MASS Library Traffic Simulation Application
Development and Performance Evaluation

by John Spiger

Faculty Advisor: Professor Munehiro Fukuda

Table of Contents

[T oY 18 o1 4 ' o PPN 2
IVIATSIM OVEIVIEW ceuuiiuuiiiueiiineiiiaiinsiienssiesssiessorsssssssssrssssrsssssssstessssessssssssssssssasssssssssssssssssssnssssnssssnes 2
IMAT ST COT ouureueueereereeressessessesesseseesessess s s s s ses s s s RS EnERnER £ R Rt 2
The COre and MaSSTTATIC ... s st s s s s s bRt 2
TRE MATSIIN AP .ottt ettt esse s b es e ss s s s ss s8R RS E 8RR RS R AR R b 3
MaSSTraffic OVEIVIEWciiieiiiiieiiiiiiiiiiieniiiiieieiieneeiieseietiensiesssssistienssssssssssssenssssssnssssssnssssssnsssssans 3
Starting MASS and Setting up the Network and POpulation ... sssssssssssssssssssssssssssees 4

INILIATIZING TNE NEEWOTK covrverrvesrissrissssssesssssisssissesssesssssasssassssssesssssassssssssssessssssssssssssssesssssassssssssssssssesssssassssssesssssssssasssssssssessssssnssansess 4

SELLING UP tNE POPUIALION couvvvevvesrersrissersissessisssisssssssssssssssisssassesssssssssassssssssssssssssassssssssssssssssassssssssssssssssssssassesssssssssssssasssssssssssssnssens 5
Running the MassTraffic SIMUIAtION ... s s s 5

The Timer and the AQVANCING Of PETSONSccwwroussonssnsesssssissssssisssssssssssssssssssssssssssssassssssssssssssssssssasssssssssssasssassssssssssssssssens 5
I3 11 6
[0 Q1= 1 o o - 6
VIBWET oottt ses st ses st s s s se £ s8££ s £ R R4 £ AR AR AR 4 AR AR SRR reE s b s R R e bR b s bRt as 7
PLATL SCOTIINE couvueeirieeeusisssessssesssssssssssssssssssssss e s s s ssss s s s s eSS SRR R s b 7
EVENT REPOTTIING .ot see s essesssssses s ss s s R et 7
Other TYPEeS Of SIMULATIONS . sssssss s sss st s s 7
VEhicles and FACIITIES ..ot ssssssss s s s st st s s 7
(=T 0T g 4 - T4 ol PPN 7

(000] 3 To{ [V 13 [] P 7

MASS Library Traffic Simulation Application Development and Performance Evaluation
by John Spiger

Introduction

The MASS Library Traffic Simulation Application (MassTraffic) makes use of the MASS library
(multi-threaded version) and the Multi-Agent Traffic Simulation Toolkit (MATSim). This paper
focuses on the MassTraffic application, its use of the MASS library, and its integration with
MATSim.

MATSim Overview

MATSim is a toolkit for running traffic simulations. The map is referred to as the network,
intersections on the network are nodes, and roads between intersections are links. The traffic
is made up of persons, each travelling individually. Each person is given one or more plans to
describe a path through the network. Plans contain activities, which take place on links, and
legs, which describe the path taken to get from one activity to the next.

MATSIim Core

An important part of MATSim is the core. The core is essentially a set of operations executed by
the Controler class (org.matsim.core.controler.Controler). The Controler reads in all the
information needed from XML files and prepares a Config object (org.matsim.core.config.Config).
The Config object can be used to access all the information described in the XML files.

The Controler needs three XML files, at a minimum, to get started:

1. aconfiguration file
2. anetwork file
3. aplansfile

The path to the configuration file is passed in to the constructor for the Controler:
public Controler(final String configFileName)

The other two files are found in the configuration file, as shown in this XML snippet from a
configuration file:

<module name="network">
<param name="inputNetworkFile" value="./generated/w10_h10_p100_network.xml" />
</module>

<module name="plans">
<param name="inputPlansFile" value=",/generated/w10_h10_p100_plans.xml" />
</module>

The configuration file is essentially a file of parameters that the Controler uses to create the
core. The network file contains lists of all the nodes and all the links in the map, and the plans
file contains information about each person in the simulation and their plans.

