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Abstract

DYNAMIC GRAPH CONSTRUCTION AND MAINTENANCE

Justin Gilroy

Chair of the Supervisory Committee:

Dr. Munehiro Fukuda

Computing and Software Systems

Agent-Based Modeling (ABM) is a method of solving biological and similarly structured 

problems by simulating the interaction of entities with the notion of Agents. MASS - 

Multi-Agent  Spatial  Simulation  is  a  system  developed  by  the  Distributed  Systems 

Laboratory  at  UWB  for  applying  ABM  to  problems  with  the  addition  of  distributed 

computing to expand beyond what is capable of being simulated on a single node.  

MASS today is targeted at problems that exist in multi-dimensional space thus requiring 

graph space problems to be mapped by the user. We have responded to this problem 

by enhancing MASS with: 1) graph input file formats, 2) Dynamic graph construction 

and  modification  features,  and  3)  graph  visualization  through  integration  with 

Cytoscape.  This  paper  describes  the  goals  and  implementation  of  adding  graph 

targeting features to the MASS Java to allow non-professional developers to solve and 

visualize these large and compute intensive problems efficiently. 
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Chapter 1. Introduction

1.1. Background and Motivation
Agent-based modeling (ABM) is a form of simulation that attempts to mimic real-life 

scenarios by representing individual actors within a system [1]. In ABM the individual 

actors can traverse the system or data and act in  a predetermined manner.  These 

simulations can be used to solve optimization problems using biological  simulations 

such as Ant-Colony Optimization [2][3].

Agent-based modeling can be extended to perform such modeling on data that is in the 

form of graphs. By utilizing ABM and a biological algorithm like Ant-Colony Optimization,  

even graph problems such as finding the shortest path between two vertices can be 

solved with ABM [2].

A key component of existing work on  ABM at UWB is the MASS (multi-agent spatial 

simulation)  library.  MASS is a  system for distributing a very large dataset,  one that 

cannot fit within the resources of a single computing node, across a computing cluster 

[4]. MASS uses mobile code called “Agents” to process the data-set and thus  traverse 

the data autonomously.

This distribution and autonomy gives MASS the ability to have agents analyze huge 

amounts  of  data  that  would  not  fit  inside  of  a  single  node’s  physical  resource 

restrictions.

1.2. Goals
This project has three goals to aid in the development of graph problems with MASS: 

(1)  Various  graph  inputs  support,  (2)  Programmability  improvement  in  agent-based 

graph solving, and (3) Distributed graph visualization

1. Various graph Inputs support:  The project expands MASS to support a variety 

of input formats to increase the utility of graph support.

2. Programmability  improvement  in  agent-based-graph  solving:  We  aim  to 
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increase the programmability of MASS for application developers, particularly as 

it relates to graph problems. By implementing graph maintenance support directly 

into the MASS library, we intend to  shift the burden of graph programming into 

the MASS library so that users can focus on their problem domain.

3. Distributed graph visualization: We intend to allow users of MASS to visualize 

their graph network. We will use Cytoscape as an external visualizing tool that is  

popular among bioinformaticians.

1.3. Project Overview
In order to achieve these project goals, we will modify the MASS library and create two 

plugins for Cytoscape. Modifications to the MASS library will facilitate (1) Graph Input 

Formats by implementing two input formats: (a) HIPPIE Tab and (b) MATSim XML, and 

(2)  MASS  Graph  Maintenance  by  implementing  (a)  the  ability  to  add  and  remove 

vertices from a graph and (b) the ability to add and remove edges from a graph. The 

final goal (3) Visualization will  be implemented in two Cytoscape plugins: (a) export-

network plugin, and (b) import-network plugin; both plugins will require supporting code 

in MASS to send and receive a graph to and from MASS.

Chapter 2. Related Work
This section is an overview of three existing systems: Repast Simphony, FLAME, and 

Cytoscape  and  the  inputs,  programmability,  and  visualization  capabilities  of  each 

package. For each package we evaluate their features as they relate to graph analysis  

and for Cytoscape in particular we evaluate its graph visualization capability.

2.1. Repast Simphony
Repast  Simphony  is  the  latest  iteration  of  an  Agent-Based  Modeling  approach  to  

Complex Adaptive Systems that originated at the University of Chicago in 2000 [5]. The 

latest incarnation of Repast Simphony was released on Github September 30, 2019 [6].

Repast’s data model for graphs is based on a Projection of the data space into a logical  

view of the data for the user to work with [7]. Modeling a graph with Repast Simphony 
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requires the user of the library to adapt their graph problem to a strictly 2-Dimensional  

space within Repast Simphony. Repast supports creating and modifying graphs with the 

methods addVertex and addEdge before simulation

While  Repast  does support  loading a graph from a file  on disk,  it  is  limited to  two 

formats: UCINet’s DL format, and Excel format [7][8].  Furthermore, the Excel format 

requires adherence to Excel files based on UCINet’s format further limiting the utility of 

the input capabilities of Repast Simphony [7].

While Repast does have agents to explore shared data, the agent implementation in 

Repast does not support temporary suspension of activities [7]. Agent actions in Repast 

can be controlled by a  schedule or  triggered by  access to  a specified  variable  [9].  

Finally, Repast requires that agents are created at the same time as the graph itself is 

created  preventing  Repast  from  supporting  the  goal  of  our  project  of  Graph 

Maintenance [7].

Additionally Repast does not support parallel I/O that is required for performing complex 

biological network analysis quickly nor can agents migrate asynchronously [7].

Of particular interest in Repast is not only its long history but integration with the Eclipse 

Project’s Integrated Development Environment [7]. Integration with Eclipse sets Repast 

Simphony  apart  from  the  other  frameworks  described  because  it  allows  users  to 

perform actions related to creating, running, and analyzing a simulation view a graphical  

user interface.

Repast  offers  visualization  of  a  simulation  space  without  the  ability  to  modify  the 

simulation  space  [7].  While  Repast  supports  a  ‘Runtime  GUI’  [7],  setting  up  a  2D 

Display  of  a  Projection  in  Repast  involves  four  pages  of  configuration  dialogs  to 

visualize a network [11].

2.2. FLAME
One agent-based modeling framework that we considered in the for analyzing graph 

data  was  FLAME  which  stands  for  Flexible  Large-scale  Agent-based  Modeling 

Environment  [12].  One  feature  of  FLAME  that  would  be  of  interest  to  us  is  the 

framework’s ability to simulate a large number of agents which is indicated by using 

FLAME to run a simulation with 106 agents for a European transportation simulation 
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[12].

While a large number of agents can be seen as beneficial for analyzing a large dataset,  

FLAME does not have a data model that is separate from the agent construct. In this 

paradigm, each agent requires the entire dataset to be held within. This is contrary to 

our goals of analyzing data that will not fit within a single node.

As  FLAME  does  not  have  a  separated  data-model,  neither  does  it  have  any 

representation of a predefined space outside of the agents. For this reason, FLAME 

does not support any input format outside of its specialized configuration files called the 

model [13].

Another consideration that steered us clear of FLAME is the programmability of FLAME. 

One of the goals is to provide non-computer scientists with the tools to analyze large 

graphs with an approachable toolset.

Development in FLAME requires not only specifying to the framework a specification for 

the simulation in an xml file but also providing the definitions for functions utilized within 

the specification in a second file in the C language [12]. The functional definitions, while 

in a somewhat simplified and narrowed form of the C language require the user to learn 

a  domain  specific  ecosystem  of  functions  for  memory  allocation,  arrays,  variable 

definitions, et cetera [12].

2.3. Cytoscape
In addition to adding the graphing capability to the MASS library, this project intends to  

provide a visualization of the graphs being analyzed and simulated. To this end we 

explored the visualization package Cytoscape [14].

In contrast to Repast and FLAME, Cytoscape supports a number of file input formats: 

SIF, NNF, GML, XGMML, CYS (Cytoscape format), Excel, and Delimited Text [14]. Not  

only does Cytoscape support these file based formats, it also supports importing directly  

from a number of online databases such as STRING/STITCH, and WikiPathways [14].   

Cytoscape also supports as a core feature manipulation of graphs by allowing adding 

and removing edges and vertices [14]. Despite its extensive graph support, Cytoscape 

is a desktop application and, as such, is limited to manipulating graphs of sizes that are 

capable of fitting into the resources of the computer it is run on. This also limits the  
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package’s  ability  to  do  deep  analysis  and  simulation  on  a  graph  which  is  not  the 

intention of Cytoscape [14].

2.4. Summary
In order to achieve the goals of this project we require more than what is offered by any  

one of the above described projects: Repast Simphony, FLAME, or Cytoscape. More 

specifically, we should have the following features in ABM:

The ability to import a graph from a file is only present in Cytoscape but is limited by the 

resources of the computer it is run on both for visualization and analysis.

We require the ability to dynamically alter the shape of a graph for analysis and, by  

extension, we require the ability to control, create, and destroy agents on a dynamically  

maintained graph.

Our solution and the premise of this project is to achieve our stated goals: (1) Graph 

Input Formats, (2) Graph Maintenance, and (3) Graph Visualization by incorporating 

these features into MASS.

Chapter 3. Graph Support in MASS

3.1. MASS Library
MASS  approaches  Agent-Based  modeling  with  two  conceptual  entities:  an  Agent, 

representing an actor in a simulation, and a Place, representing a logical portion of the  

simulation space [4]. In MASS, the data is mapped to a multi-dimensional array of Place 

entities that represent the simulation space for analysis. To simulate actors in this space 

users of MASS can create Agent entities which can then autonomously traverse the 

logical space represented by Place objects. 

Parallelization in  MASS is  facilitated  by distributing  portions  of  the multidimensional  

Place array across nodes and further splitting a node’s portion of the space between 

multiple  threads  on  each  node.  This  distribution  of  the  data-set  across  multiple 

computing nodes gives MASS the ability to simulate large logical spaces beyond what 

can be represented on a single node.

Agents can then seamlessly migrate between the logical Place entities regardless of the 
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node or thread they are associated with. Figure 3.1 is a graphical representation of the  

distribution  of  Place  entities  across  a  cluster  of  3  computing  nodes  identified  as 

mnode0.uwb.edu,  mnode1.uwb.edu,  and  mnode2.uwb.edu  [4].  Each  node  in 

Figure  3.1  can  be  seen  to  have  multiple,  4  in  this  figure,  threads  of  execution  for 

manipulating the places and agents. Communication between each node is carried out 

through a basic networking socket.

Above the Place array visualization in Figure 3.1 we can see that each node contains a 

collection of the Agent entities that are associated with the Place entities the node is 

responsible for.

Figure 3.1: MASS library data model [4]

Also illustrated well in Figure 3.1 is the multi-dimensional nature of the Place entities 

within  the  MASS  data  space.  This  works  well  for  addressing  space  of  a  multi-

dimensional nature but leaves the graph to array mapping to the users of the library.
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3.2. Deliverables
This section describes how the graph mapping is brought into the MASS through our 

previously stated goals of adding support for graph input files, graph maintenance, and  

the  visualization  of  graphs  beginning  with  an  overview  of  the  components  to  be 

developed for the realization of these goals.

3.2.1. Graph Input Formats
The first goal of this project is to add to MASS the ability to import graphs via two input  

file formats: MATSim XML, an xml-based network format used in the MATSim traffic 

simulation  platform [15],  and  HIPPIE  Tab,  a  tab-separated value  format  used  as  a 

common data format for document protein-protein interaction networks [7].

a. MATSim XML Input Format

The first of the two formats added to MASS, MatSim is an XML format that was created 

for traffic simulation framework: Multi-Agent Traffic Simulation [15].  Though MATSim 

utilizes a variety of XML files for describing a simulation, we focused on a single file that  

defines the structure of the simulation network. Other files represent the vehicles and 

other properties that are not immediately necessary for the goals of this project.

The MATSim network format is scarcely documented so for the purpose of this project 

we relied on sample files as a reference for retrieving the format of the network file [16]. 

The MATSim network file is an edge list format with two second-level lists: nodes and 

links [16].

The nodes list contains a list of all vertices of the network with a number of attributes. 

The attributes include a 1-based integral index and x,y coordinates which we ignored for  

this project. 

The  links  list  is  the  proper  edge  list  which  contains  links,  or  edges,  between  the 

previously defined nodes based on the node id. The link elements contain two attributes 

to encode the source vertex and destination vertex: from, and to respectively.

Further  description  and  an  example  of  MATSim  network  format  can  be  found  in 

Appendix B.

b. HIPPIE Tab Input Format

Like MATSim,  finding a reference for  this  resulted in  using the  data  file  itself  as a  
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reference rather than a detailed specification [16]. In the case of HIPPIE, the website 

contains  a  large  dataset  called  HIPPIE_CURRENT,  for  the  current  compilation  of 

protein interactions [17].  This reference illustrated the HIPPIE Tab format enough to 

achieve the input goals of this project.

HIPPIE Tab, as the name implies, is a tab-separated value format similar to comma-

separated values, CSV. The HIPPIE file format describes a protein network in the form 

of an edge list. Each line in a HIPPIE Tab file represents a protein-protein interaction 

which together represents an edge in the protein graph.

