partially-known environments,” in

Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego,

CA, USA: IEEE Comput. Soc. Press, 1994, pp. 3310–3317. doi: 10.1109/ROBOT.1994.351061.

[25] T. Akiba, Y. Iwata, and Y. Yoshida, “Dynamic and historical shortest-path distance queries

on large evolving networks by pruned landmark labeling,” in Proceedings of the 23rd international

conference on World wide web, Seoul Korea: ACM, Apr. 2014, pp. 237–248. doi:

10.1145/2566486.2568007.

[26] H. Cui, R. Liu, S. Xu, and C. Zhou, “DMGA: A Distributed Shortest Path Algorithm for

Multistage Graph,” Scientific Programming, vol. 2021, pp. 1–14, May 2021, doi:

10.1155/2021/6639008.

[27] G. Boeing, “OSMnx: A Python package to work with graph-theoretic OpenStreetMap street

networks,” JOSS, vol. 2, no. 12, p. 215, Apr. 2017, doi: 10.21105/joss.00215.

57

[28] M. Haklay and P. Weber, “OpenStreetMap: User-Generated Street Maps,” IEEE Pervasive

Comput., vol. 7, no. 4, pp. 12–18, Oct. 2008, doi: 10.1109/MPRV.2008.80.

[29] G. Storchi, P. Dell’Olmo, and M. Gentili, “Rome99 Dataset: Directed Road Network of

Rome, Italy.” University of Rome “La Sapienza,” Mar. 2006. [Online]. Available:

http://www.diag.uniroma1.it/challenge9/benchmarks/rome99

58

APPENDIX

APPENDIX A: Graph Generation

A.1 Overview

This section provides a detailed description of the random graph generation process implemented

in this project. Random graph generation is handled by two main classes: ‘GraphGen’ and ‘Map’.

These classes are responsible for creating nodes, assigning neighbors, and defining distances

between nodes to form a synthetic graph used for testing the shortest path and centrality

applications.

A.2 GraphGen Class

The ‘GraphGen’ class initializes the graph generation process by creating instances of the ‘Map

class for each node. Below is the code for the ‘GraphGen’ class:

public class GraphGen {

 public static void main(String[] args) {

 GraphGen g = new GraphGen(Integer.parseInt(args[0]));

 }

 public GraphGen(int nNodes) {

 System.out.println("nNodes = " + nNodes + "\n");

 Map[] node = new Map[nNodes];

 for (int i = 0; i < nNodes; i++) {

 System.out.println("Node " + i + ":");

 node[i] = new Map(nNodes, i);

 for (int j = 0; j < node[i].neighbors.length; j++) {

 System.out.println("to " + node[i].neighbors[j] + " with

distance " + node[i].distances[j]);

 }

 }

 }

59

}

A.3 Map Class

The ‘Map’ class is responsible for generating neighbors and distances for each node. It uses the

Random class to assign a random number of neighbors and random distances, ensuring that there

are no self-loops or duplicate edges. Below is the code for the ‘Map’ class:

public class Map {

 public int[] neighbors = null;

 public int[] distances = null;

 public Map(int nNodes, int nodeId) {

 // Prepare temporal storages for neighboring information

 ArrayList<Integer> neighborsList = new ArrayList<Integer>();

 ArrayList<Integer> distancesList = new ArrayList<Integer>();

 // All nodes have the same random number generator

 Random rand = new Random(0);

 // All nodes have the same upper limit

 int upperLimit = (int) (nNodes * 0.3);

 for (int i = 0; i < nNodes; i++) {

 // Generate # neighbors from node i

 int nNeighbors = rand.nextInt(upperLimit);

 if (nNeighbors == 0) nNeighbors = 1;

 // Generate neighboring nodes from node i

 for (int j = 0; j < nNeighbors; j++) {

 int neighbor = rand.nextInt(nNodes);

 int distance = rand.nextInt(nNodes);

 if (distance == 0) distance = 1;

 if (i == nodeId) {

 // check if this is a self-directed link

 if (neighbor == nodeId) continue;

 // check if this is a duplication

 if (neighborsList.indexOf(new Integer(neighbor)) == -1) {

 // store my neighbor and its distance

 neighborsList.add(new Integer(neighbor));

 distancesList.add(new Integer(distance));

