

Development of FLAMEGPU2 and MASS CUDA Benchmark Programs (Social Net)

John Nguyen

CSS 497: Spring 2024 Term Report
Professor Munehiro Fukuda
June 5, 2024

Contents
Motivation	3
MASS CUDA Social Network	3
FLAME GPU 2 Social Network	4
Initialization	4
Functions	4
Outputting Results and Verification	4
Benchmark Comparisons	5
Programmability Analysis	5
Execution Performance	6
Conclusion	7
Suggestions For Future Work	8
Appendix	8
Code Location:	8
Simviz instructions for Heat2D_PlaceV2	8

[bookmark: _Toc168489247]Motivation
The MASS CUDA library is still in development. By creating benchmark programs in both FLAME GPU 2 and MASS CUDA we can perform benchmarking comparisons to find the strengths and challenges of the MASS CUDA library.
For my capstone project, I was tasked with building Heat2D and Social Network in FLAME GPU2. I also had to update the previous MASS CUDA versions of Heat2D and Social Network to work with the latest changes to MASS CUDA.
My goal for the 2024 Spring quarter was to build Social Net on FLAME GPU 2 and to update its MASS version. Once both are complete, I can do a programmability analysis and an execution performance comparison using both versions.
[bookmark: _Toc168489248]MASS CUDA Social Network
For the MASS CUDA version of Social Network, I was tasked to modify the program to work with the latest implementation of MASS CUDA. This involves removing SocialPlaceState.h and instead setting the attributes of the SocialPlace in SocialNetwork.cu using setAttributes(). setAttributes() uses attribute tags that are set in SocialPlace.h. After the attributes have been set, any code involving attributes from the SocialPlaceState.h in the older version must be modified to use getAttributes().
After completing the update to MASS CUDA Social Net, I noticed an error in the output. Upon reviewing the output from the previous version, I found that this error was present there as well.
[image:]
[image:][image:]

As seen above in the picture above, some users were being counted as friends across multiple degrees. This is an issue because users should not have different degrees of friendship with the same person. I found that there was an issue in calculateXthFriends() in which other users were not being added to the visited Set before they were user started calculating their next degree of friends. This issue was fixed by adding all users in the q Queue to the visited Set before the next friends were found and now the program should be running as intended.
[bookmark: _Toc168489249]FLAME GPU 2 Social Network
The FLAME GPU 2 version of Social Net was built after updating MASS CUDA, but before finding the cause of the incorrect output. Thus, I was suggested to base my implementation on the FLAME C++ version of Social Net.
[bookmark: _Toc168489250]Initialization
First, a k-regular graph is generated, this is generated using the same functions as the MASS CUDA version. Afterward, each person is created and given their user_id, and their connections and first-degree friends are given based on the graph.
Each person agent has the following attributes:
· user_id unsigned int
· first_degree_friends unsigned int array of size 100
· Contains the IDs of the person’s first-degree friends.
· connections unsigned int array of size 1000
· Contains the degree of friendship (int) with other users. The index represents the other users’ IDs.
· current_degree unsigned int
[bookmark: _Toc168489251]Functions
FLAME GPU 2 Social Net has two agent functions:
· post_found_friends()
· find_next_degree_friends()
post_found_friends() is an agent function that outputs the MessageArray used for find_next_degree_friends(). In this function, person agents write their first-degree friend information into the MessageArray. The index the person agents write to is based on their user ID.
find_next_degree_friends() is an agent function, where each person agent finds their next degree of friends using their connections. Each agent will look through their connections to find which users are their friends on the current degree. Once they are found, each person agent can use this information to find their next-degree friends in the MessageArray by using the IDs of their current-degree friends.
[bookmark: _Toc168489252]Outputting Results and Verification
I used FLAME GPU 2’s AgentVector to output each person agent's friend information. By using the user ID, I can find specific agents and get Variables from them. For Social Net’s output, I only need to get each person agents’ connections.
Here is an example of the output produced by the FLAME GPU 2 using 10 users, 2 first-degree friends, and up to 5 degrees.
[image: A screenshot of a computer

Description automatically generated]
[bookmark: _Toc168489253]Benchmark Comparisons
The benchmark comparisons were done by Warren to ensure consistency in the timers across all applications.
[bookmark: _Toc168489254]Programmability Analysis
Here are the programmability comparisons of both Heat2D and Social Net:
Programmability Comparison of Heat2D
	Framework
	LoC
	Cyclomatic Complexity
	Boilerplate Code LoC
	Boilerplate Code %

	MASS CUDA
	214
	3.64
	20
	9.346%

	FLAME GPU 2
	252
	8.60
	77
	30.556%

Programmability Comparison of Social Net
	Framework
	LoC
	Cyclomatic Complexity
	Boilerplate Code LoC
	Boilerplate Code %