An example line from the HIPPIE_CURRENT dataset is seen in Figure 3.2. Each line 

has a source protein  sequence followed by  a  numerical  id.  The source is  followed 

similarly  by  the  neighboring  protein  sequence  and  numerical  id.  The  next  field 

represents the interaction  attribute,  or  weight.  The final  field  is  a  comma-separated 

metadata field that varies for each edge.

AL1A1_HUMAN     216     AL1A1_HUMAN     216     0.76     experiments:in  vivo,Two-
hybrid;pmids:12081471,16189514,25416956;sources:HPRD,BioGRID,IntAct,MINT,I2D,Rual05
NEB1_HUMAN    55607    ACTG_HUMAN    71    0.65    experiments:in vitro,in vivo;pmids:9362513,12052877;sources:HPRD
SRGN_HUMAN    5552    CD44_HUMAN    960    0.63    experiments:in vivo;pmids:9334256,16189514,16713569;sources:HPRD,I2D,Rual05,Lim06
PAK1_HUMAN    5058    ERBB2_HUMAN    2064    0.73    experiments:in vivo,Affinity Capture-Western,affinity chromatography 

Figure 3.2: A single protein-protein edge from HIPPIE_CURRENT dataset

One important note to the HIPPIE Tab format is that the primary vertex key is a string.  

Furthermore, the vertex ids are non-sequential varying from very small to quite large. 

The small sample HIPPIE snippet contains 22 protein interactions with source protein 

ids ranging from 216 to 259,197 [18]. 

Further description and an example of HIPPIE Tab format can be found in Appendix A.

3.2.2. MASS Graph Maintenance Features
The Graph Maintenance features proposed for my project represent a significant portion 

of the work proposed to extend the MASS library in this project. In this context we are  

defining graph maintenance as the ability to create a graph without vertices. From this 

perspective we ‘maintain’ the graph by adding and removing vertices and edges.

a. addVertex/removeVertex

The core feature of graph maintenance is the ability to add vertices to an empty graph.  
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To achieve this we will create an ‘blank’ constructor for the new GraphPlaces type in 

MASS that will allow initialization of MASS without importing a network from a file.

The user of the upgraded version of MASS with Graph Maintenance features will be 

able  to  call  the  addVertex  method  on  an  instance  of  GraphPlaces  with  the  only 

parameter being the id to associate with the new vertex.

The  removeVertex  method,  mirroring  addVertex,  will  also  only  require  a  single 

parameter to specify the id of  which vertex to remove. One key difference between 

adding and removing is that during removal, there are likely references to the vertex 

being removed in the form of neighbors. MASS will remove these neighbor references 

from other  vertices  in  the  graph  during  the  processing  of  removeVertex.  Complete 

specification of the MASS Graph interface can be found in Appendix H.

b. addEdge/removeEdge

In  the  case  of  maintenance  of  edges,  the  user  intent  is  to  modify  the  relationship 

between vertices already existing in the graph. The user can create edges between any 

two vertices that exist in the graph with an associated attribute representing the weight 

of the relationship of the edge.

Edges created in a graph are directed meaning that the source and destination vertices 

are indicated when the edge is created or removed.

3.2.3. Cytoscape Integration
Integrating  MASS  with  Cytoscape  requires  two  key  interactions  between  the  two 

systems: pulling the graph from MASS into Cytoscape, and sending the graph from 

Cytoscape to MASS. 

Cytoscape allows developers to add functionality to the main application via a plugin 

architecture which  allows such features to  be developed independently  of  the main 

application and managed at startup. Based on the two interactions required for this  

project we will develop two plugins for integration with Cytoscape.

The first plugin will be called import-network and serves the first interaction of pulling the 

in-memory graph from MASS. The plugin will pull the graph from MASS as a simplified 

data model for network transport and then be rebuilt inside of Cytoscape into a native 

CyNetwork with a combination of CyNode and CyEdge entities.
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The  second  plugin  to  be  developed  will  be  called  export-network.  This  plugin  will  

address  the  second  interaction  with  MASS  by  serializing  the  currently  selected 

Cytoscape CyNetwork into the network GraphModel for sending to MASS.

Both the import and export network plugins require additions to MASS to support such 

communication. To facilitate communication between Cytoscape and MASS we use a 

plain socket connection between Cytoscape and the control node.

To communicate the graph data itself, we intend to create a lightweight representation 

of the graph with only essential information such as the vertex ids and their neighbors.  

Reducing  the  footprint  of  the  data  model  is  essential  for  communicating  across  a 

network socket.

Actions performed on MASS will be determined by one of currently 2 strings to be sent 

by Cytoscape:

 getGraph - retrieve the in-memory graph from MASS

 setGraph - sends the current CyNetwork to MASS

MASS is then able to determine the processing requirements of the request based on 

the initial request string. For getGraph, MASS sends the complete GraphModel back to 

Cytoscape  through  the  socket.  When MASS receives  the  setGraph  request  it  then 

knows to read the socket for a GraphModel object to be constructed on the cluster.

3.3. Technical Challenges

3.3.1. Graph Input Formats
Implementing  the  new input  formats  at  the  beginning  of  this  project  posed a  more 

substantial challenge than anticipated. In particular, the two formats were not as readily 

documented as I expected with my experience implementing parsers for other formats. 

Eventually it became clear that deriving the format from a sample file would be most 

efficient [10]. Sample files for both HIPPIE and MATSim were readily available [10][16].

A second challenge came from further examination of the HIPPIE input format [10]. This 

format surfaced a significant deficiency in the existing pattern of mapping vertices to 

ordinals compared to MATSim which uses sequential vertex ids beginning from 1 [16].
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In  MATSim,  the  vertex  IDs  are  provided  as  sequential  integers.  The  existing  file 

importing proof-of-concept in the MASS library for importing a graph via a CSV file gave 

implicit ids to the vertices based on their ordination within the input file: the first was 

labeled 0, the second 1, and so on as we typically do with base 0. For implementing the 

MATSim input format, we were able to extend this model because the MATSim format 

allows easy manipulation of the vertex ids with a simple offset of 1.

The HIPPIE format, in contrast, contains 2 possible attributes for each vertex: a String, 

and a non-sequential integer. The integer attribute represents an incomplete range of 

integers (sampled from ~200 - > 100,000 seen in the hippie_current.txt dataset [18]). 

The problem to be seen here is that the MASS library does not have a hashing method 

that  would allow mapping a given vertex id,  string or  integer,  consistently  across a 

cluster of MASS cluster-computing nodes. The problem is compounded by our goal of  

supporting dynamic modification of the graph so a pre-calculated complete hash was 

not an option.

The solution options clear to us was to implement a distributed map in MASS to allow 

consistent hashing across the cluster system or to utilize an existing library with such 

distributed map capability included. With another group member working on a project 

that incorporated a Java library called Hazelcast that includes a distributed map and the 

benefit of re-using well tested code, we elected to use the existing library for this project 

[20].

The mapping solution we came up with maps an object key to an integer that represents 

the  global  index  for  the  place  associated  with  a  given  key.  This  allows  users  to  

reference the vertices in their data as expected: the logical name of the vertex. MASS 

can then use the logical name of the vertex as a key into the distributed map to retrieve 

the global index of the place that represents the vertex.

3.3.2. MASS Graph Maintenance
Another  significant  design challenge we had to  overcome was to  create a dynamic 

structure for holding vertices on the cluster. The existing MASS structure is initialized at  

the given size and distributed across the cluster evenly based on the input size. This 

distribution is not possible when dealing with dynamic changes of the data.
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Vertex Mapping

Considering vertex mapping, the correlation between a user application’s logical vertex 

ID and the internal  memory location of a vertex within the cluster system, posed a 

significant  challenge as  we began implementing  graph maintenance features  in  the 

MASS library. To support a dynamic feature we could not know ahead of time which 

vertices would go on which node and how to find the vertices after they had been sent  

off to a node to be initialized. Our solution was to create a second data-structure within 

the new graph model to allow a modified paradigm within affecting existing applications.

To  address  the  problem  of  dynamic  directly-addressable  vertices  within  a  cluster 

system,  we  devised  a  layered  duplicate  of  the  existing  model  used  in  MASS.  By 

duplicate  we  specifically  mean  the  size  of  the  layer  space.  While  supporting  the 

dynamic expanding nature of this graph we intend to support, we must also still be able 

to consistently locate a place across the cluster.

Where MASS has a strictly enforced size based on the input, we expanded the initial 

size to be the size of layers within the cluster. In our graph infrastructure we maintained 

the size but duplicated this into layers to allow virtually unlimited depth for dynamic 

modification of the graph. This strict adherence to the sizing of the data-structure is 

what would allow us to support dynamic sizing as well as direct addressing of individual 

places.

With  the  data  structure  defined,  we  still  needed  a  way  to  address  the  vertices 

consistently from any node. For this we devised a sort of hashing algorithm a globally 

unique integer to the specific vertex location within the cluster.  This was achievable 

thanks to creating layers of a consistent size. From this size we can allocate a stripe to 

each node and further extend the stripes to any number of layers.

The proposed graph data model built  on top of the existing MASS multidimensional 

model is illustrated in Figure 3.3. The figure breaks down a MASS cluster of 4 nodes. In 

this proposed layered model, layer 0 is the existing MASS dimensional model. Layers 

starting from 1 are within the collection maintained within the graph implementation. 

These layers are represented by Graph Layer 1 and Graph Layer 2 in Figure 3.3.

Each graph layer imitates the MASS layer’s size and allocates a fraction of the size to 

each node in the cluster. In other words, if we map 100 vertices to a cluster system 

containing 4 computing nodes, each node would be allocated one-quarter of the size, 
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100 Place entities, as their portion of the data set. In this scenario each node would be 

allocated 25 Place entities. Therefore, node 0 would be allocated indices 0-24, node 1 

indices 25-49, node 2 indices 50-74, and node 3 indices 75-99.

Maintaining this 100 Place scenario, the Place indices 0 - 99 represent the MASS layer, 

layer  0,  in  Figure  3.3  which  MASS  manages  with  the  existing  multi-dimensional 

implementation. In the new model we intend to repeat this association in a round-robin 

fashion where the next allocation of 25 Place entities, in this particular scenario, would 

be associated to node 0 at layer 1. This layer, layer 1, also represents the first layer of  

the graph data model - Graph Layer 1 in Figure 3.3.

Figure 3.3: New data model enabling support for dynamic places  

This specification allows maintaining a linear index for each Place that can be located in 

MASS with an addressing algorithm defined as follows:

A. nodeCount: the number of nodes in the cluster

B. size: the initial size specified in the GraphPlaces constructor

C. stripeSize: fraction of the initial size delegated per node

D. globalIndex: 0-based global index retrieved from distributed map

E. layerIndex: 0-based index of the layer within graph data

F. localIndex: 0-based index of the place within the layer collection 
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stripeSize = size / nodeCount

layerIndex = globalIndex % size

localIndex = globalIndex % stripeSize

Using this addressing algorithm we can store a single integer in the distributed map to 

allow  mapping  an  arbitrary  vertex  id  to  a  unique  place  in  MASS  that  is  directly 

addressable. The layering allows the use to expand the graph well beyond the initial  

size.

3.3.3. Cytoscape Integration
Integrating Cytoscape and MASS, posed a significant challenge in this project due to  

the fact that we are adding a completely new feature to MASS with no existing code. 

This  meant  we must  design all  interactions from scratch.  Furthermore,  we are only 

limited by the programming model that Cytoscape allows.

The larger challenge of integrating MASS and Cytoscape can be further broken down 

into  two  task:  a)  Model  to  Visualization:  Mapping  our  data-model  to  a  visual 

representation within Cytoscape, and b) Interaction Model: The method in which MASS 

and Cytoscape communicate.

a. Model to Visualization 

Speaking of the limitations of Cytoscape, perhaps the most apparent is that we must 

map our  vertices and edges to  the Cytoscape data model  which is  represented by 

putting vertices and edges into separate tables. Attributes of each vertex or edge are 

then encoded into columns of the table.

The developer is given the ability to add custom columns to the tables but are limited to 

primitive types and lists  of  primitive types.  For  the goals of  this  project,  the default 

columns on both the vertex (node in Cytoscape), and edge table were adequate. 

Another challenge we faced was the styling of vertices as they appear in Cytoscape. 

The default visual representation of vertices was not entirely representative of a unique 

vertex in a network so a simple styling transform was applied to incoming graph data to 

assign names and interactions to the vertices.
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b. Interaction Model

In  addition  to  mapping the  network  graph model  to  the  Cytoscape data  model,  we 

required  a  way  for  Cytoscape  to  invoke  commands  in  the  MASS cluster  and  elicit 

responses. For this problem we elected to implement a simple remote-procedure call  

interface where Cytoscape could send a request to MASS as a simple string and MASS 

can parse the request and respond accordingly.

An additional  benefit  of  this RPC interface is that  it  is  easily expandable by adding 

additional commands with associated parsers.

3.4. Implementation
Implementing  the  specified  features  described  in  the  above  described  deliverables 

comes  in  the  form  of  code  changes  to  the  MASS  library,  changes  to  the  MASS 

applications [21] for testing and verification, and creation of two plugins for integrating 

with Cytoscape. These features were developed iteratively meaning each feature was 

not  necessarily  completed  in  order,  however,  at  a  high  level  the  features  were 

completed as follows:

1. Graph Input formats MATSim and HIPPIE were added to the library first as a way 

to effectively validate the data structures to be implemented to support graphs in 

MASS.