 }

 } else if (neighbor == nodeId) {

 // check if this is a duplication

60

 if (neighborsList.indexOf(new Integer(i)) == -1) {

 // store my neighbor and its distance

 neighborsList.add(new Integer(i));

 distancesList.add(new Integer(distance));

 }

 }

 }

 }

 neighbors = new int[neighborsList.size()];

 distances = new int[distancesList.size()];

 for (int i = 0; i < neighborsList.size(); i++) {

 neighbors[i] = neighborsList.get(i);

 distances[i] = distancesList.get(i);

 }

 }

}

APPENDIX B: Road Network Graph Generation

B.1 Overview

This section provides a description of the process used to generate road network graphs using the

‘osmnx’ and ‘networkx’ libraries. The script downloads road network data for a specific city,

remaps node IDs to a sequential formation, and outputs the graph in DSL format.

B.2 Road Network Graph Generation Script

The following Python script is used to generate road network graphs for a specified city. It

downloads the road network details, uses the ‘osmnx’ library, remaps node IDs, ensures all nodes

are bidirectional, and writes the graph to a DSL file. Below is the script:

import osmnx as ox

import networkx as nx

Define city to create graph from

61

place_name = "Tacoma, Washington, USA"

Download the road network graph

G = ox.graph_from_place(place_name, network_type='drive')

Remap nodes

original_nodes = list(G.nodes())

node_mapping = {old_id: new_id for new_id, old_id in

enumerate(original_nodes)}

Create a new graph with remapped node IDs

new_graph = nx.relabel_nodes(G, node_mapping)

Ensure all nodes are included and set edge weights to 1, make graph non-

directional

graph_dict = {new_id: set() for new_id in range(len(original_nodes))}

for u, v, data in new_graph.edges(data=True):

 graph_dict[u].add((v, 1)) # Set the weight to 1

 graph_dict[v].add((u, 1)) # Ensure the reverse edge is also added

Get the number of nodes and edges

num_nodes = len(new_graph.nodes())

num_edges = len(new_graph.edges())

Create the filename based on the city prefix, number of nodes, and number

of edges

city_prefix = place_name.split(',')[0].replace(" ", "_")

filename =

f"{city_prefix}_road_network_{num_nodes}nodes_{num_edges}edges.dsl"

Write to a file in DSL format

with open(filename, 'w') as f:

 for node, edges in sorted(graph_dict.items()):

 edges_str = ';'.join([f"{v},{weight}" for v, weight in edges])

 f.write(f"{node}={edges_str}\n")

APPENDIX C: MASS Applications Execution Instructions

C.1 Overview

The MASS Updated and MASS Q-learning applications are located in the MASS Application

Developers Bitbucket at: https://bitbucket.org/mass_application_developers/mass_java_appl. To

62

run the applications, clone the branch “Jeff/Qlearning” using the command: git clone --branch

Jeff/Qlearning https://bitbucket.org/mass_application_developers/mass_java_app.git.

This command will clone the Q-learning repository into two folders: ‘MASS_Updated’ and

‘MASS_Q-learning.’

C.2 MASS Environment

The MASS Updated and MASS Q-Learning applications utilize MASS Java Core version 1.4.3.

All versions of MASS Java are available at:

https://bitbucket.org/mass_library_developers/mass_java_core. To install MASS Java core

version 1.4.3, navigate to the desired folder and execute the command “git clone --branch 1.4.3-

SNAPSHOT https://bitbucket.org/mass_library_developers/mass_java_core.git”. This command

will clone the 1.4.3 branch to your local NETID account. After the download is complete, navigate

into the ‘mass_java_core’ folder and execute the command “mvn -DskipTests clean package

install”. This will install the MASS Java Core version 1.4.3 in your local environment.

For the dynamic graph testing with a pre-trained Q-table and DSLQ file format support, use “git

clone --branch Jeff/DSLQ_1.4.3

https://bitbucket.org/mass_library_developers/mass_java_core.git”. This command will clone the

modified 1.4.3 branch to your local NETID account. After the download is complete, navigate

into the “mass_java_core” folder and execute the command “mvn -DskipTests clean package

install” and wait for maven to package and install MASS. This will install the modified MASS

Java Core version 1.4.3 in your local environment.