	MASS CUDA
	424
	2.47
	30
	7.075%

	FLAME GPU 2
	228
	8.00
	38
	16.667%

Based on the results of the programmability analysis, between the two libraries MASS CUDA has more LoC. Although there was slightly less LoC for MASS CUDA in Heat2D, there was significantly more LoC in MASS CUDA Social Net compared to the FLAME GPU 2 version.
However, FLAME GPU 2 consistently had more boilerplate code percentage and cyclomatic complexity compared to MASS CUDA. This finding suggests that programs written in FLAME GPU 2 are more verbose and difficult to maintain compared to MASS CUDA.
[bookmark: _Toc168489255]Execution Performance
Here are the comparisons of Heat2D’s initialization time, per-step time, and total time:
[image: A graph with a line and a line

Description automatically generated with medium confidence][image: A graph with a line and a purple line

Description automatically generated][image: A graph with a line and a line

Description automatically generated]
For Heat2D, the initialization times of MASS CUDA were shorter compared to FLAME GPU 2. However, FLAME GPU 2 showed better performance during simulation, as seen in the Per-Step Time Comparison.
MASS CUDA’s shorter initialization time advantage was not enough to overcome the difference in simulation speed as the simulation size grew.
Here is the total time comparison for Social Net:
Total Simulation Time (Social Net)
[image: A graph with a line and a line

Description automatically generated]
For Social Net, the initialization time is not a relevant measure since the initialization of Social Net is creating graphs. Only the total simulation time was recorded. There was a large difference in simulation time between the two versions. This can be attributed to differences in the algorithms and a lack of built-in functions (which means users must customize extra classes).
[bookmark: _Toc168489256]Conclusion
Over the Spring 2024 Quarter, I updated the MASS CUDA version of Social Net to work with the latest version of the MASS CUDA library. I also built a FLAME GPU 2 version of Social Net. However, there is a large difference between the algorithms of the MASS CUDA and FLAME GPU 2 versions of Social Net which is due to the MASS CUDA version having an output error. Due to this error, I had to follow a different implementation of Social Net to ensure the FLAME GPU 2 Social Net works as intended.
From the programmability analysis, MASS CUDA uses more LoC than FLAME GPU 2. However, FLAME GPU 2 has a higher cyclomatic complexity and boilerplate LoC percentage which suggests that FLAME GPU 2 is more verbose and harder to maintain/understand than MASS CUDA.
From the execution performance comparisons, the initialization times of MASS CUDA are faster than FLAME GPU 2. However, FLAME GPU 2 simulation times are faster. MASS CUDA’s faster initialization times were not enough for MASS CUDA to perform as well as FLAME GPU 2 in the total time comparisons as the simulation size grew larger.
[bookmark: _Toc168489257]Suggestions For Future Work
My only suggestion for future work that could be done regarding Social Net is to match the algorithms of the two versions for a more accurate benchmark comparison.
[bookmark: _Toc168489258]Appendix
[bookmark: _Toc168489259]Code Location:
All the code I wrote can be found in the “develop” branch in the MASS CUDA applications bitbucket.
https://bitbucket.org/mass_application_developers/mass_cuda_appl/src/develop/
For specific locations of the code:
Heat2D_FLAME https://bitbucket.org/mass_application_developers/mass_cuda_appl/src/develop/Heat2D/Heat2D_FLAME/
Heat2D_PlaceV2 https://bitbucket.org/mass_application_developers/mass_cuda_appl/src/develop/Heat2D/Heat2D_PlaceV2/
SocialNetwork_FLAME https://bitbucket.org/mass_application_developers/mass_cuda_appl/src/develop/SocialNetwork/SocialNetwork_FLAME/
SocialNetwork_PlaceV2 https://bitbucket.org/mass_application_developers/mass_cuda_appl/src/develop/SocialNetwork/SocialNetwork_PlaceV2/

Instructions to run the programs can be found in the README in the corresponding directory.
[bookmark: _Toc168489260]Simviz instructions for Heat2D_PlaceV2
This is how I used simviz on juno.uwb.edu using my Windows laptop:
1. Run Heat2D using the --interval flag (which should produce a .viz file)
2. (If you have not already built simviz) Build the simviz application using make build-simviz
3. Open a Remote Desktop Connection to juno.uwb.edu
a. Press the Windows button and search “rdp” and open the Remote Desktop Connection App
[image: A blue screen with white text

Description automatically generated]
4. Connect to juno.uwb.edu and login[image: A screenshot of a computer

Description automatically generated]
5. Open the terminal and reach the directory containing Heat2D_PlaceV2
6. Assign the program to display the visualization on the display monitor you are connected to
a. Run echo $DISPLAY
b. Export DISPLAY=:[insert result of echo $DISPLAY here]
i. Ex. DISPLAY=:10.0
7. Run the viz file using ./binsimviz heat2d.viz
8. Once you are done you can log out of the connection
Page 2 of 2

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image1.png

image2.png