2. MASS Graph  Maintenance  features  which  allow  dynamic  modification  of  the 

graph structure.

3. Cytoscape Integration

a. Import graph from MASS into Cytoscape

b. Export a network from Cytoscape to MASS

3.4.1. Graph Input Formats
Each input format has a unique initialization function in MASS that will parse the input 

and populate the cluster system with the container vertex data. MASS uses the number 

of vertices contained in the input file to set the internal size so that the user is not 

required to do so.

To allow for vertices with arbitrary values as IDs, MASS maintains a mapping between 
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user-data vertex IDs to a linear index. The map allows an arbitrary but homogeneous 

structure of keys and values. 

3.4.2. MASS Graph Maintenance
The MASS graph maintenance features represent a large portion of this project.  As 

such, while they are primarily implemented as features of the MASS library, they serve 

as an interface for users of the library as well as for the visualization enhancements  

added via a Cytoscape plugin discussed in the next section.

At  a  high  level,  graph  maintenance  in  MASS can  be  simplified  to  the  adding  and 

removing of vertices and edges.

a. Data Model

The existing implementation, each computing node in the cluster system is responsible 

for maintaining an array of Place entities representing a fraction of the total data set.

To support a graph maintenance in MASS we expanded on the existing model. Based 

on the initial global size, specified in the constructor arguments, or from the input file, 

we use the same distribution per node as a reference for stripeSize. See section 3.3.2 

for a detailed explanation of the data model to be implemented.

b. Vertices

The primary problem to solve with adding vertices is solved with the implementation of 

mapping arbitrary keys to linear indices. By using a distributed map for mapping vertex 

attributes to a global index and an addressing scheme for mapping these global indices 

we are able to distribute the data across a cluster system of computing nodes.

Modification of vertices and edges is made possible by this mapping. MASS is able to 

determine  the  vertex  representation  based  on  the  addressing  model  and  insert  or 

modify the appropriate data structure.

3.4.3. Cytoscape Integration
When planning the work for this project we realized there were two primary interactions 

that  we  hoped  to  address:  sending  a  graph  created  in  Cytoscape  to  MASS,  and 

retrieving  a  graph  that  is  currently  in-memory  in  a  MASS  cluster  to  visualize  in  

Cytoscape.
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To achieve these goals we implemented the infrastructure for such communication in 

MASS via a new thread to listen for requests from Cytoscape. 

In  order  to  facilitate  this  bi-directional  communication  channel  between  MASS and 

Cytoscape we also required a data model that would be lightweight for transferring over 

the  network.  This  data  model  also  serves  as  a  bridge between  systems that  have 

different  internal  representations for  their  graphs.  This  communication is depicted in 

Figure 3.4

 

Figure 3.4: Communication between MASS and Cytoscape

a. CytoscapeListener

We have  implemented a  class  called  CytoscapeListener  in  MASS to  listen  for  and 

process requests from Cytoscape. This class appears in the MASS portion of Figure 

3.4.

c. Cytoscape Plugins

Modifications to Cytoscape are made possible via OSGI plugin architecture built into 

Cytoscape [22][23]. OSGI, or Open Service Gateway Initiative, is a group that maintains 
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the OSGI standard of developing modularized Java components that can be loaded at 

runtime [22].  The result of this project includes two such plugins representing each 

direction of the communication channel: Import Network, and Export network.

A Cytoscape plugin is principally built out of three required classes: an activator, a task 

factory,  and a task.  The purpose of  each class for  the  Import  Network  and Export  

Network plugins are described in Table 3.1.

Table 3.1: Breakdown of Cytoscape plugin classes and responsibilities

Class Purpose Plugin

Import Network Export Network

Activator - Entry point of a plugin
- Assigns services to factory 
and associated the factory a 
menu option

Creates MASS > 
Import Network 
menu option

Creates MASS > 
Export Network 
menu option

Factory - Called when the user selects 
the created menu option
- Creates an instance of Task 
class to process a request

- Pass required 
Cytoscape APIs to 
task

- Pass required 
Cytoscape APIs to 
task

Task Actual plugin logic - Request 
GraphModel from 
MASS
- Deserializes 
GraphModel 
response into 
CyNetwork

- Serializes 
CyNetwork in 
GraphModel
- Sends 
GraphModel to 
MASS

i. Cytoscape to MASS

The Import Network plugin we implemented in Cytoscape retrieves a graph from MASS 

for visualizing in Cytoscape. By selecting the Import Network menu option, Cytoscape 

sends a request to MASS to retrieve its in-memory graph. Our plugin then deserializes 

the MASS response into a Cytoscape representation of the graph: a CyNetwork.

To achieve a simple and consistent visualization of a graph, a few minor styles were 

applied to the nodes created which is illustrated in Figure 3.5.
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Legend
Blue Rectangle: Vertex with neighbors
Red Circle: Vertex with no neighbors
Yellow Rectangle: Selected vertex

Figure 3.5: HIPPIE current dataset with non-source neighbors represented as red 
circles

iii. Import Network Data Flow

The current user action implemented in the Cytoscape plugin is ‘Import Network’ in the 

Apps  ->  MASS  sub-menu.  This  menu  option  kicks  off  the  CreateNetworkTask 

implemented in the new MASS plugin for Cytoscape. Figure 3.6 illustrates the process 

and data flow from the user initiating the Import Network process.
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Figure 3.6: Sequence diagram for importing a network into Cytoscape

Chapter 4. Evaluation
This section is an evaluation of the work done for this project. In order to evaluate the 

work  that  has  been  done  we  will  survey  the  programmability  of  new  features 

implemented in the MASS library: (a) graph input formats and (b) graph maintenance 

features. In addition we will evaluate the programmability and usability of our integration 

of MASS and Cytoscape.

4.1. Results
We will now enumerate the takeaways from this project in the areas of programmability  

and  usability  of  the  new features  implemented in  this  project  compared  to  existing 

options.

4.1.1. Programmability and Usability 
For our purposes, programmability relates to our goal of creating a graph interface to 

the MASS library that makes application programming accessible to users that are not 

computer scientists or do not have a strong background in programming.
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In  order  to  evaluate  the  programmability  of  our  new  features  we  compare  the 

implementation of an application using MASS with the existing multidimensional data 

model.  We will  measure the programmability  based on the number of  Java classes 

required and the number of lines of code to implement a triangle counting application.

Sample Application - Triangle Counting

Throughout the development of the features for this project, we focused our attention on 

a  simple  application  for  counting  the  number  of  triangles  in  a  given  graph.  This 

application was chosen for 3 reasons: it is a simple application with deterministic results  

with complete graphs, the code for the MASS library implementation already exists in 

the sample application repository [21], and the algorithm requires mapping a graph into  

MASS’s multi-dimensional data space.

When re-implementing the application with the use of the graph features of the MASS 

library, we no longer require the application to map a graph to 2-dimensional space. 

This  alone  results  in  dropping  a  complete  class  called  Map  from  the  application 

representing 58 lines of code. Table 4.1 further illustrates the lines of code and class 

differences  between  the  triangle  counting  implementations  in  MASS and  MASS w/ 

graphs.

Table 4.1: Programmability breakdown of triangle counting application

Framework Classes Lines of Code

Boilerplate/setup Total

MASS 4 100 407

MASS w/ graphs 2 23 353

In addition to deprecating the Map class, the new graph features ultimately deprecated 

the  custom  Node  implementation  required  by  the  multidimensional  MASS 

implementation of the triangle counting application. This is reflected in Figure 12 as the  

second reduction of classes required in the second column as well as the reduction of 

boilerplate code.

The results also show that the boilerplate code is significantly reduced to only 23% lines 

of code (LoC) in new graph-based implementation of triangle counting as seen in Table 
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4.2.  This  reduction  indicates  that  the  overall  reduction  in  code  is  13%  which  is  

concentrated in the setup code.

Breadth-first  Search  (BFS)  is  another  example  of  a  graph  analysis  application 

considered  in  [24]  for  programmability.  We have  re-implemented  this  application  to 

contrast  with  the  existing  analysis  based  on  LoC  and  number  of  object  instances 

required.

BFS contrasts with the Triangle Counting application because, while it does benefit from 

MASS’s handling of neighbor management, BFS requires an additional data member to 

maintained within the vertex data space. This requirement results in BFS requiring a 

simple VertexPlace implementation  provided by  the  user  to  complete the algorithm. 

With the neighbors handled by MASS this class file is reduced to only nine LoC. The 

complete comparison between MASS and MASS Graph implementation of  the BFS 

algorithm is in Table 4.2.

Table 4.2: Programmability breakdown of breadth-first search application

Framework Classes Lines of Code

Boilerplate/setup Total

MASS 5 7 326

MASS w/ graphs 4 8 243

Taking  the  results  of  Table  4.2  into  account  we  again  see  a  reduction  in  classes 

required to implement the application with the enhanced MASS library. The boilerplate 

code is nearly the same while the overall line count is reduced as expected due to the 

removal of a graph management class.

It should be noted that this reduction of classes required by the user application could 

also be considered deprecation as it is not simply re-organizing code but the MASS 

library itself is replacing the purpose of the previously required class.

In addition to the Triangle Counting and Breadth-first Search applications, we tested 

with a variety of programs existing in the MASS sample application repository [21] as 

well as simple driver programs that were more focused on a specific component under 

development,  and  finally  a  number  of  new  and  extensions  to  existing  tests.  The 
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additional  modifications  and  tests  were  not  cleaned  up  or  rigorously  tested  so  not 

included in the final product.

Functionality

In addition to the raw code reductions allowed by our newly implemented features, we 

have  provided  completely  new  capabilities  to  users  of  the  library  in  the  form  of  

visualization  and  dynamic  data  modification.  We  will  now  compare  the  enhanced 

features of the MASS library to the existing implementation as well as Repast Simphony 

summarized in Table 4.3.

Table 4.3: Feature matrix of MASS, Repast Simphony, and MASS w/ Graphs

Data size Data modification Visualization

MASS static not available none

MASS w/ Graph Support dynamic dynamic Import and export

Repast Simphony static static Read only (import)

Our  comparison  considers  three  characteristics  shared  between  the  three  ABM 

frameworks:  MASS,  MASS with  graphs (as  developed by  this  project),  and Repast 

Simphony.  The  data  size,  data  modification,  agent  deployment,  and  visualization 

features of each framework are first considered at a high level binary classification in 

Table 4.3 and then enumerated for the specific features in Table 4.4.

Data Size

MASS: a static specification of the model space size and is created before simulation 

begins.

MASS w/ Graph Support: an initial size can be specified but can expand or retract 

without restarting the simulation. The size can also be automatically determined based 

on the input data.

Repast Simphony: the data model is set once simulation begins

Data Modification

MASS: modification of the data space restarting the simulation

28



MASS w/ Graph Support: an initial size can be specified but can expand or retract 

without restarting the simulation. The size can also be automatically determined based 

on the input data.

Repast Simphony: the data model cannot change once simulation begins

Visualization

MASS: no integrated support for visualization

MASS w/ Graph Support: integrated with Cytoscape via plugins. Graphs can be sent 

and received from Cytoscape.

Repast Simphony: the “runtime GUI” allows a read-only visualization of the graph.

Table 4.4: Process comparison of MASS vs MASS w/ graphs for graph application

System Initialization Interaction

MASS - Create a tightly packed array representation of the graph - Neighbors must be mapped to integers

MASS w/ Graph 
Maintenance

- Create vertices with addVertex
- Create edges with addEdge
- Import from MATSim or HIPPIE Tab file
- Export from Cytoscape

- Neighbors can be any hashable object
- Retrieve neighbor index from 
distributed map

In  addition  to  removing the  burden of  the  graph implementation  from the  user,  the 

maintenance  features  added  to  MASS  also  increased  the  usability  of  MASS  by 

improving the graph interaction paradigm by allowing migration to a vertex without an 

integer id.

In the existing implementation all neighbors must be integers and the neighbor ids can 

be used for migration. In contrast, the newly implemented Triangle Counting application 

keeps the neighbors list as logical names. For migration in the new implementation, the 

application retrieves the neighbors global index from the map for migration.

To further compare the resulting programming interface of our improved MASS, Table 

4.5 breaks down the programming constructs provided by MASS and Repast Simphony 

in  regards  to  the  same  three  key  features:  data  size,  data  modification,  and 

visualization.
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Table 4.5: Implementation matrix of MASS, Repast Simphony, and MASS w/ Graphs

System Data size Data modification Visualization

MASS Places constructor parameter not available not available

MASS w/ Graph Support Constructor parameter
Input file
Graph Maintenance features
- addVertex
- removeVertex

Graph maintenance functions
- addVertex
- removeVertex

Import and export in 
Cytoscape

Repast Simphony NetworkBuilder (Projection) Not available Runtime GUI

In particular, features added to MASS allow dynamic modification of the data space 

through maintenance features added in this project. This feature is indicated in Table 

4.5 by the lack of ability in red in the data modification column.

