
Benchmarking MASS JAVA
By: Jonathan Acoltzi

Advisor: Dr. Fukuda

Table of Contents

Purpose: ... 1

Quarter Summary ... 2

JCilk Benchmarks .. 2

MASS GraphPlaces ... 2

MASS Annotations ... 2

Results ... 3

Programmability ... 3
JCilk .. 3
MASS GraphPlaces .. 3
MASS Annotations ... 4

Performance ... 5
JCilk .. 5
MASS GraphPlaces .. 6
MASS Annotated ... 6

Further Analysis ... 7

Conclusion .. 7

Future work .. 7

Citations ... 8

Purpose:
The purpose of my research project is to further benchmark MASS and compare against
competitors.

My tasks included

• Developing a closest pair of points(CPP) and triangle counting algorithm using JCilk
• Rerun and get new results for KD-Tree range search program on MASS Java
• Work on Shortest path program and rewrite using MASS Annotation feature
• Gather data of all developed programs

My overall goal this quarter was to create benchmark programs for both MASS and competitors
that can then be used to compare performance of MASS and programmability.

Quarter Summary
This quarter I worked developing benchmark programs using MASS and JCilk.

JCilk Benchmarks
JCilk is a multi-threaded programing language that is based on Java. Unlike java, JCilk can fork
and join threads with no need for a runnable class or a start() method.

For tringle counting program I first created a graph. Each vertex is then accessed in parallel. At
each vertex, the neighbors are hoped to if the ID is less than the current vertex ID. This step is
done twice. After this step is done twice, the original vertex is searched for in the current
vertex’s neighbors.

The next program implemented in JCilk was CPP program. In CPP points in a 2d plane are given
and then search for the closest points. The algorithm used is divide and conquer algorithm. In
this algorithm the points are first sorted by the x-coordinate, the points are then divided by two
halfs recursively. This is done until 3 points are left. At this point the closest pair between the
three are found. The closest pair is returned along with an array with the points sorted by the y-
coordinate. Once the answer is returned the closest pair from the right and left are compared
and the closest is kept. The next step is to merge the sorted list of points that were returned by
the left and right halves. After this point the strip in the middle where the distance from the
middle is equal or less than the smallest distance of the pair of points.

Source code for JCilk programs can be found at:
https://bitbucket.org/mass_application_developers/mass_java_appl/src/f5b8d1dcf7ce20715cf
adb6abb240c83d11fb9fe/Benchmarks/jcilk_release/benchmarks/?at=jacoltzi%2Fbenchmarks_j
cilk

MASS GraphPlaces
Apart from JCilk programs I also re-evaluated the performance of MASS GraphPlaces’
implementation of KD-Tree Range Search. Our data showed a significant increase in
performance than what was originally recorded when submitting paper to IEEE BigData
Conference.

Source code for KD-Tree can be found at:
https://bitbucket.org/AC_rojas/mass_appl_jonathan/src/master/

MASS Annotations
Nearing the end of the quarter I was able to write a shortest path benchmark program using
MASS Annotations. Annotations are used in MASS to write programs which are event-oriented.
Events such as an agent or place being created, an agent leaving a place and agent arriving to a
place can trigger a method to be called on either the agent or place that is a part of the event.
Decorating a method on the place or agent with @OnArrival, @OnDeparture or @OnCreating,
will trigger that method for the corresponding event.

For shortest path three other programs had already been written. One was an agent discrete
migration implementation, the next two included asynchronous migration. The difference came
from the third implementation being done using doAll method instead of the common callAll
and manageAll. The doAll call specified two different methods to be called on the agents. For
annotation the doWhile method was called instead of a using an implicit while loop or callAll
and manageAll.the doWhile loop ended when there were no more agents left.

Source code for shortest path can be found at:
https://bitbucket.org/mass_application_developers/mass_java_appl/src/bac9514cf86d469f789
2a86879f039afea9b0493/?at=jacoltzi%2Fannotations_benchmarks

Results
From the programs mention above all of them have been measured for both performance and
programmability.

Programmability
The programs that I created are measure by programmability by the amount of lines of
code(LOC), classes and/or boiler plate code. Boiler Plate code refers to the code that is needed
to paralyze the program but has little to do with the actual logic of the program.
JCilk
JCilk in terms of programmability is great. JCilk is not a framework and does not use too much
boiler plate code. JCilk uses keywords, such as spawn and sync to fork and join threads. Figure
Table 1.1 shows JCilks LOC and boiler plate for both triangle counting and CPP. In both boiler
plate code is fairly low compared to other parallel computing frameworks.

Table 1.1

Programs LOC Boiler Plate
Triangle counting ~140 3
CPP ~200 3

MASS GraphPlaces
For MASS’ KD-tree range search program has already been evaluated for programmability Table
2.1 includes results.

Table 2.1

Frameworks LOC Boiler plate # of Classes

MASS ~ 490 4 6

Spark ~ 350 6 3

MapReduce ~ 450 25 6

MASS Annotations
Table 3.1 shows how an annotated approach to shortest path can lead to less code and less
boiler plate than any other approach within MASS. The shortest Path code can be seen in Figure
1.1 for MASS discrete-event and Figure 1.2 for MASS annotated. The two code snippets include
only the shortest path search. In these small code snippets, the difference in code can be seen.