The Core and MassTraffic
MassTraffic is designed to make use of the core as much as possible. MassTraffic must do three
things to start the Controler and then the simulation:

MASS Library Traffic Simulation Application Development and Performance Evaluation 3
by John Spiger

1. Instantiate the Controler
2. Make the MassTraffic simulation known to the controller
3. Run the Controler

These three steps are done in MT_Controler in its main() method with the following commands:

controler = new Controler(args[0]);
controler.addMobsimFactory("MT_Sim", new MT_SimFactorylmpl());
controler.run();

The controller.addMobsimFactory call gives the Controler a factory that will be used to build the
MassTraffic simulation. The “MT_Sim” (passed in to addMobsimFactory above) is the key that
provides access to the MassTraffic simulation. The configuration must contain a similar
“MT_Sim” signal to the Controler that the MassTraffic simulation is the one it should run.
“MT_Sim” appears in the configuration file as shown in this XML snippet:

<module name="controler">
<param name="outputDirectory” value=",/output/test" />
<param name="firstiteration" value="0" />
<param name="lastlteration" value="3" />
<param name="mobsim" value="MT_Sim" />
</module>

When the Controler’s run method is called, if finds the factory for “MT_Sim” and calls the
factory’s one method, as specified in the MobsimFactory interface
(org.matsim.core.mobsim.framework.MobsimFactory):

public Simulation createMobsim(Scenario sc, EventsManager eventsManager)

MassTraffic’s MT_Simulationlmpl implements the Simulation interface. Once the Controler has
the MT_Simulationlmp], it calls the MT_Simulationlmpl run method, which starts the simulation.

As seen above in the createMobsim method, a Scenario object (org.matsim.api.core.v01.Scenario)
is given to the simulation factory. This is passed in to the simulation, also. The Scenario object
provides access to the Config object metioned above.

The MATSim API

The config object, through its method calls, provides access to a host of objects implementing
methods described a set of interfaces in org.matsim.api.core.v01 and its subpackages. As an
example of a subpackage, the org.matsim.api.core.v01.network package provides interfaces
named Node, Network, and Link. These are used to handle information about the network
MATSim has loaded in from the network file.

MassTraffic Overview

MassTraffic starts with the MT_SimulationImpl class. The Controler passes control to the
simulation by calling the MT_SimulationImpl run method. The first task of the simulation is to
create a network and population that can be used to run the simulation.

MASS Library Traffic Simulation Application Development and Performance Evaluation 4
by John Spiger

Starting MASS and Setting up the Network and Population

MassTraffic’s network and population are implemented by the MT_NetworkImpl and
MT_Population classes. These are accessed through the factory classes MT_NetworkFactorylmpl
and MT_Populationlmpl, respectively.

To begin creating the network and population, the MASS environment must be started. Then the
MT_NetworkFactorylmpl and MT_PopulationFactorylmpl classes are used to create instances of
MT_Populationlmpl and MT_NetworkImpl. This is done in the following code of
MT_SimulationImpl:

private void buildNetworkAndPopulation() {

MASS finish();// just to be sure

String[] massArgs;

MASS.init(massArgs);

MT _NetworkFactoryImpl mtnfi = MT_NetworkFactoryImpl
.getMTNetworkFactory(scenario);

this.mTNetwork = mtnfi.createNetwork();

MT _PopulationFactorylmpl mtpfi = MT_PopulationFactorylmpl
.getMTPopulationFactory(scenario, mTNetwork);

this.mTPopulation = mtpfi.createPopulation();

this.mTPopulation.reset();

}

Initializing the Network
MassTraffic’s network is set up in the MT_NetworkFactorylmpl. First, information about the
core’s network is gathered by the factory’s constructor:

private MT_NetworkFactorylmpl(Scenario sc) {
this.scenario = sc;
this.matsimNetwork = this.scenario.getNetwork();
this.links = matsimNetwork.getLinks();
this.nodes = matsimNetwork.getNodes();
this.linksSize = links.keySet().toArray().length;
this.nodesSize = nodes.keySet().toArray().length;
mTNetworkImpl = null;

}

The call to this.scenario.getNetwork() is used to get the network from the core. The core network
object is accessed with calls from the org.matsim.api.core.vO1.network package.

When the factory’s createNetwork method is called, information about the core’s network is
bundled up with the MT_InitLinkBundle and MT_InitNodeBundle classes. These classes are a
convenience to make it easier to initialize the MassTraffic links and nodes with MASS calls.

The MassTraffic links and nodes are represented by the MT_LinkImpl and MT_Nodelmpl classes,
respectively. The Links and Nodes are created in the following two methods:

private void createMTLinks() throws Exception {
MT_InitLinkBundle[] mTLinkBundles = getMTLinkBundles();
mTLinks = new Places(massLinksHandle, "masstraffic. MT_LinkImpl", null,
linksSize);

MASS Library Traffic Simulation Application Development and Performance Evaluation 5
by John Spiger

mTLinks.callAl(MT_LinkImpLINIT, mTLinkBundles);
}

private void createMTNodes() throws Exception {
this.mTNodes = new Places(massNodesHandle, "masstraffic. MT_Nodelmpl",
null, nodesSize);
MT _InitNodeBundle[] mTNodeBundles = getMTNodeBundles();
this.mTNodes.callAlI(MT_NodelmplLINIT, mTNodeBundles);

Once the nodes and links are created, another method, registerM TLinksWithMTNodes, provides
the links with references to start and end nodes and nodes with references to its inbound and
outbound links.

The MT_NetworkImpl object created by the factory is a singleton object.

Setting up the Population
MassTraffic’s population needs the MT_NetworkImpl singleton object, so the population is set
up after the network.