The  contrast  of  visualization  capabilities  are  a  bit  more  complex.  Table  4.5  clearly  

indicates our improvement over the existing MASS total lacking of the feature. Repast  

Simphony on the other hand, indeed does have visualization capabilities but does not 

allow modification of the data space based on the visualization.

4.1.2. Visualization - Cytoscape
The practical benefits of allowing visualizations of graphs in MASS became clear in 

particular when testing the import plugin with the HIPPIE dataset [10]. In one of our test  

programs for CytoscapeListener we imported the entire network into Cytoscape.

This quickly surfaced an error  because some neighbors of vertices were not  in  the 

vertex  table.  By  styling  these  vertices  differently  than  the  rest  of  the  graph,  the 

visualization had evolved to render a clear distinction from vertices with neighbors of 

other vertices in the graph and those without.

With the added ability of creating a brand new graph in Cytoscape and sending it MASS 

for processing, we had not only reached a point for visualizing a graph in MASS but we 

also had an additional method for supplying graph data to MASS for processing.

This  project  successfully  achieved  our  goals  in  comparison  to  Repast  Simphony 

particularly  as  it  relates  to  Repast’s  “Runtime  GUI”  and  visualization  capabilities 

described in section 2.1 and in Tables 4.1-4.5. Repast has the ability to visualize a 

network in progress but has no ability to affect the network with the GUI.
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In contrast to Repast Simphony, our CytoscapeListener and Import/Export plugins allow 

two-way  communication  between  MASS  and  Cytoscape.  Our  implementation  also 

improves on the many steps required to visualize a graph: both import and export of the  

network in Cytoscape are achieved with a single button click.

4.1.3. Execution Performance
For  evaluating  the  performance  of  our  implementation  we  compare  dynamic  graph 

modification implemented for this project with a graph fronted for Apache Spark called 

GraphX [25]. As spark represents a different paradigm of data analysis, our comparison 

focuses on modifying the dataspace itself.

The following benchmarks and evaluation evaluate each system’s ability to modify an 

existing graph and continue analysis. To this end we begin each system with a graph 

before beginning stepped benchmarks of adding to the graph. We have defined this 

scenario as follows:

1. Each system will begin a with a complete graph of 1000 vertices before timing

2. 100 vertices will be added to the system’s data model

3. The system will calculate the total number of vertices

4. Steps 2 and 3 are timed and repeated for 100 iterations

This benchmark results  with  MASS having a significant  lead over Spark-GraphX as 

seen in Figure 4.1. Though the addition of vertices is constant, 100 vertices are added 

in  each  iteration,  the  runtime  increases  in  both  systems  due  to  the  increased 

computation required to generate the complete graph at each iteration. Each iteration 

compounds the number of neighbors to add to each new vertex.
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To validate these benchmarks we will now review the individual implementations of the 

benchmark. 

Spark GraphX

Apache Spark is a data analysis tool from the Apache Foundation [25]. One particular 

characteristic that is important to note about  Spark is that the data used for analysis is 

required to be in what Spark calls an RDD, a resilient distributed dataset. The details of 

RDDs are not important to our discussion, however, the fact that they are immutable is. 

It is this immutability that significantly impacts Sparks performance when attempting to 

modify graphs.

In order to represent a graph in GraphX we must create two separate Java collections 

for  the  vertices  and the  edges.  These two collections  are  then converted  to  RDDs 

before being combined into a GraphX graph. In order to modify the graph we must 

extend the complete Java collections and recreate the GraphX graph.

This requirement results in the trade-off of either maintain two complete representations 

of the graph or recalculating the entire graph on each iterations. For the purposes of  

these  benchmarks  we  have elected  to  maintain  both  graphs in  memory  which  has 
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limited  the  size  of  the  graph  to  be  tested.  With  the  default  Spark  configuration 

expanding the graph size beyond 45 iterations, 4500 additional vertices, resulted in the 

Spark task running out of memory.

MASS

For the MASS implementation we utilized the graph maintenance interface developed in 

this project and specified the base size as 100 vertices. This size specification meant 

that each iteration would result in an additional layer in the GraphPlaces vertex array.

Modification  to  the  graph  was  made  possible  by  directly  interfacing  with  the 

GraphPlaces object just as the initial graph was created. No additional data model was 

required.

4.2. Discussion
While this project was successful according to its above goals, there are a few misses 

that could be improved in the future. At this time we iterate 2 shortcomings that are 

important considerations for future related work as well as expansion to features in this  

portion of the MASS library.

4.2.1. Mixed Data Model
Firstly, we implemented the graph maintenance features into the library in such a way 

that the existing data model would be usable unchanged in existing applications. This is 

an important feature for software development so that new changes to a library do not  

break existing code.

The first portion of the implementation of this project was the implementation of HIPPIE 

tab  and  MATSim file  formats.  As  this  code  was  deep  in  existing  MASS code,  we 

implemented this portion of the project using the existing MASS data model. It was not  

until we began work on the graph maintenance features that we developed the data 

model described in section 3.3.2. Vertex Mapping.

This decision led to graph support existing within both the existing multi-dimensional 

data-mode  and  the  new  layered  data-model  within  GraphPlaces.  The  dimensional 

model is used for graphs from input files while the layered model is used for vertices  

and edges added to the graph.
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The situation is further exacerbated when vertices are added to a graph imported from a 

file. This led to complicated conditional logic in agent and place logic for determining 

actions to take as well as the non-obvious deficiency that, in its current state, graph 

maintenance features do not support the graph imported from a file.

This is not to say that graph maintenance features are unavailable when importing a 

graph from a file, however, the vertices created from are created within the existing 

MASS data space and cannot be connected dynamically. One current workaround for 

this shortcoming is to populate the graph from a file into MASS then import the MASS 

graph into Cytoscape followed by exporting back to MASS. This process will result in 

the entire graph being within the graph maintenance data model and facilitating future  

modifications to the entire graph.

In hindsight it would have been prudent to update the import formats to use the graph  

model to unify all graph implementation and avoid this shortcoming.

4.2.2. Cytoscape Integration Limitation
For our initial implementation of integrating MASS and Cytoscape, it became apparent 

that implementing the integration in a protracted period of time we were required to 

simplify the initial support. In order to simplify the communication between MASS and 

Cytoscape, the current implementation requires converging the entire graph data model,  

the GraphModel, onto the control node and then into Cytoscape.

While this data model is a simplified form of the entire graph, it does limit the size of the  

graph to one that would fit  on a single node. It  would be possible to implement the 

communication in such a way that the data was converged within Cytoscape but this 

would retain the memory limitation. As such, the current implementation of Cytoscape to 

MASS integration is not able to stream extremely large graphs from MASS to Cytscape.

For this reason we elected to implement the convergence solution for the initial version  

of Cytoscape implementation and defer support for larger graphs to a future project.

4.2.3. Performance
The  performance  improvements  seen  comparing  MASS  with  graphs  to  Spark  with 

GraphX are promising, however, the results are based on an elementary understanding 
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of Spark and GraphX. It is possible there other improvements that would narrow the gap 

between MASS and Spark.  Nonetheless,  due to  Spark supporting modification of  a 

dataset we expect MASS to ultimately surpass Spark’s performance to some extent.

After  compiling  the  benchmark  results  for  this  report  it  was  determined  that  the 

benchmarks were not continuing to maintain a complete graph in either system. While 

we began with a complete graph of 1000 vertices, additions to the graph were made as 

follows:

1. 1000 vertices added

2. all new vertices are connected to the entire graph

The  outcome  of  this  algorithm is  that  new vertices  are  connected  to  all  remaining 

vertices but existing vertices are not modified resulting in a formally incomplete graph.  

Despite this oversight,  the algorithm is maintained in both MASS and Spark so the  

results remain valid. A complete graph is note necessary to compare performance of  

the systems.

An additional point to note from Figure 4.1 is the wide variation of runtime seen in Spark 

compared to MASS. This could be attributed to the complexity of running a simulation in 

Spark as well as the overhead of communication between Spark tasks. In order to run 

Spark we require a control process and a worker process. For this performance analysis 

both processes were run on the same computing node.

4.2.4. Programmability
Programmability is a nebulous word that based on English grammar and [27] is defined 

as the an ability to be programmed. By this definition either system is programmable but  

in the case of this paper we are interested in the ease of programming the systems. 

One  metric  we  chose  to  quantify  “ease”  in  this  paper  was  the  number  of  classes 

required to develop a client application but this comes with a caveat: we could put all  

the code into a single class and call it a day. 

For  this  reason  we  also  include  breakdowns  of  boilerplate  and  total  lines  of  code 

required to help rectify this point. Putting all of the code into a single class would have a 

lesser affect on the overall lines of code but again we can write very compact code with 
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lambda  functions,  anonymous  classes,  and  a  variety  of  programming  constructs  to 

reduce the number of lines of code.

In these ways we see that number of classes and lines of code may not be the best 

metrics for qualifying the programmability of a system. Creating maintainable software 

requires careful consider of the trade-offs between being concise and being expressive. 

Longer code that clearly illustrates a process may be much easier to understand than a 

fragment of code that is crafted to be as short as possible. However, by focusing on the 

reduction of code in the form of deprecation we can have a better sense of the reduction 

of code being unbiased.

The code reductions described with respect of triangle counting and breadth-first search 

are specifically components that are no longer required by the client application. In this  

way  our  programmability  enhancements  to  MASS  are  in  the  form  of  reduced 

responsibility of the client application.

Chapter 5. Conclusion
In  conclusion,  we  achieved  our  functional  goals  of  this  project  through  the 

implementation of  the graph input  formats in MASS, graph maintenance features in 

MASS, and two-way communication between MASS and Cytoscape. Furthermore, we 

believe that the work completed in this project will  not only enable more broad use 

cases of the MASS library but  the project also opens the doors for the Distributed-

Systems  Laboratory  to  many  new  innovation  possibilities  for  both  MASS  and  its 

integration with Cytoscape. In addition, by integrating with Cytoscape we have enabled 

MASS to reach new audiences including other research groups at UW interested in 

graph visualization.

While as a group working towards a common goal of improving MASS and exploring 

agent-based modeling solutions, qualifying programmability  improvements is difficult.  

Even considering the reduction of lines of code to complete a task does not account for 

the cognitive overhead of one implementation compared to another. 

This project set out to address 3 goals that lack in similar systems by enhancing the 

MASS Java library:
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1. Graph Input formats

2. Programmability

3. Visualization

The following section addresses our successes, failures, and possible paths forward for 

MASS.

5.1. Summary
The primary goals of this project are centered around bringing support for graphs inside 

of  MASS to increase programmability  and usability  of  MASS for  users  that  are not 

computer scientists or experienced developers.

A. Graph Input Formats
The implementation of adding input formats was clear cut from an interface perspective 

and we successfully enhanced MASS to allow importing graphs from the HIPPIE and 

MATSim file formats. Our early decisions led to technical debt in the form of having a  

mixed data model between the old and new implementations resulting in complex code 

within the library. 

B. Graph Maintenance
We have implemented a new user object, GraphPlaces, that allows users to create and 

manipulate a graph at runtime. These features will allow users to easily approach the 

dynamic creation and analysis of graphs at runtime with only a few methods.

C. Cytoscape Integration
The  project  has  resulted  in  plugins  and  enhancements  to  MASS  that  facilitate 

transferring graph information back and forth between the systems. By creating a simple 

request interface we have not only enabled the user to use the getGraph and setGraph 

methods but also opened many other possibilities.

5.2. Future Work
Besides the improvements detailed in section 4.2,  this project inspired a number of 
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ideas  for  possible  additions  and  enhancements  to  the  MASS library  that  could  be 

considered for future work or projects. 

5.2.1. Graph Input Formats
1. These implementations should be more modularized and not tightly coupled with 

PlacesBase.  Perhaps  an  interface  that  allows  MASS  to  retrieve  required 

information without knowing the implementation.

2. The GraphInputFormat enum should be utilized instead of depending on the file 

extension. Users may not want to change the file extension. For example, the 

HIPPIE dataset is downloaded as .txt file requiring me to change the extension to 

.tsv

3. Optimize file input reading and graph generation. While this project found true 

parallel file I/O with direct indexing into files with inconsistent line characteristics, 

there  are  other  possibilities  to  improve  the  import  performance.  It  could  be 

determined if an input is small enough it can be read entirely into memory for  

caching on each node. It may even be possible to utilize the existing Parallel I/O 

code. Then populating the neighbors could look at memory rather than reading 

the file again. For example, caching the split input lines of HIPPIE brought the 

import time of the HIPPIE_CURRENT dataset from 3162.353s to 408.852s, a 

7.735x speedup. However, this would require each node to maintain the entire 

input file in-memory which may not always be feasible.

5.2.2. MASS Graph Maintenance

a. Vertices

1. addVertex requires  a second parameter  to  pass additional  information  to  the 

constructor. This has been added provisionally in a repository branch.

b. Edges

1. Allow replacing existing edges in the event that the user would like to update the 

weight without adding a new function call such as setWeight.

2. Allow adding edges where the neighbor is not a vertex in the graph.

a. In  light  of  the HIPPIE network resulting in vertices with  neighbors that 
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were not created by the initialization algorithm, it may be prudent to allow 

edges to be between a source and non-source vertex but that is a problem 

for the future.

c. Performance

1. Benchmark  the  graph  implementation  for  comparison  with  the  existing 

implementation.