C.3 Graph Files

63

The graph files used in this project are available here:

https://drive.google.com/drive/folders/15NVPUWw0CJ7FH-

VqmgIvpRTI6ZkZOn9e?usp=sharing. The graph files are divided into two folders: ‘Graphs’ and

‘Graphs with Qtables'. The ‘Graphs’ directory contains the three datasets used in this project:

Synthetic, Road Network, and Centrality, in DSL format. The ‘Graphs with Qtables’ directory

contains the synthetic and road network graph files, which include the pre-trained Q-values for

each vertex-to-vertex transition. The is an updated file formatted dubbed “DSLQ” and is used for

the dynamic shortest path testing.

C.4 MASS Updated Applications

The ‘MASS Updated’ folder includes three subdirectories: ‘MASS_Shortestpath_Updated’,

‘MASS_Closeness_Updated’, and ‘MASS_Betweenness_Updated’. Each folder represents the

previous MASS applications updated to utilize MASS Core version 1.4.3 with GraphPlaces and

GraphAgents, including a pom.xml file with the required dependencies. Ensure all dependencies

are the most recent versions.

With the appropriate MASS Core version installed per Section C.2, each application will need

to be compiled.

To compile each application:

1. Execute ‘mvn clean’ to clean previous compilations.

2. Execute ‘mvn package’ to compile the program into an executable jar file.

If successful, a BUILD SUCCESS message will appear, and the target folder will contain the jar

file, such as mass-shortest-path-1.4.3-SNAPSHOT.jar. Move the jar file into the top-level

application directory before executing the program.

64

Figure C.1 MASS Program Compilation

C.4.1 Shortest Path

The MASS Updated shortest path application takes in five arguments: the number of graph

vertices, source node, destination node, graph file path, and computing node file path. It is

important to note that for multi-computing node executions, the graph file path must be the full

file path, even if the graph file is stored in the current working directory. Failure to use the full file

path will result in MASS execution issues. The application is executed using the following

command: “java -jar ‘jarfile.jar’ ‘number of graph vertices’ ‘source node’ ‘destination node’

‘graph file path’ ‘node file path’”.

65

Figure C.2 MASS Updated Shortest Path Execution

If the program executes correctly, the MASS Updated shortest path application will output the

shortest path length and runtime statistics. Please note that MASS debug messages are disabled by

default. If debug messages are desired, the ShortestPath.java file must be modified to enable them,

and the program must be recompiled.

C.4.2 Closeness Centrality

The MASS Updated closeness centrality application takes in three arguments: the graph file path,

the number of vertices, and the node file path. As with the shortest path application, multi-

computing node executions require the full file path for the graph file. The application is executed

using the following command: “java -jar ‘jarfile.jar’ ‘graph file path’ ‘number of vertices’ ‘node

file path’”.

Figure C.3 MASS Updated Closeness Centrality Execution

66

If the program executes correctly, the MASS Updated closeness centrality application will output

the closeness centrality for each node in the graph and runtime statistics. Please note that MASS

debug messages are disabled by default. If debug messages are desired, the Driver.java file will

have to be modified to enable them, and the program will need to be recompiled.

C.4.3 Betweenness Centrality

The MASS Updated betweenness centrality application takes in three arguments: the graph file

path, the number of vertices, and the node file path. As with the shortest path application, multi-

computing node executions require the full file path for the graph file. The application is executed

using the following command: “java -jar ‘jarfile.jar’ ‘graph file path’ ‘number of vertices’ ‘node

file path’”.

Figure C.4 MASS Updated Betweenness Centrality Execution

If the program executes correctly, the MASS Updated betweenness centrality application will

output the betweenness centrality for each node in the graph and runtime statistics. Please note

that by default, MASS debug messages are disabled. If debug messages are desired, the

Driver.java file will have to be modified to enable debug messages, and the program will need to

be recompiled.

C.5 MASS Q-Learning Applications

67

The MASS Q-learning applications are divided into three folders: ‘QLShortestPath’,

‘QLClosenessCentrality’, and ‘QLBetweennessCentrality’. Each folder represents the Q-learning-

based MASS applications and will need to be packaged separately. The folders include a pom.xml

file with the required dependencies. Ensure that all dependencies are the most recent versions.