First MATSim'’s core population is accessed by the following call in MT_PopulationFactoryImpl:

/*package */MT_Populationlmpl createPopulation() {

this.matsimPopulation = scenario.getPopulation().getPersons();

Then the persons, MT_Personlmpl objects, are created in the same method with the following
MASS call:

mTPopulation = new Agents(massPersonsHandle
, "masstraffic MT_PersonImpl”, null, mTNetwork.mTLinks, size);

Eventually another MASS call is made that initializes each MT_Personlmpl with information
about its starting link (i.e., starting MT_LinkImpl).

Like MT_Networklmpl, MT_PopulationImpl is a singleton class.

Running the MassTraffic Simulation
After the MT_Populationlmpl and MT_NetworkImpl objects are ready, the simulation is ready to
run.

The Timer and the Advancing of Persons
The MT_SimTimer class is used to advance the simulation time by increments. It gathers
information about how to time the simulation by accessing the MATSim core:

public MT_SimTimer(Scenario scenario) {
this.startTime = scenario.getConfig().simulation().getStartTime();
this.endTime = scenario.getConfig().simulation().getEndTime();
this.increment = scenario.getConfig().simulation().getTimeStepSize();

MASS Library Traffic Simulation Application Development and Performance Evaluation 6
by John Spiger

Each of the calls to scenario.getConfig().simulation() accesses information read in from this area of the XML
configuration file:

<module name="simulation">

<l-- "start/endTime" of MobSim (00:00:00 == take earliest activity time/ run as long as active

vehicles exist) -->

<param name="startTime" value="00:00:00" />

<param name="endTime" value="00:00:00" />

<param name="timeStepSize" value = "00:30:00"/>

<param name = "snapshotperiod” value = "00:00:05"/> <!-- 00:00:00 means NO snapshot writing -->

<param name = "snapshotFormat" value = ""/> <I-- mt-viewer-live, mt-viewer-file -->
</module>

The heart of the MT_SimulationImpl class is the doSteps() method. This method goes through a
while loop as the timer ticks. In the while loop, are the following two calls:

mTPopulation.advance();// each agent calculates its progress
mTNetwork.directTraffic();// the nodes transfer the population between links

These lead to the following methods with MASS calls:

/*package */void advance() {
mTPopulation.call AlI(MT_Personlmpl ADVANCE);
mTNetwork.directTraffic();
mTPopulation.manageAll();

}

/* package */void directTraffic() {
this.mTLinks.callAll(MT_LinkImpl.UPDATE_SPARE_CAPACITY);
this.mTNodes.callAII(MT_Nodelmpl.DIRECT_TRAFFIC);

}

The advance method causes each MT_Personlmpl to recalculate its progress on the network. The
directTraffic method causes each MT_Nodelmpl to look at its incoming MT_LinkImpl links to see
if any persons are waiting to move to a next link. If there is space on the next link, the
MT_Nodelmpl coordinates the transfer by giving a migrate (from the Agent class) order to
persons to be transferred.

Testing
The class MT_TestFileBuilder can be used to create a test network and population. See the
javadocs for information on how to do this.

Extensions
There are a variety of ways in which the MassTraffic simulation can be improved.

MASS Library Traffic Simulation Application Development and Performance Evaluation 7
by John Spiger

Viewer

The class MT_SnapshotViewer was created with the intention of providing a viewer to watch
simulations. Unfortunately, there are still some problems with the display of the network and
agents.

Completing MT_SnapshotViewer or creating a new type of viewer would help make the
MassTraffic simulation a more robust and useful simulator.

Plan Scoring

MatSim has a way or scoring the plans of each person moving through a simulation.
Unfortunately, this functionality is lost is MassTraffic. Implementing the scoring functionality
would be helpful for making MassTraffic a more useful simulator.

Event Reporting

An EventsManager object is passed in to the MT_Simulationlmpl constructor by the Controler. In
the existing MATSim simulators, this events object is assigned to a static object that is then
accessed by persons to report on events such as getting stuck or the like. Implementing the
EventsManager functionality would also be a benefit to the MassTraffic simulation.

Other Types of Simulations
MATSim has four built-in simulators. They have different methods for running their simulations.
Adding more types of simulators based on MASS might be useful as well.

Vehicles and Facilities
MATSim has some experimental functionality for adding vehicles and facilities to simulations.
Porting this functionality over to a MASS-based simulation could very well be helpful.

Performance

A test of the MassTraffic simulation with varying numbers of threads running in the MASS
environment show promising results. Running a simulation with 10,000 persons and 10,000
nodes shows improvement in running time as more threads are added:

1 thread: 50968 milliseconds

2 threads: 28617 milliseconds
4 threads: 15960 milliseconds
8 threads: 11179 milliseconds

Conclusion

The MassTraffic simulation shows promise as a useful application for the MASS library. With a
multi-process version of the MASS library, large time savings might be realized in running traffic
simulations.