2. Investigate  and  implement  possible  performance  improvements  relating  to 

parallelism of the new features. The current implementation is split at the process 

level but not yet at the thread level.

5.2.3. Cytoscape
1. Modify the Import Network Cytoscape plugin to a layout the the new graph such 

as ‘Force Directed Layout.’ The current implementation stacks all vertices on top 

of each other.

2. Give  some  flexibility  to  the  user  for  styling  in  Cytoscape  such  as  additional 

attributes in the model.

3. Give a name to the graph imported from MASS

4. Extend the plugins to support partial updates to existing graph

5. Extend  plugins  to  allow configuration  of  MASS port  and  host.  Currently  it  is  

hardcoded to  localhost  on port  8165.  This  could be a good starting point  for  

adding other configuration options to the plugin.

6. Improve the way that  the graph is  communicated from being distributed in  a 

MASS cluster to being displayed in Cytoscape to stream parts of MASS data into 

and out of Cytoscape.

7. Create a plugin that allows running operations on the graph and sending the 

result back to Cytoscape for display. This would allow better demonstration of 

how the interaction can be utilized for graph analysis.

8. Create a simple plugin that would allow specifying an arbitrary process to run in 

MASS. This is implemented on my by allowing the user to register the process 

but not yet implemented for Cytoscape.

9. Create a plugin that would allow a user to send a program from Cytoscape to  
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MASS for simulation on the graph. This could be simplified with a convention 

such as perform this operation at each place or use these rules to determine 

agent migration where the user sends code snippets to define these actions.

5.2.4. MASS
1. Experiment with other languages. I used Kotlin for some work and it was quite 

nice to be able to write the restrictions of Java.

2. Standardize an easily repeatable deployment that allows multiple nodes without 

requiring UW resources. This could be a public cloud (GCP, AWS, Azure), or  

ideally docker, kubernetes, vagrant. I was using a manually provisioned VM on 

my local machine that was much less painful than attempting to use the hermes 

cluster.

3. Instrument the library to better support analyzing performance of a simulation. It  

could be helpful if MASS tracked memory usage to show statistics such as min, 

max, mean memory usage.
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Appendix A: Implementation Details

A.1. Input Formats
Each  input  format  has  a  unique  initialization  function  init_all_graph_[format] in 

PlacesBase that will populate the MASS cluster with vertices based on the given input 

file. MASS will  use the last 4 characters of the filename to determine which parsing 

algorithm to execute for populating the graph. For example, if the filename is network-

complete.xml,  MASS  determines  the  filetype  to  be  MATSim  and  uses 

init_all_graph_matsim to initialize the cluster.

From this point the init_all_graph_[format] will parse the input data for vertices and 

initialize the associated vertices for the node. To determine the size of the MASS layer 0 

size, the parsing algorithm must determine the number of vertices represented in the 

input file.

After  MASS  determines  the  dataspace  size,  the  second  initialization  step  requires 

initializing  a  Place instance  for  each  vertex.  These  objects  are  subclasses  of 

VertexPlace in the type specified by the MASS client. The format type parsing method 

must then iterate all of the vertices in the input file and use the requested class name to 

create an instance for the new vertex.

To map the vertex ids to a meaning linear index, the map must allow an arbitrary but  

homogeneous structure of keys and values. Furthermore, the keys must implement the 

hashCode method so that keys can be distinguished by the map implementation. Thus 

we allow the distributed map to have an object as the key and value.

This distributed map must be accessed by all nodes and all threads but is also never 

written to after the keys are initially inserted. For this reason we decided to keep a  

public static instance of the map in the MASSBase class for ease of use. The map itself  

is initialized by MASS’s usual initialization functions.

For initialization of each vertex, MASS creates an instance of the users VertexPlace 

subclass passing 3 arguments to each place as an object array: the input filename, the 

input weight filename (ignored), and the global index of this vertex. The first index to be 

managed  by  a  node  is  determined  based  on  the  node  id  multiplied  by  stripeSize, 

described in 3.3.2 - VertexMapping, then each place is assigned a sequential id starting 
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from this offset.  

It is inside this newly created VertexPlace subclass constructor that a second format-

specific initialization method  init_neighbors_[format] is called to pull in the vertex’s 

neighbors from the input file.  The  init_neighbors_[format] method uses a reverse 

lookup in the distributed map to retrieve the logical vertex id.

The final step of initialization is using the vertex’s logical id to parse the input file and 

extracts the current vertex neighbors. The existing CSV implementation of this algorithm 

had separated neighbor ids and neighbor weights into 2 files but within MATSim and 

HIPPIE formats, the file is combined.

Each  input  format  requires  a  slightly  different  implementation  of 

init_all_graph_[format] and init_neighbors_[format].

a. HIPPIE

For the HIPPIE vertex id, as described in section 3.2.1.b, we had a choice between a 

large non-sequential number or a string to identify a vertex. In the future this might be 

an option to be left up the user we chose to use the protein sequence to represent the 

vertex id.

Choosing the protein sequence is ideal for this project because of our goal of integrating 

with Cytoscape will be further enhanced by representing vertices in Cytoscape with their  

protein sequence rather than a simple integral identifier.

init_all_graph_hippie

As with the existing init_all_graph_csv parser, the first step was to count the lines in the  

file  to  determine  the  number  of  vertices.  The  HIPPIE  format  requires  a  slight 

modification to the CSV algorithm in that there are multiple lines representing the same 

vertex. This is because the CSV format is an adjacency list whereas the HIPPIE format 

is in the form of an edge list.

The duplicate unique keys were extracted with the help of the distributed map. As each 

line  was parse,  the  source protein  was queried  in  the  map.  If  the  protein  was not 

present, it was inserted with a sequential integer as the value and the total count was 

incremented.  Proteins that were already present are simply skipped. 

When importing a graph into the MASS library, the input file currently must be read 

sequentially first by the control node. For this reason, the counting and population of the 
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map is sequential on the control node, there are no multithreading concerns.

Following  this  algorithm,  the  process  of  counting  the  vertices  also  populates  the 

distributed map with the proteins as the key and the global linear index as the value. 

init_neighbors_hippie

The VertexPlace constructor then uses the index parameter to do a reverse lookup in 

the distributed map to retrieve the logical id of the vertex is it to manage. The logical id 

can  then  be  used  to  scan  the  input  file  for  the  vertex’s  neighbors  to  populate  the 

neighbors and weights arrays.

For the HIPPIE format, neighbors are determined by lines where the current vertex is 

the first vertex in the file again meaning a similar parsing method as the CSV parser. 

Each line in the input file is iterated and converted to a useful format for determining its  

attributes.

Due  to  the  relative  complexity  of  the  HIPPIE  line  format,  we  created  a  data  class 

HIPPIETabEdge with 2 static helper functions. The first function, getPart, takes an array 

of the line parts and an enum of the desired part returning the value of that part. The 

second function, fromParts, is a factory method that takes an array of the line values as  

a parameter and returns a HIPPIETabEdge object populated with attributes based on 

the input.

With these helper functions, init_neighbors_hippie can then read the input file line-by-

line  using  getPart  to  determine  if  the  value  of  PROTEIN_KEY is  equivalent  to  the 

current vertex’s protein key. If so, the line is converted to an edge with fromParts and 

the neighbor is added with its INTERRACTION_ATTRIBUTE as the weight.

b. MATSim

The MATSim network  format,  unlike  HIPPIE,  keeps  a  complete  list  of  the  network 

vertices and as well  as the edge list.  This allows simplification of counting the total 

number  of  vertices  but  otherwise  the  edge  list  results  in  a  similar  implementation. 

Furthermore, with MATSim being an XML format, we were able to use Java’s built-in 

XML  parsing  capabilities  in  the  javax.xml.xpath  package  to  streamline  parsing  the 

network files.

46



init_all_graph_matsim

Knowing there is a list of node elements called nodes in the input file, we deduced the 

number of vertices in the network based on an XPath query to retrieve a NodeList of the 

<node /> elements.  We could then iterate  this  list  to  insert  the node ids into  the 

distributed map and at the same time accumulate the total number of nodes which are 

equivalent to vertices in this instance.

The XPath query we used to retrieve the node list  can be seen in Figure 5. While  

detailed explanation of the XPath query language is beyond the scope of this document,  

this query can be broken down to a few key components.

//

The first double slash tells the XPath engine to match at any level within the document, 

in contrast to a single slash which is similar to an absolute path in a filesystem.

//nodes

The  nodes  component  matches  <nodes  />  elements.  Combining  double-slash  with 

nodes tells XPath to match a nodes element at any level of the document. The MATSim 

format has only a single <nodes /> element so a more explicit path is not necessary.

//nodes/node

The node component, being subordinate to the nodes component, matches any <node /

> element within a <nodes /> element.

//nodes/node/@id

The final  component,  @id,  tells  the  Java  XPath  engine  to  specifically  query  the  id 

attribute of the <node /> elements. 
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//nodes/node/@id

Figure A.1: XPath node query used by PlacesBase to get count of nodes

The result  of  this query is a NodeList  of  the node element ids specifically.  In other  

words, the attributes are also considered a node so we have a list of key value pairs for  

each node where the key is always id and the value is that nodes associate id value.

With  the  node  ids  inserted  into  the  distributed  map  and  the  number  of  vertices 

determined, MATSim can use the shared algorithm to initialize places by iterating over 

the  stripeSize  places  and  passing  each  Place  entity  its  associate  linear  index  for  

reverse searching in the distributed map.

init_neighbors_matsim

Within VertexPlace, we were again able to utilize a slightly more sophisticated XPath 

query in Figure 6  to retrieve all of the links that contain the attribute ‘from’ with a value 

of the vertex’s id. In this case the list is links.

/network/links/link[@from=vertexId]

Figure A.2: XPath link query. vertexId is replaced by the querer’s id

This query is broken down for reference:

/network

Unlike the previous query, we used an explicit path for starting from network, the root 

level element in this file.

/network/links

Similarly to nodes, we are interested in the list of links in this file.
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/network/links/link

Each link represents an edge in the network

/network/links/link[@from=vertexId]

The final component of this query encoded a few pieces of information. The first to note 

is the lack of a final slash between link and the attribute reference. Unlike the <node /> 

elements  above,  we  require  all  of  the  attributes  of  the  <link  />  elements.  This  is 

achieved by not including a slash after link.

The second portion of this component, [@from=vertexId], tells the query to math <link /> 

elements that have a from attribute that equals a specific value.

By using the XPath query in Figure 6, replacing vertexId with the current vertex’s logical 

vertex id, we can pull all of the link elements from the input file as a NodeList. With the 

query set up as described above, each Node in the list is a <link /> element with all  

associated attributed.

This NodeList can then be used to populate the neighbors via the to attribute and the 

length attribute. The neighbor’s logical id being encoding in the to attribute, and the 

weight within the length attribute.
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A.2. MASS Graph Maintenance
At  a  high  level,  graph  maintenance  in  MASS can  be  simplified  to  the  adding  and 

removing of vertices and edges. As with the existing implementation we require a place 

to store a dynamic collection of vertices represented as VertexPlace or a subclass of 

VertexPlace.

Concerning context for the following implementation descriptions is that, currently, all  

graph  maintenance  operations  are  performed  in  the  application  against  the 

GraphPlaces instance which runs in the main thread on the control node. This means 

that all graph maintenance operations begin in the context of node 0, the control node.

a. Data Model

The  existing  implementation,  described  in  section  3.1,  treats  the  data  space  as  a 

multidimensional array which is linearized similarly to how a programming language like 

C stores a multidimensional array in row-major order. All of the elements in row 1 are  

followed by all of the elements of row 2.

In this fashion, each node is responsible for maintaining a 1 dimensional array of Place 

entities. MASS then uses the node boundaries to calculate which fraction of the total to 

manage per node.

To support a graph maintenance in MASS we based our new model on the existing 

model  with  a  few  enhancements.  Based  on  the  initial  global  size,  specified  in  the 

constructor arguments, or from the input file, we use the same distribution per node as a 

reference for stripeSize. See section 3.3.2 for a detailed explanation of the data model 

to be implemented.

Each  node  is  allocated  an  instance  of  GraphPlaces  responsible  for  managing  the 

node’s VertexPlace assignment. The instances of VertexPlace are held within a Vector 

of  Vectors  of  VertexPlace,  Vector<Vector<VertexPlace>>,  the  first  vector  holds 

within a vector for each layer of the graph to represent. Each layer will increase to a 

maximum of stripeSize instances before an additional layer is created.

b. Vertices

The primary problem to solve with adding vertices is solved with the implementation of 

mapping arbitrary keys to linear indices. By using a distributed map for mapping vertex 
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attributes to a global index and an addressing scheme for mapping these global indices 

to a specific vertex, adding and removing vertices is a matter of determining if the vertex 

exists  in  the  map  and  sending  the  newly  defined  messages 

‘MAINTENANCE_ADD_PLACE’  and  ‘MAINTENANCE_REMOVE_PLACE’  to  the 

appropriate node. The owning node is a function of the global linear address that is  

described in section 3.3.2. The addVertex function is called on the node and the first 

determines whether the vertex already exists.