Table 3.1

Strategy LOC Boilerplate
MASS Discrete Migration ~107 9
MASS Async ~104 10
MASS DoAll ~102 7
MASS Annotated ~98 7

case 1:
// discrete-event migration
int nextEvent = -1;
for (int time = 0; ; time = nextEvent) {
Object currTime = (Object)(new Integer(time));
gravity.callAll(Gravity.departure_, currTime);
gravity.manageAll();
Object[] args4callAll = new Object[gravity.nAgents()];
for (int i = 0; i < args4callAll.length; i++)
 args4callAll[i] = currTime;
Object[] allEvents =
(Object[])gravity.callAll(Gravity.onArrival_, args4callAll);
if ((nextEvent = minInt(allEvents)) == -1) {
 System.out.println("the shortest path = " + time);
 break; // Simulation finished
}
gravity.manageAll();
}
break;

Figure 1.1: Discrete-event migration

Performance
Performance is measured through running the benchmark programs and recording the
execution time.
JCilk
For JCilk I Gathered data on the triangle counting program where the graph size was 3000
vertices. For a graph this big, the program would often break. I was only able to gather data for
when all 4 processors were needed. Even when all 4 processors were used JCilk’s performance
was slow. Compared to MASS, Spark, and MapReduce as seen in figure 3.1, JCilk did worse than
all other competitors.

Figure 2.1 Triangle Counting 3000 vertices
 Credit: OAC Core: RUI: Agent-Based Scientific Data Analysis(NSF2020)

For CPP program 32768 point were evaluated to find the closest pair of points. Figure 3.2 shows
results of JCilk for 1-4 processors. Unlike triangle counting CPP execution times were low
compared to those of other frameworks where execution time can range around 25 seconds.

case 4:
 // Annotated
 gravity.doWhile(() -> gravity.hasAgents());
 Object[] args4doWhile = new Object[nNodes];
 for (int i= 0; i < nNodes; i++)
 args4doWhile[i] = new Integer(1); // just a dummy
 Object[] allCosts_doWhile
 = (Object[])network.callAll(Node.cost_, args4doWhile);
 System.out.println("the shortest path = " +
allCosts_doWhile[dst]);

}

Figure 1.2: Annotated

Figure 3.1

MASS GraphPlaces
Although KD-Tree range search benchmark program showed better performance than what
was first recorded, this time the evaluation showed a decrease in performance when there
were more computing nodes added. As seen in figure 4.1 the increase of computing nodes did
not decrease the time that the program would take to execute. As more points were added to
the KD-tree the more the performance decrease can be seen. The reason for this is speculated
to be due to a GraphPlaces dependency on Hazelcast.

Figure 4.1: MASS KDTree results with different amount of point
Credit: Agent-Navigable Dynamic Graph Construction and Visualization
over Distributed Memory, BigGraphs 2020

MASS Annotated
In figure 5.1 a performance evaluation was taken between MASS Annotated program and MASS
DoAll program. What is seen is that not only are annotations great to reduce code but also
competes in performance against other versions of MASS.

401

398
396

403

392
394
396
398
400
402
404

1 proccesor 2
proccesors

3
proccesors

4
proccesorsEX

EC
U

TI
O

N
 T

IM
E

(M
S)

CPP for 32768 points

32768 points

Figure 5.1

Further Analysis
JCilk can be concise if it is to write small programs. The amount of additional code needed to
parallelize a program is not much. However, there is not much other than making multi-
threading easier. Performance wise, JCilk is outperformed by all other parallel computing frame
works as seen in Figure 2.1. JCilk also suffers from over-head when parallelizing a program. JCilk
needs to create an object each time a spawn keyword is used on a method. This means that
recursive solution create a lot of objects. This is most likely the reason for the poor
performance. In the case of CPP the execution time can be credited to the algorithm, which is
an O(NLog(N)) solution.

MASS can be both concise and can have execution performance that can compete with other
frameworks. Although MASS GraphPlaces suffers from some overhead, this does not impact
MASS as a whole. Only MASS GraphPlaces uses Hazelcast. MASS Annotated can lead to both
concise code and completive execution performance. MASS annotations are also natural within
a MASS program. Most MASS programs are guided by the events of the environment, using
annotation makes creating the programs easy.

Conclusion
MASS’ new components GraphPlaces and Annotations are a great addition to the MASS
framework. GraphPlaces can improve by some modification on the Hazelcast dependency, but
other than that GaphPlaces can be great for reducing code in MASS when dealing with graphs.
MASS annotations are easy to use and can naturally be added to a MASS program due to MASS
agent paradigm.
Future work
I have officially finished all work that was asked for me to do for MASS. I however am interested
in creating the grasshopper optimization algorithm for finding K clusters. This work will be done
using MASS Annotated. Other than this work I will just be available to answer questions on my
work in order to help complete research papers that are being written using my work.

0

5000

10000

15000

20000

25000

1 node 2 nodes 3 nodes 4 nodes

M
IL

LI
-S

EC
O

N
DS

Shortest Path Annotaed vs DoAll

Annotated

DoAll

Citations

Fukuda, Munehiro, et al. “Agent-Navigable Dynamic Graph Construction and Visualization over
Distributed Memory.” BigGraphs2020, IEEE BogGraphs,
docs.google.com/presentation/d/1WByOWHR3pTs8RAGtqpNqn_O1JINegv3U/edit#slide
=id.p2.

Gilroy, J. (202Gilroy, J. (2020). DYNAMIC GRAPH CONSTRUCTION AND MAINTENANCE
[Scholarly project]. In Depts.washington. Retrieved 2020, from
http://depts.washington.edu/dslab/MASS/reports/JustinGilroy_whitepaper.pdf