If successful, a BUILD SUCCESS message will appear, and the target folder will contain the jar

file, such as ql-shortest-path-1.4.3-SNAPSHOT.jar. Move the jar file into the top-level application

directory before executing the program.

C.5.1 Shortest Path

The QLShortestPath application takes in 10 arguments: number of vertices, source vertex,

destination vertex, graph file path, maximum training episodes, Q-value threshold, path threshold,

number of training agents, sliding window size, and node file path. While most arguments are

self-explanatory, the Q-value threshold and path threshold control the optimal and suboptimal path

enumeration. If multi-path enumeration is not required, set both parameters to 0.0 to bypass

enumeration. For the graph file path, ensure that the path is complete when executing on multiple

computing nodes. The application is executed using the following command: “java -jar ‘jarfile.jar’

‘number of vertices’ ‘source vertex’ ‘destination vertex’ ‘graph file path’ ‘max training episodes’

‘Q-value threshold’ ‘path threshold’ ‘number of training agents’ ‘sliding window size’ ‘node file

path’”.

For dynamic testing, the QLShortestPath application takes in additional arguments. First, the

graph file, as previously mentioned, should be in DSLQ format, which includes a pre-trained Q-

68

table with the graph table. The dynamic testing QLShortestPath takes in potentially 13 arguments:

number of vertices, source vertex, destination vertex, graph file path, maximum training episodes,

Q-value threshold, path threshold, number of training agents, sliding window size, node file path,

number of retraining agents, number of retraining episodes, and optionally, a specific node or

nodes to delete. If a vertex(s) is not specified, a random vertex from the previous optimal path

will be selected and removed before retraining. The application is executed using the following

command: “java -jar ‘jarfile.jar’ ‘number of vertices’ ‘source vertex’ ‘destination vertex’ ‘graph

file path’ ‘max training episodes’ ‘Q-value threshold’ ‘path threshold’ ‘number of training agents’

‘sliding window size’ ‘node file path’ ‘number of retraining agents’ ‘number of retraining

episodes’ ‘vertex/vertices to delete…’”.

Figure C.5 MASS QL Shortest Path Execution

If the program executes correctly, the QLShortestPath application will output the shortest path

and runtime statistics. Please note that MASS debug messages are disabled by default. If debug

messages are desired, the ShortestPath.java file must be modified to enable them, and the program

must be recompiled.

69

C.4.2 Closeness Centrality

The QLClosenessCentrality takes in up to six arguments: number of vertices, graph file path,

maximum number of training episodes, sliding window size, node file path, and optionally, the

number of retraining episodes and a vertex to remove. For dynamic testing. If the number of

retraining episodes is not specified, dynamic testing will not be performed. If a vertex to remove

is not specified, a random vertex will be selected. The application is executed using the following

command: “java -jar ‘jarfile.jar’ ‘number of vertices’ ‘graph file path’ ‘maximum training

episodes’ ‘sliding window size’ ‘node file path’ ‘retraining episodes’ ‘vertex to remove’”.

Figure C.6 MASS QL Closeness Centrality Execution

70

If the program executes correctly, the QLClosenessCentrality application will output the

closeness centrality for each node and runtime statistics. Please note that MASS debug messages

are disabled by default. If debug messages are desired, the ClosenessCentrality.java file must be

modified to enable them, and the program must be recompiled.

C.4.3 Betweenness Centrality

The QLBetweennessCentrality takes in four arguments: the number of vertices, the graph file path,

the maximum number of training episodes, and the node file path. The application is executed

using the following command: “java -jar ‘jarfile.jar’ ‘number of vertices’ ‘graph file path’

‘maximum training episodes’ ‘node file path’”.

Figure C.7 MASS QL Betweenness Centrality Execution

If the program executes correctly, the QLBetweennessCentrality application will output the

betweenness centrality for each node and runtime statistics. Please note that MASS debug

messages are disabled by default. If debug messages are desired, the BetweennessCentrality.java

file must be modified to enable them, and the program must be recompiled.

71