If the vertex does not exist, the algorithm next determines whether the current node is 

responsible based on the addressing algorithm from section 3.3.2. More specifically, the 

owning node id is determined by taking the modulus of the global index retrieved from 

the distributed map.

An example follows for a new vertex with the logical id Hello in Figure 7.

Vertex attribute: Hello
Global index: 362
MASS Size: 100
Stripe size: 25

Layer Index: 3 (362 / 100)
Node index: 2 (362 % 100 / 25)
Place index: 12 (362 % 25)

Figure A.3: Example vertex addressing

Assuming a new vertex “Hello” is assigned a global index of 362, we can determine the 

correct address of this new vertex by determining the layer, node, and local place index.  

In this way a global linear address is translatable to an address in the form of ( layer, 

node, localIndex).

The value of the key Hello in the distributed map will be 362, its global index. In a MASS 

cluster of 4 nodes with a size of 100 the stripeSize, number of elements assigned per  

node per layer, becomes 25 elements.

Using these values, we can determine the layer index dividing the global index by the 

MASS size. The node index is determined by dividing the global index by the MASS 

size using the modulus operator to get the remainder. The remainder is then divided by 
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the stripe size to reach the 0-based node index.

The local place index, the index within the vector of VertexPlace, is achieved by taking  

the remainder of dividing the global index by stripe size using the modulus operator.

Using these results the system can determine where to put and where to retrieve a 

given vertex. Going back to addVertex, having determined the associate logical name is 

not within the map, we use a sequential accumulator in the GraphPlaces class on the 

control node to assign a new global index.

i. addVertex

The new global index is then used to determine which node the vertex will be assigned 

based on the algorithm in Figure 7. If the current node is the owner, a method called 

addPlaceLocally is called to create a new instance and add to the correct layer.

If  the  owning  node  is  a  different  node,  we  use  MASS’s  existing  message  passing 

infrastructure to send a MAINTENANCE_ADD_PLACE message with the new logical id 

directly to the correct node. Upon receiving this message, the remote node is able to 

call  addPlaceLocally  on  the  local  GraphPlaces  object  to  add  the  new vertex  to  its 

collection.

ii. removeVertex

Removing vertices reverse this process with the additional step of removing references 

to the vertex throughout the cluster. Since a vertex can be a neighbor to any other 

vertex  in  the  graph,  we  can  process  removing  the  vertex  in  a  form  of  broadcast 

message.  We  first  send  the  MAINTENANCE_REMOVE_PLACE  message  with  the 

associated vertex id to all places then proceed to call removePlaceLocally.

The  method  GraphPlaces#removePlaceLocally  must  not  only  remove  the  place 

associated with the given vertex but also iterate all vertices managed by this node in all  

layers and remove any edge referencing this vertex as a destination.

c. Edges

In contrast to vertices, edges are associated with two different vertices. We must find 

which vertex owns the edge based on the source vertex,  but  also determine if  the 

destination exists as well.
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i. addEdge 

For adding an edge we first confirm that both the source and destination vertices exist  

and that the source vertex does not already contain the given edge. Vertices can be 

verified with a simple lookup in the distributed map. In this instance, a failed lookup 

represents a failure condition for adding an edge and the method return.

Once both source and destination vertices have been verified, the global index of the 

first  vertex  is  used  to  determine  the  owner  of  the  vertex  with 

getNodeIdFromGlobalLinearIndex, a helper function in GraphPlaces.

From this step, the flow for edges is decidedly similar to vertex operations, if the current  

node is the owner we call a method addEdgeLocally, if the owner is another node we 

send a message,

MAINTENANCE_ADD_EDGE, with the source vertex, destination vertex, and weight, to 

the owning node.

When a  remote  node receives this  message,  the  addEdgeLocally  method is  called 

locally to complete the process.

The addEdgeLocally method determines the owning vertex place with the addressing 

algorithm  and  calls  the  addNeighbor  method  to  add  it  to  the  VertexPlace  entity’s 

neighbor array if not already present.

ii. removeEdge

Unlike removeVertex, removeEdge is not a cascading process.  An edge is a single 

neighbor of a single vertex. As with other methods described so far, the removeEdge 

method checks for the presence of the source and destination vertices in the distributed 

map.

If both vertices are present in the map, the source vertex linear index is used to find the 

owning node. If the owner node is 0, removeEdgeLocally is called directly control node,  

otherwise  the  parameters,  source  vertex  id,  destination  vertex  id,  send  in  a 

MAINTENANCE_REMOVE_EDGE message to the owning node.

The  owning  node  then  calls  its  removeEdgeLocally  method  which  determines  the 

correct place associated with the edge and removes the neighbor with that VertexPlace 

entity’s removeNeighborSafely method. This method, as the name implies, removes the 

neighbor if it exists or is a no-op otherwise.
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A.3. Cytoscape Integration
To  integration  MASS  with  Cytoscape,  we  implemented  the  infrastructure  for  such 

communication in MASS via a new thread to listen for requests from Cytoscape. This 

listening thread serves as a dispatch to respond to requests from Cytoscape making 

Cytoscape a driver for interactions in both directions. We considered a few options for 

what methods to communicate over the socket connection but settled on using Java’s 

built-in object serialization because it has the least overhead compared to RMI or JSON 

serialization and it is already the primary communication method within MASS.

In  order  to  facilitate  this  bi-directional  communication  channel  between  MASS and 

Cytoscape we also required a data model that would be lightweight for transferring over 

the  network.  This  data  model  also  serves  as  a  bridge between  systems that  have 

different  internal  representations for  their  graphs.  This  communication is depicted in 

Figure 8 for the request and response of the Import Network plugin.

To this end we created the GraphModel and VertexModel classes seen in Figure A.3. 

A graph is represented at a high level by the GraphModel class which in turn has a 

collection of VertexModel objects representing the vertices. Inside of each VertexModel 

object is a collection of IDs that represent the identifiers associated with their neighbors’  

vertex id.

Figure A.4: GraphModel and VertexModel class diagram
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By  implementing  the  Serializeable interface  in  GraphModel and  VertexModel 

classes  we  can  send  objects  over  a  socket  connection  via 

ObjectOutputStream#writeObject,  the  ObjectInputStream class’s  writeObject 

method,  and  read  objects  from  the  socket  stream  via 

ObjectInputStream#readObject casting them to the expected type. This inheritance 

can  be  seen  in  Figure  A.3.  Furthermore,  the  one-to-many  relationship  between 

GraphModel and VertexModel classes in Figure A.3.
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The VertexModel is intended to be a baseline representation of a vertex in a graph. This 

data class has only 2 data members for the vertex id and a list of the vertex neighbors.  
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Both members are represented by Objects for maximum flexibility.  For immutability, the 

vertex id, and neighbor list are set via constructor parameters.

The GraphModel  class contains a field for  a graph name and a list  of  VertexModel 

objects to store the graph’s vertices and, by extension, the edges. Vertices within the 

GraphModel are added with a method addVertex.

As  the  data  model  classes  are  intended  for  serialization,  neither  class  supports 

removing data and minimal additional functionality was implemented.

a. CytoscapeListener

In MASS, we give the user the option to enable CytoscapeListener knowing that this 

feature  will  not  be  used  in  every  run  of  the  library  and  not  by  every  user.  The 

CytoscapeListener  is  a  class  that  implements  a  generic  interface  that  could  be 

implemented for visualization in other packages in the future but CytoscapeListener is 

the focus of this project. This class appears in the MASS portion of Figure A.3.

Creating a CytoscapeListener requires a single parameter: a Graph interface to affect 

during processing of requests from Cytoscape. The GraphPlaces class implements this 

interface so  the  base so  it  can be passed as  a  parameter  to  the  constructor.  The 

CytoscapeListener constructor saves this parameter in a field for later reference. 

This class creates a thread which opens a ServerSocket on port 8165 and processes 

each incoming request by first reading a String instance from the socket’s input stream. 

This String is  used to  determine which method should  be performed to  handle the 

request.

Currently  the  listener  implements  two  methods:  getGraph,  and  setGraph  which  are 

associated  with  import  network  and  export  network  respectively.  The  data  flow  of 

getGraph is represented in Figure 8.

We  have  encapsulated  determining  the  request  type  of  a  factory  method  called 

parseRequest  which  returns  an  object  of  type  GraphRequest.  GraphRequest  is  an 

interface with a single process method defined.

After parsing the request into the appropriate GraphRequest, the request is handled by 

calling process on the GraphRequest and directly writing the result to the output stream 

of the socket.

The CytoscapeListener class also has a convenience method registerProcessor that 
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takes a key and a GraphRequest implementation as parameters. This method allows 

user applications to extend the CytoscapeListener class to handle arbitrary requests 

from the  Cytoscape  plugin.  Additional  functionality  would  need  to  be  added  to  the 

plugins but MASS would not require changes.

b. GraphModel Conversion in Cytoscape and MASS

On each side of the communication bridge between MASS and Cytoscape, depicted in 

Figure A.3, we have implemented conversion methods that convert to and from their 

respective  in-memory  data  structure  into  the  GraphModel representation.  These 

functions are called by MASS message processors in the  CytoscapeListener class 

and the various Cytoscape plugins to convert to a CyNetwork.

i. Cytoscape

For  Cytoscape  we  have  created  the  methods  graphToCyNetwork and 

cyNetworkToGraph methods to convert  GraphModel to an equivalent  CyNetwork 

and  CyNetwork to  an  equivalent  GraphModel respectively.  The  CyNetwork data 

representation  that  Cytoscape  uses  is  achieved  by  creating  a  CyNode object  to 

represent each vertex.

While  iterating  the  GraphModel  and  creating  instances  of  CyNode  we  must  also 

maintain a reference to each new CyNode in a map with a key of the Vertex ID. This 

map  is  required  to  later  create  CyEdge instances  between  the  nodes  with 

CyNetwork#addEdge because the  addEdge method requires direct references to 

CyNode instances.

Visual Representation

While  the  CyNetwork,  CyNode,  and  CyEdge  references  create  the  graph  structure 

represented in a GraphModel object, the visual representation requires modifying the 

associated edge tables in Cytoscape to achieve labels associated with the nodes that 

will be rendered. We have achieved this portion of the task by retrieving the edge row 

from the associate table and modifying the name and interaction properties.

ii. MASS

MASS similarly requires methods that facilitate converting from MASS to a GraphModel 

and vice versa. This conversion is different from Cytoscape because MASS does not  
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have a simple type that represents all of the data held in-memory - MASS distributes its  

data over a cluster of nodes and further splits the data to be maintained by different 

threads within each node. To this end, the conversion currently requires converging all  

of this data into a single data structure on the control node to be sent to Cytoscape as a 

single package.

To converge the data in a MASS cluster, the graph implementation sends a message to 

all nodes, MAINTENANCE_GET_PLACES, to gather their individual VertexPlace data 

into a partial representational GraphModel for each node. This partial graph is then sent  

back to the control node with a MAINTENANCE_GET_PLACES_RESPONSE message.

In the meantime the control node gathers the local data representation into its owner 

partial GraphModel and then waits for the remote nodes to complete via waiting for the  

response message from each node.

Once the control node has received the partial GraphModel from all of the remote nodes 

and the local model, they are merged together before finally being sent to Cytoscape as 

a single complete model of the graph.

The corollary response to getGraph is setGraph. When this request is received by the 

CytoscapeListener, the process method in its GraphRequest must read a GraphModel 

object from the socket’s input stream.

Once  the  requested  graph  is  read  from  the  CytoscapeSocket,  the  listener 

implementation  calls  the  setGraph  method  of  the  Graph  interface.  This  method  is 

implemented in GraphPlaces.

In  order  to  convert  a  GraphModel  into  an  equivalent  representation  in  MASS,  the 

setGraph performs two steps: first  the MASS graph currently residing on the cluster 

must be re-initialized to an empty state, then the method repopulates the graph with 

those of the received GraphModel.

c. Cytoscape Plugins

Modifications to Cytoscape are made possible via OSGI plugin architecture built into 

Cytoscape [22][23]. OSGI, or Open Service Gateway Initiative, is a group that maintains 

the OSGI standard of developing modularized Java components that can be loaded at 

runtime [22].  The result of this project includes 2 such plugins representing each of the 

communication channels.
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We implemented reading a graph from MASS into a Cytoscape plugin called import 

network and the reverse function of sending a Cytoscape network to MASS via a plugin 

called export network.

A Cytoscape plugin is principally built  out of 3 required classes: an activator, a task 

factory, and a task.

The activator, a subclass of AbstractCyActivator is like the entrypoint of the plugin. The 

implementation  overrides  the  start  function  which  sets  up  which  menu  the  feature 

should be in and passes any required services to the factory class. The final step of the 

CyActivator is to register the plugins task factory to the main Cytoscape application so 

that it can respond to events.

The factory class, a subclass of AbstractTaskFactory, is responsible for responding to 

actions  registered  in  the  CyActivator  class.  Our  implementation  simply  passes  all  

registered services into a new ExportNetworkTask or ImportNetworkTask respectively 

for each plugin.

The task, a subclass of AbstractTask, represents the core functionality of our plugins. 

This class implements the logic of each plugin and handles the importing and exporting 

of the networks. Both plugins share the basic communication logic by sending a String 

request to MASS and awaiting a response.

Each plugin as an initialization step in CyActivator creates a MASS submenu in the 

Apps menu and further adds its associate option, Import Network, or Export network.

i. Mass to Cytoscape - Import Network

The first plugin we implemented in Cytoscape was to retrieve a graph from MASS for 

visualizing  in  Cytoscape.  To achieve this  result,  the  plugin  creates a menu item to 

import  the graph under Apps -> MASS -> Import  Network. By selecting this option,  

Cytoscape calls on the ImportNetworkTaskFactory to create an ImportNetworkTask.

The ImportNetworkTask opens a socket to localhost on port 8165, and sends a string 

getGraph using  Java’s  ObjectOutputStream  to  MASS’s  listener  to  dispatch  the 

request.  From  this  point  the  listener  reads  the  request  via 

ObjectInputStream#readObject, a blocking call.

MASS receives the getGraph request from Cytoscape and calls the getGraph method 

on  the  graph  field.  The  GraphPlaces  implementation  of  getGraph  sends  out  the 
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message to all nodes and converges the graph on the control node before sending it 

back to Cytoscape as described in section 3.4.2.b.ii above.

In the case of  getGraph there is no further request payload to process so no further 

reads are necessary; the process is implemented as a lambda that calls the Graph 

interface  getGraph function which in turn converts the MASS graph into our newly 

defined  GraphModel structure.  This  structure  is  now  ready  to  be  send  back  to 

Cytoscape via the socket’s output stream and ObjectOutputStream#writeObject.

After MASS has serialized its graph into a GraphModel and sent it to Cytoscape, the 

readObject call returns and the plugin continues its work. The next step 

The  final  step  of  the  plugin’s  job  is  to  convert  the  GraphModel  response  in  the 

CyNetwork  representation  of  the  graph  with  graphToCyNetwork.  Beyond  the 

conversion and labeling required to convert the GraphModel to a Cytoscape CyNetwork, 

the visualization of a graph represents much more data than what is found within the 

GraphModel.

To achieve a simple and consistent visualization of a graph, a few minor styles were 

applied to the nodes created including setting the size,  colors,  and shape of nodes 

which  is  illustrated  in  Figure  8  below.  In  this  example,  we  are  visualizing  the 

hippie_current dataset [10] which contains neighbors that were not accounted for as 

vertices within the network.

In Figure A.4, we see vertices as large rounded blue rectangles with logical vertex id in 

the center.  The current implementation uses a fixed size for best fit  on the HIPPIE 

dataset. Edges appear simply as black lines between neighboring vertices. Interestingly 

a third type of vertex, the un-accounted neighbor vertices, appeared in this data set 

which we indicate with small red circles. These vertices are not labelled.

The yellow vertex in the middle of Figure 10 is the currently selected vertex. Details of 

this vertex are then displayed in the bottom of the window in a section called “Table 

Panel”

These unaccounted neighbor references that were not in the initialization of the network 

in MASS, hereafter referred to as non-source vertices, were only apparent when we 

began deserializing the GraphModel in Cytoscape. Attempting to create edges between 

the  source  vertex  and  destination  vertex  in  Cytoscape  failed  because  Cytoscape 
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required both vertices to exist.

We encounter this issue with the hippie dataset because the file import features exist 

below the maintenance features which audit vertices and edges before adding them to 

the graph.

ii. Cytoscape to MASS

The export network plugin adds a second option to the MASS menu in Apps to allow 

sending the  currently  selected network  in  Cytoscape to  MASS for  processing.  This 

plugin expectedly performs the opposite operation as the import network module. By 

selecting the Export Network options from the menu, the currently selected CyNetwork 

is converted to a GraphModel  representation to be sent to MASS with a  setGraph 

request.
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In Cytoscape the currently selected network is indicated by a light blue highlight as seen 

in the left panel of Figure 8 above. In the event that no network is selected, the export  

network option will be disabled in the Apps menu.

The export network plugin mirrors much of the flow of the import network plugin. The 

CyActivator adds the Export Network option to the Apps > MASS menu and registers a 

new task factory: ExportNetworkTaskFactory, and a new task: ExportNetworkTask.

The  difference  primarily  lies  within  ExportNetworkTask.  In  the  case  of  the  export 

network plugin, we serialize the CyNetwork in the Cytoscape plugin before sending the 

request off to MASS.

Unlike  import  network,  this  plugin  must  retrieve  an  existing  CyNetwork  which  is 

achieved  by  calling  a  Cytoscape  API  function:  getCurrentNetwork.  This  method  is  

available through the CyApplicationManager which is retrieved in the CyActivator and 

passed  through  to  ExportNetworkTaskFactory  which  then  passes  it  to  this 

ExportNetworkTask like other services.

The plugin then serializes the current CyNetwork with the cyNetworkToGraph method, 

described in 3.4.3.c.ii, which converts the CyNetwork to a representative GraphModel.  

The plugin then sends the setGraph request to MASS and follows up with sending the 

serialized GraphModel. The plugin has nothing more to do so no wait is performed in 

the case of setGraph.

Upon receiving this request from Cytoscape, the setGraph processor lambda is called 

which read the incoming  GraphModel with  ObjectInputStream#readObject.  The 

model is then sent to MASS through the Graph interface via Graph#setGraph.

The GraphPlaces implementation of the Graph interface setGraph method performs 2 

tasks, as mentioned earlier, to recreate the new graph. First is must delete the currently 

represented graph edges and vertices from memory. We call this step re-initialization. 

The second step is to populate the new empty graph with the one represented in the 

GraphModel via setGraph.

Reinitialization

From this point  MASS is tasked with replacing the current in-memory across-cluster 

graph representation with the received graph. The first step is to reinitialize the data 

state  of  MASS  locally  and  all  remote  nodes  by  sending  a 
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MAINTENANCE_REINITIALIZE message to all  nodes. This reinitialization invalidates 

on all nodes all VertexPlace object references, and resets the vertex counter for setting 

indices.

After the control node has completed its reinitialization it waits for an acknowledgement 

from all nodes confirming the entire cluster has been reinitialized, the final global step of 

reinitializing  the  distributed  vertex  id  map  is  performed  which  completes  the  entire 

reinitialization.

Model Deployment

Once MASS has been reinitialized the target GraphModel is deployed to MASS via the 

Graph#addVertex and Graph#addEdge maintenance methods of the Graph interface. 

Similarly  to  converting  the  GraphModel  to  CyNetwork,  all  of  the  vertices  must  be 

created before edges are created which results in two separate loops.

Upon completion a result of “Success” is sent back to Cytoscape to confirm completion.  

The message “Failure” will be sent to Cytoscape upon any failure. The current plugin 

implementation ignores the completion message.

iii. Import Network Data Flow

The current user action implemented in the Cytoscape plugin is ‘Import Network’ in the 

Apps  ->  MASS  sub-menu.  This  menu  option  kicks  off  the  CreateNetworkTask 

implemented in the new MASS plugin for Cytoscape. Figure #9 attempts to sequence 

the flow of data from the user clicking “Import Network” to the resulting visualization of  

the MASS network. The data flow is similar for “Export Network” with slightly different 

data.
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Figure A.7: Sequence diagram for importing a network into Cytoscape

The upper left actor, Cytoscape User, in Figure 11 represents user action inside of the 

Cytoscape application:  the user enters the Apps -> MASS menu and clicks “Import 

Network.” This action triggers within Cytoscape and initiates ImportNetworkTaskFactory 

to initialize an ImportNetworkTask and calls the run method.

The  ImportNetworkTask,  as  described  above,  sends  a  getGraph  request  to  MASS 

which receives the message in the Cytoscape listener. The listener then retrieves the 

GraphModel from its graph field via the getGraph method. The resulting GraphModel is  

then sent back to Cytoscape.

Inside of the ImportNetworkTask, the process reads the resulting GraphModel from the 

socket  and  deserializes  the  graph  into  a  representative  CyNetwork  which  is  then 

displayed to the Cytoscape User. The user can then refresh the layout from the layout 

menu to see the newly imported graph.
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Appendix B. HIPPIE File format
Excerpt from HIPPIE_CURRENT dataset: http://cbdm-01.zdv.uni-mainz.de/~mschaefer/

hippie/hippie_current.txt

AL1A1_HUMAN     216     AL1A1_HUMAN     216     0.76     experiments:in  vivo,Two-
hybrid;pmids:12081471,16189514,25416956;sources:HPRD,BioGRID,IntAct,MINT,I2D,Rual05
ITA7_HUMAN     3679     ACHA_HUMAN     1134     0.73     experiments:in  vivo,Affinity  Capture-Western,affinity  chromatography  
technology;pmids:10910772;sources:HPRD,BioGRID,I2D
NEB1_HUMAN    55607    ACTG_HUMAN    71    0.65    experiments:in vitro,in vivo;pmids:9362513,12052877;sources:HPRD
SRGN_HUMAN    5552    CD44_HUMAN    960    0.63    experiments:in vivo;pmids:9334256,16189514,16713569;sources:HPRD,I2D,Rual05,Lim06
PAK1_HUMAN     5058     ERBB2_HUMAN     2064     0.73     experiments:in  vivo,Affinity  Capture-Western,affinity  chromatography 
technology;pmids:9774445;sources:HPRD,BioGRID,I2D,STRING
DLG4_HUMAN    1742    ERBB2_HUMAN    2064    0.87    experiments:in vivo,Two-hybrid,Affinity Capture-Western,Co-fractionation,affinity chromatography  
technology;pmids:10839362,16713569;sources:HPRD,BioGRID,I2D,Lim06
P85B_HUMAN     5296     ERBB2_HUMAN     2064     0.89     experiments:in  vivo,Reconstituted  Complex,Biochemical  Activity,protein  array,pull  
down,enzymatic study;pmids:1334406,16273093,16729043;sources:HPRD,BioGRID,MINT,I2D,IntAct,KEGG,STRING
PTN18_HUMAN     26469     ERBB2_HUMAN     2064     0.88     experiments:in  vitro,pull  down,anti  tag  coimmunoprecipitation,x-ray  
crystallography,phosphatase assay;pmids:14660651,25081058;sources:HPRD,I2D,IntAct
SMUF2_HUMAN     64750     RHG05_HUMAN     394     0.88     experiments:Two-hybrid,affinity  chromatography 
technology;pmids:15231748,28514442;species:Mus musculus (Mouse);sources:HPRD,MINT,I2D,Colland04,IntAct,BioGRID
UBX11_HUMAN     91544     ZFYV9_HUMAN     9372     0.73     experiments:Two-
hybrid;pmids:16189514,15231748;sources:HPRD,MINT,I2D,Rual05,Colland04,IntAct,BioGRID
NCTR1_HUMAN     9437     CD59_HUMAN     966     0.73     experiments:in  vivo,Affinity  Capture-Western,affinity  chromatography 
technology;pmids:14635045;sources:HPRD,BioGRID,I2D
LYN_HUMAN     4067     PP1R8_HUMAN     5511     0.67     experiments:in  vitro,Biochemical  Activity,enzymatic 
study;pmids:11104670;sources:HPRD,BioGRID,I2D
NPHN_HUMAN    4868    LYN_HUMAN    4067    0.52    experiments:in vivo;pmids:12846735;sources:HPRD,I2D
DLG4_HUMAN    1742    LYN_HUMAN    4067    0.59    experiments:in vivo;pmids:9892651;species:Rattus norvegicus (Rat);sources:HPRD,I2D
BCAR1_HUMAN     9564     LYN_HUMAN     4067     0.9     experiments:in  vitro,in  vivo,Affinity  Capture-Western,affinity  chromatography  
technology;pmids:9581808,9020138;species:Mus musculus (Mouse);sources:HPRD,BioGRID,HomoMINT,I2D
U119A_HUMAN     9094     LYN_HUMAN     4067     0.79     experiments:in  vitro,in  vivo,Reconstituted  Complex,Affinity  Capture-Western,affinity  
chromatography technology,pull down;pmids:12496276;sources:HPRD,BioGRID,I2D
TRAT1_HUMAN     50852     LYN_HUMAN     4067     0.85     experiments:in  vitro,Reconstituted  Complex,pull  
down;pmids:9687533,10790433;sources:HPRD,BioGRID,I2D
SKAP1_HUMAN    8631    LYN_HUMAN    4067    0.75    experiments:in vitro,Reconstituted Complex,pull down;pmids:9195899;sources:HPRD,BioGRID,I2D
SKAP2_HUMAN     8935     LYN_HUMAN     4067     0.8     experiments:in  vivo,Affinity  Capture-Western,affinity  chromatography  
technology;pmids:9837776;species:Mus musculus (Mouse);sources:HPRD,BioGRID,HomoMINT,I2D
LYN_HUMAN    4067    TRPV4_HUMAN    59341    0.77    experiments:in vitro,in vivo,Biochemical Activity,Affinity Capture-Western,enzymatic study,affinity  
chromatography technology;pmids:12538589;sources:HPRD,BioGRID,I2D
NCTR3_HUMAN     259197     CD59_HUMAN     966     0.74     experiments:in  vitro,in  vivo,Affinity  Capture-Western,affinity  chromatography  
technology;pmids:14635045;sources:HPRD,BioGRID,I2D
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Appendix C. MatSim File Format
Taken  from  MatSim  examples  repository: 

https://github.com/matsim-org/matsim-libs/tree/master/examples/scenarios

<network>

    <nodes>

       <node id="1" x="665498.5915828889" y="6600721.058093354" ></node>

       <node id="10" x="658803.7360160261" y="6575644.324923517"></node>

       <node id="100" x="566282.7735573719" y="6454558.626888261"></node>

       <node id="10000" x="408774.9462956431" y="6233917.802557087"></node>

       <node id="10001" x="408772.02211252623" y="6234167.648466459"></node>

       ...

         </nodes>

    <links>

       ...

       <link id="pt_99992" from="pt_740057809" to="pt_740057653" length="257.27792215211286" freespeed="8.333333333333334" capacity="500.0" 

permlanes="1.0" oneway="1" modes="pt" ></link>

       <link id="pt_99996" from="pt_740057599" to="pt_740057756" length="157.21884660387735" freespeed="8.333333333333334" capacity="500.0" 

permlanes="1.0" oneway="1" modes="pt" ></link>

       <link id="pt_99997" from="pt_740057688" to="pt_740057647" length="207.21244492773178" freespeed="8.333333333333334" capacity="500.0" 

permlanes="1.0" oneway="1" modes="pt" ></link>

       <link id="pt_99998" from="pt_740057647" to="pt_740057623" length="378.77959250564095" freespeed="8.333333333333334" capacity="500.0" 

permlanes="1.0" oneway="1" modes="pt" ></link>

       <link id="pt_99999" from="pt_740057623" to="pt_740057686" length="292.07787848782823" freespeed="8.333333333333334" capacity="500.0" 

permlanes="1.0" oneway="1" modes="pt" ></link>

   </links>

</network>
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Appendix D. MASS Parallel I/O File Format

Upon request of Professor Fukuda I wrote the initial implementation of an importer for a 

novel file format to support loading more efficiently on multiple nodes. The initial format  

may change as my understanding of the expectations evolve. 

The format is in plain text for now. The format starts with a header of comma separated 

values indicating the number of neighbors the ordinal vertex has starting with 0.

Following the header is the neighbor data in the form of an adjacency list. With 1 vertex 

per line starting with vertex 0. The values are output tab-separated with 10 columns per 

value.  This  results  in  an  offset  of  10  *  numberOfPrecedingNeighbors  + 

numberOfPrecedingVertices. The second term perhaps not obviously accounts for the 

newlines that  would  be encountered.  The first  term calculates  the number of  bytes 

represented by the lines of the preceding neighbors. This formula gives us an offset of a 

vertex  i  starting from the beginning of the data (after the header line.)  The value of 

numberOfPrecedingNeighbors is available through the header by summing the values 

before the current index within the list of values. E.G: given a header line

9,9,9,9,9,9

And calculating for vertex # 3 the sum of the preceding neighbors would be 9 * 3 = 27 

preceding neighbor values. With the formula above this gives us an offset of 27 * 10 + 3 

= 273 byte offset where this vertex’s neighbor list begins.

Here is a sample graph in the describe format. It is a complete graph with 10 vertices:

9,9,9,9,9,9,9,9,9,9

        1          2          3          4          5          6          7          8          9

        0          2          3          4          5          6          7          8          9

        0          1          3          4          5          6          7          8          9

        0          1          2          4          5          6          7          8          9

        0          1          2          3          5          6          7          8          9

        0          1          2          3          4          6          7          8          9

        0          1          2          3          4          5          7          8          9
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        0          1          2          3          4          5          6          8          9

        0          1          2          3          4          5          6          7          9

        0          1          2          3          4          5          6          7          8
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Appendix E. Bug Fixes
In addition to the work proposed for and carried out for this project, we came across a 

number of hidden bugs in the MASS library. Both to complete our work and to improve  

the quality of the library, these bugs were fixed and significant bugs are documented 

here.

 Remote nodes do not have the same agent limit as the control node - if the max 

agent count is modified, it will not be reflected in remote nodes.

 To resolve this bug we elected to read the value from the control node 

before initializing the workers. The control node then passes this value as 

a parameter for initializing the remote nodes.
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Appendix F. User Manual

F.1. GraphPlaces
GraphPlaces  is  the  high  level  interface  to  using  Graph  support  in  MASS.  Client 

applications should use GraphPlaces instead of Places when they would like to benefit 

from the new graph features of MASS.

Similarly, the Place class parameter of the GraphPlaces constructor should be a class 

derived from VertexPlace instead of simply Place.

1.1. Details

■ GraphPlaces - This is a client visible class used to populate the network with 

VertexPlaces. It is used instead of Places and takes parameters for the file input  

type and path. This class is responsible for distributing the vertices across the 

nodes and instantiated VertexPlaces with the appropriate vertexId to populate.

■ VertexPlace - This is the client visible class to be used as the base class for 

individual places in the client. As such the class specified in the GraphPlaces 

structure for place instantiation must be a subclass of VertexPlace. It is inside of 

this class that the input file is read to populate the neighbors based on the input  

format and algorithm to use.

F.2. Graph Maintenance
Detailed in this whitepaper is the addition of graph maintenance features to the existing 

GraphPlaces class. These features are in the form of public methods on GraphPlaces 

that allow modifying the graph.

2.1. Maintenance Methods

 addVertex - add a new vertex to the graph
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 removeVertex - remove an existing vertex from the graph. This is a cascading 

operation that will remove this vertex as a neighbor from all vertices in the graph

 addEdge - add an edge from  source to  destination vertex with an associated 

weight

 removeEdge - remove the edge between source and destination vertices

2.2. Sample Code
Below  is  a  quick  example  of  creating  a  triangle  graph  with  the  new  maintenance 

methods of GraphPlaces

MASS.init();

Graph graph = new GraphPlaces(0, VertexPlace.class.getName(), 120);

final String vertexA = "A";

final String vertexB = "B";

final String vertexC = "C";

graph.addVertex(vertexA);

graph.addVertex(vertexB);

graph.addVertex(vertexC);

graph.addEdge(vertexA, vertexB, 0.9);

graph.addEdge(vertexB, vertexC, 0.9);

graph.addEdge(vertexC, vertexA, 0.9);

MASS.finish();

F.3. Cytoscape
Cytoscape is the graph visualization package that this project integrates with to allow 

visualization and modification of graphs running on MASS. 
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3.1. Installation
The following instructions are from the perspective of linux but should be fairly similar on 

windows.

1. Retrieve  the  desktop  version  of  Cytoscape  from  cytoscape.org  (the  project 

plugins were developed with Cytoscape 3.7.2) and install

2. Pull the Cytoscape code from bitbucket:

         https://bitbucket.org/mass_utility_developers/mass_java_utilities

3. Copy the plugins to the Cytoscape plugins directory:

~/CytoscapeConfiguration/3/apps/installed

4. Run Cytoscape and verify the plugins are installed

a. Navigate to Apps -> App Manager

b. Click the “Currently Installed” tab

c. There should be at least 2 plugins listed here: (See Figure F.1)

i. MASS - Import Network

ii. MASS - Export Network
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3.2. Usage
Using Cytoscape in a MASS client application is accomplished by creating an instance 

of the CytoscapeListener class. The constructor for CytoscapeListener takes the Graph 

interface, which GraphPlaces implements, as a parameter.

At the end of your program it is advised to call the CytoscapeListener’s finish method to 

prevent  the  MASS  program  from  completing  execution.  This  will  allow  the 

CytoscapeListener  thread  to  continue serving  and processing  requests  to  and  from 

Cytoscape.

3.2.1. Code Snippet for CytoscapeListener

MASS.init();

GraphPlaces graph = new GraphPlaces(0, VertexPlace.class.getName(), 120);

MASSListener listener = new CytoscapeListener(graph);
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... program code ...

listener.finish();

MASS.finish();

3.2.2. Cytoscape Usage

The  current  iteration  of  the  Cytoscape  integration  resulted  in  two  plugins:  import-

network, and export-network. Import network, from the perspective of Cytoscape, calls 

out to MASS on the localhost port 8165 and retrieves its current in-memory graph. Of 

particular note on this feature is that, after importing the graph from MASS, the network 

layout  will  have all  nodes stacked on top  of  each other.  This  can be remedied by 

pressing F5 or selecting “Apply Preferred Layout” from the Layout menu.

Export  network  sends  the  currently  selected  network  to  MASS on  localhost  where 

MASS  replaces  the  current  in-memory  graph  with  the  new  graph  received  from 

Cytoscape. This operation is accessed from the Apps > MASS submenu.

Detailed  description  of  how  to  use  Cytoscape  is  left  up  to  the  authors  and 

cytoscape.org.
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3.2. Cytoscape Integration

In case you may be interested in integrating the Cytoscape plugins developed in this 

project with a different external  framework besides MASS there are a few things to  

consider:

1. The plugins are currently communicating with MASS via Java’s ObjectStream 

classes.  This  means  that  direct  integration  with  the  plugins  currently  would 

require the integration point to be in Java, short of a full reimplementation of Java 

object deserialization.

a) My  recommendation  in  the  Future  Works  section  is  to  convert  the 

communication to a JSON message that would alleviate this problem and will 

more or less be required to integrate with MASS C++

Alternatives are possible of course but using a well known format such as 

JSON would allow other systems to utilize existing JSON parsing facilities to 
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reduce development cost

b) The Java object serialization method can be finicky requiring the classes to 

be  deserialized  to  be  present  in  the  same  package  as  where  they  were 

sourced from.

c) It  may  be  possible  to  create  a  client  class  that  packages  the  required 

GraphModel and VertexModel into a jar, however, when MASS moved from 

Java 1.8 to Java 11 this solution no longer worked due to Cytoscape being 

Java 1.8 currently

2. Requests from the plugin are in the form of a simple string and implicit process

a) “getGraph” expects a response of a GraphModel

b) “setGraph” tells the receiver to read a GraphModel from the socket

3. The GraphModel is a simple data class to represent a graph with a list of vertices 

and a name. Each vertex is represented by a VertexModel class that countains 

an ID and a list of neighbors 
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Appendix G. CSV File Format
The first format we implemented for this project was a Comma-Separated Values file in  

the form of an adjacency list. While not explicitly called out in the proposal, this format 

provided a smooth entry into the work to be done in this project without requiring a lot of  

digging  to  define  the  format.  This  format  also  facilitated  loading  graphs  into  the 

implementation for testing and verification.

The format represents a graph in an adjacency list with one vertex per line. The vertex  

ids are implied by their ordination within the file: the first line represents a vertex with id  

0 and contains a list of the ids of its neighbors. 

With this structure,  PlacesBase can calculate the number of vertices in the graph by 

reading the file line-by-line and counting the total  number of lines as the number of 

vertices. MASS then instantiates a VertexPlace for each vertex it associates each with 

the implied id with via constructor arguments.

The  VertexPlace  constructor  then  calls  init  which  discriminates  the  input  file  to 

determine input function to use for importing the neighbors for this vertex. The CSV 

init_neighbors function uses its ID to skip the number of lines equivalent to its ID to  

retrieve the line representing this vertex. From this point it is a simple matter of parsing 

the line for neighbor ids and associated weights if present.
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Appendix H. MASS Parallel I/O
For  each  of  these  formats  we  have  considered  how  best  to  improve  the  read 

performance across a MASS cluster. In particular we were able to devise a strategy to  

allow random access to the CSV format by padding each vertex edge list with trailing -1  

neighbors and separating the fields with tabs instead of commas.

The proposed formats for this project, HIPPIE and MATSim do not allow such simple 

padding unfortunately.  The flexible nature of xml limits the library’s ability  to predict  

where expected information will be. On the other hand, the HIPPIE format being a tab-

separated format could be modified to be seeked randomly, however, this would require 

dropping the  free-form text  field  or  using  a  large  padding section.  Regardless,  this 

modification would require a pre-processing step not ideal for our goals of making the 

library easy to use.

These shortcomings and the desire to improve the read performance of very large input 

formats led us to develop a simple yet effective input format that could be randomly 

seeked for reading. As the format was specifically to assist in a group member’s work, it  

was decided to name the format after the member most benefiting from the format.

The implementation for reading the vertices from MASS’s current Parallel I/O Format, or 

sar format, is similar to the original CSV format. Each vertex’s ID attribute is implied 

from its ordinal position in the file: the first will have ID 0, the second having ID 1, and so 

on. The VertexPlace objects are created based on the count of vertices determined by 

the header line of the input file. Each vertex is assigned its ID in order starting from 0.

Inside of the VertexPlace class the vertex’s neighbors are initialized with the help of the 

header. Summing up the neighbor counts of vertices preceding the current vertex, the 

neighbor information can be seeked directly in this format which allows more efficient 

parallel execution compared to reading through the entire file for each vertex as seen in 

other formats.
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Appendix I. MASS Graph interface
This interface represents the graph interface to the MASS library for user applications.

public interface Graph {

    GraphModel getGraph();

    GraphModel getGraph(boolean all);

    // Graph Maintenance

    boolean addEdge(Object vertexId, Object neighborId,

                    double weight);

    boolean removeEdge(Object vertexId, Object neighborId);

    int addVertex(Object vertexId);

    int addVertex(Object vertexId, Object vertexInitParam);

    boolean removeVertex(Object vertexId);

    void setGraph(GraphModel newGraph);

}
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